login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A290477
Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,4,1,5 (the first five digits of Pi).
1
3, 19, 118, 709, 4259, 25557, 153343, 920062, 5520373, 33122243, 198733461, 1192400767, 7154404606, 42926427637, 257558565827, 1545351394965, 9272108369791, 55632650218750, 333795901312501, 2002775407875011, 12016652447250069, 72099914683500415
OFFSET
1,1
FORMULA
From Colin Barker, Aug 04 2017: (Start)
G.f.: x*(3 + x + 4*x^2 + x^3 + 5*x^4) / ((1 - x)*(1 - 6*x)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 6*a(n-1) + a(n-5) - 6*a(n-6) for n>6.
(End)
EXAMPLE
Base 6...........Decimal
3......................3
31....................19
314..................118
3141.................709
31415...............4259
314153.............25557
3141531...........153343
etc. - Colin Barker, Aug 04 2017
MATHEMATICA
Table[FromDigits[PadRight[{}, n, {3, 1, 4, 1, 5}], 6], {n, 30}] (* or *) LinearRecurrence[{6, 0, 0, 0, 1, -6}, {3, 19, 118, 709, 4259, 25557}, 30]
PROG
(PARI) Vec(x*(3 + x + 4*x^2 + x^3 + 5*x^4) / ((1 - x)*(1 - 6*x)*(1 + x + x^2 + x^3 + x^4)) + O(x^30)) \\ Colin Barker, Aug 04 2017
CROSSREFS
Sequence in context: A084133 A005667 A098444 * A321002 A221184 A274852
KEYWORD
nonn,base,easy
AUTHOR
Harvey P. Dale, Aug 03 2017
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy