login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A287702
a(n) = (3!)^3 * [z^3] hypergeom([], [1,1], z)^n.
1
0, 1, 56, 381, 1192, 2705, 5136, 8701, 13616, 20097, 28360, 38621, 51096, 66001, 83552, 103965, 127456, 154241, 184536, 218557, 256520, 298641, 345136, 396221, 452112, 513025, 579176, 650781, 728056, 811217, 900480, 996061, 1098176, 1207041, 1322872, 1445885
OFFSET
0,3
FORMULA
O.g.f.: x*(1 + 52*x + 163*x^2) / (1 - x)^4.
a(n) = 46*n - 81*n^2 + 36*n^3.
a(n) = [x^n] (x + 52*x^2 + 163*x^3) / (1 - x)^4.
MAPLE
a := n -> 46*n - 81*n^2 + 36*n^3: seq(a(n), n=0..35);
MATHEMATICA
Table[46 n - 81 n^2 + 36 n^3, {n, 0, 40}] (* Bruno Berselli, Jun 06 2017 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 56, 381}, 40] (* Harvey P. Dale, Aug 20 2017 *)
CROSSREFS
Column 3 of A287698.
Sequence in context: A219826 A075283 A205313 * A008447 A076647 A187159
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Jun 01 2017
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy