login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A266338
G.f. = b(2)*b(4)*b(6)/(x^8-x^3-x+1), where b(k) = (1-x^k)/(1-x).
2
1, 4, 9, 17, 29, 46, 70, 104, 152, 219, 314, 449, 639, 907, 1286, 1821, 2576, 3643, 5150, 7277, 10281, 14524, 20515, 28975, 40923, 57795, 81620, 115266, 162780, 229876, 324627, 458432, 647385, 914217, 1291029, 1823148, 2574585, 3635738, 5134259, 7250412
OFFSET
0,2
COMMENTS
This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_6 - see Tables 7.6, 7.7 and 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Tables 5 and 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).
LINKS
Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, arXiv:0906.1596 [math.RT], 2009.
Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, Journal of Nonlinear Mathematical Physics 17.supp01 (2010), 169-215.
MAPLE
gf:= b(2)*b(4)*b(6)/(x^8-x^3-x+1):
b:= k->(1-x^k)/(1-x):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
MATHEMATICA
b[k_] := (1 - x^k)/(1 - x); CoefficientList[Series[b[2] b[4] b[6]/(x^8 - x^3 - x + 1), {x, 0, 40}], x] (* Bruno Berselli, Dec 28 2015 *)
CROSSREFS
Cf. similar sequences listed in A265055.
Sequence in context: A008138 A301123 A265047 * A301124 A265049 A266333
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Dec 27 2015
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy