login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A305291
Numbers k such that 4*k + 3 is a perfect cube, sorted by absolute values.
2
-1, 6, -32, 85, -183, 332, -550, 843, -1229, 1714, -2316, 3041, -3907, 4920, -6098, 7447, -8985, 10718, -12664, 14829, -17231, 19876, -22782, 25955, -29413, 33162, -37220, 41593, -46299, 51344, -56746, 62511, -68657, 75190, -82128, 89477, -97255, 105468, -114134, 123259, -132861
OFFSET
1,2
FORMULA
G.f.: x*(-1 + 3*x - 16*x^2 + 3*x^3 - x^4)/((1 - x)*(1 + x)^4).
a(n) = -3*a(n-1) - 2*a(n-2) + 2*a(n-3) + 3*a(n-4) + a(n-5).
a(n) = (-3 + A016755(n-1)*(-1)^n)/4.
a(n) = -A305290(n) - 1.
a(n) + a(-n) = 1 - 2^(1+(-1)^n).
(n - 2)*(4*n^2 - 16*n + 19)*a(n) + (12*n^2 - 36*n + 31)*a(n-1) - (n - 1)*(4*n^2 - 8*n + 7)*a(n-2) = 0.
From Colin Barker, May 30 2018: (Start)
a(n) = (4*n^3 - 6*n^2 + 3*n - 2)/2 for n even.
a(n) = -(4*n^3 - 6*n^2 + 3*n + 1)/2 for n odd.
(End)
MAPLE
seq(coeff(series(x*(-1+3*x-16*x^2+3*x^3-x^4)/((1-x)*(1+x)^4), x, 50), x, n), n=1..45); # Muniru A Asiru, May 31 2018
MATHEMATICA
LinearRecurrence[{-3, -2, 2, 3, 1}, {-1, 6, -32, 85, -183}, 45] (* Jean-François Alcover, Jun 04 2018 *)
PROG
(PARI) Vec(-x*(1 - 3*x + 16*x^2 - 3*x^3 + x^4) / ((1 - x)*(1 + x)^4) + O(x^40)) \\ Colin Barker, Jun 04 2018
CROSSREFS
Sequence in context: A045159 A121002 A161844 * A177082 A296196 A211918
KEYWORD
sign,easy
AUTHOR
Bruno Berselli, May 29 2018
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy