login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A294262
a(n) = 3*a(n-1) + 5*a(n-2) + a(n-3), with a(0) = a(1) = 1 and a(2) = 7, a linear recurrence which is a trisection of A005252.
3
1, 1, 7, 27, 117, 493, 2091, 8855, 37513, 158905, 673135, 2851443, 12078909, 51167077, 216747219, 918155951, 3889371025, 16475640049, 69791931223, 295643364939, 1252365390981, 5305104928861, 22472785106427, 95196245354567, 403257766524697, 1708227311453353, 7236167012338111, 30652895360805795, 129847748455561293, 550043889183050965
OFFSET
0,3
FORMULA
G.f.: (1 - 2*x - x^2)/(1 - 3*x - 5*x^2 - x^3).
a(n) = (1/20)*(10*(-1)^n + (2-sqrt(5))^n*(5-sqrt(5)) + (2+sqrt(5))^n*(5+sqrt(5))).
a(n) = A005252(3*n).
a(n) = 4*a(n-1) + a(n-2) + 2*(-1)^n for n >= 2.
a(n) = Sum_{k=0..floor(3*n/4)} binomial(3*n-2*k, 2*k).
a(n) = A110679(n) - A001076(n).
a(n) = (Fibonacci(3*n + 1) + (-1)^n)/2.
a(2*n) = A232970(2*n); a(2*n+1) = A049651(2*n+1). See "6 interlaced bisections" link. - Hermann Stamm-Wilbrandt, Apr 18 2019
MATHEMATICA
LinearRecurrence[{3, 5, 1}, {1, 1, 7}, 30]
PROG
(bc)
a=1
b=1
c=7
print 0, " ", a, "\n"
print 1, " ", b, "\n"
print 2, " ", c, "\n"
for(x=3; x<=1000; ++x){
d=3*c+5*b+1*a
print x, " ", d, "\n"
a=b
b=c
c=d
} # Hermann Stamm-Wilbrandt, Apr 18 2019
(PARI) {a(n) = (fibonacci(3*n+1) +(-1)^n)/2}; \\ G. C. Greubel, Apr 19 2019
(Magma) [(Fibonacci(3*n+1) +(-1)^n)/2 : n in [0..30]]; // G. C. Greubel, Apr 19 2019
(Sage) [(fibonacci(3*n+1) +(-1)^n)/2 for n in (0..30)] # G. C. Greubel, Apr 19 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy