login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A272298
a(n) = n^4 + 324.
3
324, 325, 340, 405, 580, 949, 1620, 2725, 4420, 6885, 10324, 14965, 21060, 28885, 38740, 50949, 65860, 83845, 105300, 130645, 160324, 194805, 234580, 280165, 332100, 390949, 457300, 531765, 614980, 707605, 810324, 923845, 1048900, 1186245, 1336660, 1500949, 1679940, 1874485, 2085460
OFFSET
0,1
COMMENTS
This is the case k=3 of Sophie Germain's Identity n^4+(2*k^2)^2 = ((n-k)^2+k^2)*((n+k)^2+k^2).
FORMULA
O.g.f.: (324 - 1295*x + 1955*x^2 - 1285*x^3 + 325*x^4)/(1 - x)^5. [Corrected by Georg Fischer, May 23 2019]
E.g.f.: (324 + x + 7*x^2 + 6*x^3 + x^4)*exp(x).
a(n) = (n^2 - 18)^2 + (6*n)^2.
MATHEMATICA
Table[n^4 + 324, {n, 0, 40}]
LinearRecurrence[{5, -10, 10, -5, 1}, {324, 325, 340, 405, 580}, 40] (* Harvey P. Dale, Jan 20 2021 *)
PROG
(PARI) vector(40, n, n--; n^4+324)
(Sage) [n^4+324 for n in (0..40)]
(Maxima) makelist(n^4+324, n, 0, 40);
(Magma) [n^4+324: n in [0..40]];
(Python) [n**4+324 for n in range(40)]
(Python) for n in range(0, 10**5):print(n**4+324, end=", ") # Soumil Mandal, Apr 30 2016
CROSSREFS
Cf. A005917.
Subsequence of A227855.
Cf. A000583 (k=0), A057781 (k=1), A272297 (k=2).
Sequence in context: A110709 A298271 A006465 * A088214 A117550 A045287
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Apr 25 2016
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy