login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A292292
Number of vertices of type C at level n of the hyperbolic Pascal pyramid.
1
0, 0, 0, 1, 3, 9, 34, 174, 1128, 8251, 63315, 494175, 3879370, 30512736, 240149088, 1890487729, 14883249459, 117174190329, 922506823618, 7262871367566, 57180440473320, 450180590519275, 3544264121625315, 27903931958216271, 219687190433359498
OFFSET
0,5
LINKS
László Németh, Hyperbolic Pascal pyramid, arXiv:1511.0267 [math.CO], 2015 (3rd line of Table 1).
FORMULA
a(n) = 12*a(n-1) - 37*a(n-2) + 37*a(n-3) - 12*a(n-4) + a(n-5), n >= 6.
G.f.: x^3*(1 - 9*x + 10*x^2) / ((1 - x)*(1 - 8*x + x^2)*(1 - 3*x + x^2)). - Colin Barker, Sep 17 2017
a(n) = A001091(n-3)/15 + 3*A002878(n-3)/5 + 1/3 for n > 0. - Ehren Metcalfe, Apr 18 2019
MATHEMATICA
CoefficientList[Series[x^3*(1 - 9*x + 10*x^2)/((1 - x)*(1 - 8*x + x^2)*(1 - 3*x + x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 17 2017 *)
PROG
(PARI) concat(vector(3), Vec(x^3*(1 - 9*x + 10*x^2) / ((1 - x)*(1 - 8*x + x^2)*(1 - 3*x + x^2)) + O(x^30))) \\ Colin Barker, Sep 17 2017
CROSSREFS
Cf. A264236.
Sequence in context: A219663 A084756 A009578 * A067787 A332370 A130491
KEYWORD
nonn,easy
AUTHOR
Eric M. Schmidt, Sep 13 2017
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy