login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A304579
a(n) = (n^2 + 1)*(n^2 + 2).
0
2, 6, 30, 110, 306, 702, 1406, 2550, 4290, 6806, 10302, 15006, 21170, 29070, 39006, 51302, 66306, 84390, 105950, 131406, 161202, 195806, 235710, 281430, 333506, 392502, 459006, 533630, 617010, 709806, 812702, 926406, 1051650, 1189190, 1339806, 1504302, 1683506
OFFSET
0,1
COMMENTS
a(n) and A304578(n) are coprime for all n.
LINKS
Daniele Mastrostefano and Carlo Sanna, On numbers n with polynomial image coprime with the nth term of a linear recurrence, arXiv:1805.05114. [math.NT], 2018 (see 4.2, page 7).
FORMULA
G.f.: 2*(1 - 2*x + 10*x^2 + 3*x^4)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A002378(A002522(n)). - Altug Alkan, May 17 2018
Sum_{n>=0} 1/a(n) = 1/4 + coth(Pi)*Pi/2 - coth(sqrt(2)*Pi)*Pi/(2*sqrt(2)). - Amiram Eldar, Feb 24 2023
MATHEMATICA
CoefficientList[Series[2 (1 - 2 x + 10 x^2 + 3 x^4) / (1 - x)^5, {x, 0, 35}], x] (* or *) Table[(n^2 + 1) (n^2 + 2), {n, 0, 40}]
LinearRecurrence[{5, -10, 10, -5, 1}, {2, 6, 30, 110, 306}, 40] (* Harvey P. Dale, Nov 13 2022 *)
PROG
(Magma) [(n^2+1)*(n^2+2): n in [0..40]];
(PARI) a(n) = my(k=n^2+1); k*(k+1); \\ Altug Alkan, May 17 2018
CROSSREFS
Subsequence of A002378, A045619, A279019.
Sequence in context: A203461 A071758 A071760 * A036752 A065563 A035105
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 17 2018
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy