login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A268462
Expansion of (2 x^4*(5 - 12*x + 8*x^2))/(1 - 2*x)^4.
6
0, 0, 0, 0, 10, 56, 224, 768, 2400, 7040, 19712, 53248, 139776, 358400, 901120, 2228224, 5431296, 13074432, 31129600, 73400320, 171573248, 397934592, 916455424, 2097152000, 4771020800, 10796138496, 24310185984, 54492397568, 121634816000, 270448721920, 599147937792
OFFSET
0,5
COMMENTS
a(n) is the number of North-East lattice paths from (0,0) to (n,n) in which total number of east steps below y = x-1 or above y = x+1 is exactly three. Details can be found in Section 4.1 in Pan and Remmel's link.
LINKS
Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
FORMULA
G.f.: (2 x^4*(5 - 12*x + 8*x^2))/(1 - 2*x)^4.
a(n) = 8*a(n-1)-24*a(n-2)+32*a(n-3)-16*a(n-4) for n>3. - Vincenzo Librandi, Feb 05 2016
a(n) = 2^(n-4)*(n-3)*(n+1)*(n+2)/3 for n>2. - Colin Barker, Feb 08 2016
MATHEMATICA
CoefficientList[Series[(2 x^4 (5 - 12 x + 8 x^2)) / (1 - 2 x)^4, {x, 0, 33}], x] (* Vincenzo Librandi, Feb 05 2016 *)
LinearRecurrence[{8, -24, 32, -16}, {0, 0, 0, 0, 10, 56, 224}, 40] (* Harvey P. Dale, Feb 10 2022 *)
PROG
(Magma) I:=[0, 0, 0, 0, 10, 56, 224]; [n le 7 select I[n] else 8*Self(n-1)-24*Self(n-2)+32*Self(n-3)-16*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 05 2016
(PARI) concat(vector(4), Vec(2*x^4*(5-12*x+8*x^2)/(1-2*x)^4 + O(x^100))) \\ Colin Barker, Feb 08 2016
CROSSREFS
Sequence in context: A137931 A053493 A198833 * A296918 A001786 A258478
KEYWORD
nonn,easy
AUTHOR
Ran Pan, Feb 04 2016
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy