login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A332121
a(n) = 2*(10^(2n+1)-1)/9 - 10^n.
12
1, 212, 22122, 2221222, 222212222, 22222122222, 2222221222222, 222222212222222, 22222222122222222, 2222222221222222222, 222222222212222222222, 22222222222122222222222, 2222222222221222222222222, 222222222222212222222222222, 22222222222222122222222222222, 2222222222222221222222222222222
OFFSET
0,2
FORMULA
a(n) = 2*A138148(n) + 1*10^n = A002276(2n+1) - 10^n.
G.f.: (1 + 101*x - 300*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332121 := n -> 2*(10^(2*n+1)-1)/9-10^n;
MATHEMATICA
Array[2 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
PROG
(PARI) apply( {A332121(n)=10^(n*2+1)\9*2-10^n}, [0..15])
(Python) def A332121(n): return 10**(n*2+1)//9*2-10**n
CROSSREFS
Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332120 .. A332129 (variants with different middle digit 0, ..., 9).
Cf. A332131 .. A332191 (variants with different repeated digit 3, ..., 9).
Sequence in context: A344423 A238023 A204299 * A083962 A007942 A210257
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 09 2020
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy