login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A274587
Values of n such that 2*n-1 and 4*n-1 are both triangular numbers.
2
1, 23, 176, 5968, 888778, 30192278, 233944673, 7947232183, 1183597668523, 40207478867501, 311547395822378, 10583440358908726, 1576213585538112676, 53544862512524597468, 414892028679967914251, 14094115694115827467213, 2099065698850118586101173
OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (35,-1189,40391,-40391,1189,-35,1).
FORMULA
Intersection of A174114 and A213399.
G.f.: x*(1-12*x+560*x^2-13236*x^3+560*x^4-12*x^5+x^6) / ((1-x)*(1-34*x+x^2)*(1+1154*x^2+x^4)).
EXAMPLE
23 is in the sequence because 2*23-1 = 45, 4*23-1 = 91, and 45 and 91 are both triangular numbers.
MATHEMATICA
Rest@ CoefficientList[Series[x (1 - 12 x + 560 x^2 - 13236 x^3 + 560 x^4 - 12 x^5 + x^6)/((1 - x) (1 - 34 x + x^2) (1 + 1154 x^2 + x^4)), {x, 0, 17}], x] (* Michael De Vlieger, Jun 30 2016 *)
LinearRecurrence[{35, -1189, 40391, -40391, 1189, -35, 1}, {1, 23, 176, 5968, 888778, 30192278, 233944673}, 20] (* Harvey P. Dale, Jan 18 2021 *)
PROG
(PARI) isok(n) = ispolygonal(2*n-1, 3) && ispolygonal(4*n-1, 3)
(PARI) Vec(x*(1-12*x+560*x^2-13236*x^3+560*x^4-12*x^5+x^6)/((1-x)*(1-34*x+x^2)*(1+1154*x^2+x^4)) + O(x^20))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jun 29 2016
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy