login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A267241
Number of nX4 binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.
1
5, 22, 105, 567, 3351, 20676, 129129, 804817, 4982759, 30629206, 187121865, 1137631979, 6891047527, 41628865000, 250987078681, 1511105743781, 9088662549303, 54625229882746, 328144877989145, 1970524978549951
OFFSET
1,1
COMMENTS
Column 4 of A267245.
LINKS
Index entries for linear recurrences with constant coefficients, signature (24, -246, 1420, -5121, 12084, -18944, 19536, -12720, 4736, -768).
FORMULA
Empirical: a(n) = 24*a(n-1) -246*a(n-2) +1420*a(n-3) -5121*a(n-4) +12084*a(n-5) -18944*a(n-6) +19536*a(n-7) -12720*a(n-8) +4736*a(n-9) -768*a(n-10).
Empirical formula verified (see link). - Robert Israel, Sep 08 2019
EXAMPLE
Some solutions for n=4
..0..0..0..0....0..0..0..0....0..0..1..1....0..0..1..1....0..0..0..1
..0..0..0..0....0..0..0..1....0..0..1..1....0..1..0..1....0..1..1..0
..0..1..1..1....0..1..1..0....0..1..1..1....1..0..1..0....0..1..1..1
..1..0..1..1....0..1..1..0....1..0..1..1....1..0..1..0....0..1..1..1
MAPLE
states:= select(proc(x) (x[1]=x[2] or x[5]=1) and (x[2]=x[3] or x[6]=1) and (x[3]=x[4] or x[7]=1) end proc, [seq(seq(seq(seq(seq(seq(seq([a, b, c, d, e, f, g], g=0..1), f=0..1), e=0..1), d=0..1), c=0..1), b=0..1), a=0..1)]):
T:= Matrix(54, 54, proc(i, j) local k;
if add(states[j, k]-states[i, k], k=1..4) > 0 then return 0 fi;
if states[j, 5]>states[i, 5] or states[j, 6]>states[i, 6] or states[j, 7]>states[i, 7] then return 0 fi;
if states[i, 1]>=states[i, 2] and states[j, 5]<> states[i, 5] then return 0 fi;
if states[i, 2]>=states[i, 3] and states[j, 6]<> states[i, 6] then return 0 fi;
if states[i, 3]>=states[i, 4] and states[j, 7]<> states[i, 7] then return 0 fi;
1
end proc):
U:= Vector(54, 1):
E[0]:= Vector(54): E[0][1]:= 1:
for k from 1 to 25 do E[k]:= T . E[k-1] od:
seq(U^%T . E[j], j=1..25); # Robert Israel, Sep 08 2019
MATHEMATICA
LinearRecurrence[{24, -246, 1420, -5121, 12084, -18944, 19536, -12720, 4736, -768}, {5, 22, 105, 567, 3351, 20676, 129129, 804817, 4982759, 30629206, 187121865}, 25] (* Jean-François Alcover, Oct 25 2022, after Robert Israel *)
CROSSREFS
Cf. A267245.
Sequence in context: A213684 A373930 A082297 * A162271 A164593 A153789
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 12 2016
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy