login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A293633
a(n) is the integer k that minimizes |k/Fibonacci(n) - 3/4|.
3
1, 1, 2, 2, 4, 6, 10, 16, 26, 41, 67, 108, 175, 283, 458, 740, 1198, 1938, 3136, 5074, 8210, 13283, 21493, 34776, 56269, 91045, 147314, 238358, 385672, 624030, 1009702, 1633732, 2643434, 4277165, 6920599, 11197764, 18118363, 29316127, 47434490, 76750616
OFFSET
1,3
FORMULA
G.f.: x*(1 - x^3 - x^6)/((1 - x)*(1 + x)*(1 - x + x^2)*(1 - x - x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) + a(n-6) - a(n-7) - a(n-8) for n >= 9.
a(n) = floor(1/2 + 3*Fibonacci(n)/4).
a(n) = A293631(n) if (fractional part of 3*Fibonacci(n)/4) < 1/2, else a(n) = A293632(n).
MATHEMATICA
z = 120; r = 3/4; f[n_] := Fibonacci[n];
Table[Floor[r*f[n]], {n, 1, z}]; (* A293631 *)
Table[Ceiling[r*f[n]], {n, 1, z}]; (* A293632 *)
Table[Round[r*f[n]], {n, 1, z}]; (* A293633 *)
LinearRecurrence[{1, 1, 0, 0, 0, 1, -1, -1}, {1, 1, 2, 2, 4, 6, 10, 16}, 40] (* Harvey P. Dale, Mar 30 2019 *)
PROG
(PARI) a(n) = round(3*fibonacci(n)/4); \\ Andrew Howroyd, Feb 12 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 14 2017
EXTENSIONS
Offset changed by Clark Kimberling, Feb 12 2018
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy