login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A266762
Growth series for affine Coxeter group (or affine Weyl group) D_7.
1
1, 8, 35, 113, 301, 700, 1472, 2864, 5236, 9094, 15128, 24255, 37669, 56896, 83853, 120913, 170975, 237539, 324787, 437668, 581987, 764501, 993020, 1276513, 1625220, 2050768, 2566292, 3186562, 3928115, 4809392, 5850881, 7075264, 8507569, 10175328, 12108740, 14340839, 16907667, 19848452, 23205791, 27025840, 31358509, 36257661
OFFSET
0,2
REFERENCES
N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
LINKS
Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1, 0, 0, 0, 1, -5, 11, -15, 15, -11, 5, -1, 0, 0, 0, -1, 5, -10, 10, -5, 1).
FORMULA
The growth series for the affine Coxeter group of type D_k (k >= 3) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-3,k-1].
Here (k=7) the G.f. is -(1+t+t^2+t^3)*(1+t)*(1+t+t^2+t^3+t^4+t^5+t^6+t^7)*(t^5+1)*(t^9+t^6+t^3+1)/(-1+t^11)/(-1+t^9)/(-1+t)^5.
CROSSREFS
The growth series for the affine Coxeter groups D_3 through D_12 are A005893 and A266759-A266767.
Sequence in context: A040977 A266785 A267170 * A220889 A285240 A036598
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 10 2016
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy