login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A321959
a(n) = [x^n] ((1 - x)*x)/((1 - 2*x)^2*(2*x^2 - 2*x + 1)).
3
0, 1, 5, 16, 42, 100, 228, 512, 1144, 2544, 5616, 12288, 26656, 57408, 122944, 262144, 556928, 1179392, 2490112, 5242880, 11010560, 23069696, 48235520, 100663296, 209713152, 436203520, 905965568, 1879048192, 3892322304, 8053080064, 16643014656, 34359738368
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} A323100(n - k, k).
a(n) = n! [x^n] exp(x)*(exp(x)*(2*x + 1) - sin(x) - cos(x))/2.
a(n) = 2*((2*n+2)*a(n-3) - (3*n+2)*a(n-2) + (2*n+1)*a(n-1))/n for n >= 4.
a(2^n - 1) = 2^(2^n + n - 2) if n>1. - Michael Somos, Sep 30 2022
EXAMPLE
G.f. = x + 5*x^2 + 16*x^3 + 42*x^4 + 100*x^5 + 228*x^6 + ... - Michael Somos, Sep 30 2022
MAPLE
ogf := ((1 - x)*x)/((1 - 2*x)^2*(2*x^2 - 2*x + 1));
ser := series(ogf, x, 32): seq(coeff(ser, x, n), n=0..31);
MATHEMATICA
LinearRecurrence[{6, -14, 16, -8}, {0, 1, 5, 16}, 32] (* Georg Fischer, May 08 2021 *)
PROG
(PARI) {a(n) = if(n<0, 0, polcoeff( x*(1 - x) / ((1 - 2*x)^2*(1 - 2*x + 2*x^2)), n))}; /* Michael Somos, Sep 30 2022 */
CROSSREFS
Antidiagonal sums of A323100.
Sequence in context: A055796 A002662 A143962 * A066634 A241794 A034358
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Jan 12 2019
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy