login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A335298
a(n) is the squared distance between the points P(n) and P(0) on a plane, n >= 0, such that the distance between P(n) and P(n+1) is n+1 and, going from P(n) to P(n+2), a 90-degree left turn is taken in P(n+1).
1
0, 1, 5, 8, 8, 13, 25, 32, 32, 41, 61, 72, 72, 85, 113, 128, 128, 145, 181, 200, 200, 221, 265, 288, 288, 313, 365, 392, 392, 421, 481, 512, 512, 545, 613, 648, 648, 685, 761, 800, 800, 841, 925, 968, 968, 1013, 1105, 1152, 1152, 1201, 1301, 1352, 1352, 1405, 1513
OFFSET
0,3
COMMENTS
P(n) is a corner on a spiral like this:
* * * * * * * * * * * *
*
* * * * * * * * *
* * *
* * * * * * *
* * * * *
* * * * * *
* * * *
* * * * * * * *
* *
* * * * * * * * * *
If we interpret the pointer from P(0) to P(n) as a complex number z(n), the description of the spiral is short because a 90-degree left turn is a multiplication by i (imaginary unit) and the distance of P(n) from P(0) is abs(z(n))^2, see formula 1.
FORMULA
a(n) = abs(z(n))^2 with
1) z(n) = z(n-1)+n*i^(n-1), z(0)=0. (recursive)
2) z(n) = i/2*(n*i^(n+1)-(n+1)*i^n+1). (explicit)
Without complex numbers for k >= 0:
a(4*k) = 8*k^2,
a(4*k+1) = 8*k^2+4*k+1,
a(4*k+2) = 8*k^2+12*k+5,
a(4*k+3) = 8*(k+1)^2.
From Stefano Spezia, Jun 28 2020: (Start)
G.f.: x*(1 + 2*x - 2*x^2 + 2*x^3 + x^4)/((1 - x)^3*(1 + x^2)^2).
a(n) = 3*a(n-1) - 5*a(n-2) + 7*a(n-3) - 7*a(n-4) + 5*a(n-5) - 3*a(n-6) + a(n-7) for n > 6. (End)
EXAMPLE
n n*i^(n-1) z(n) a(n)
------------------------------------
0 0 0 0
1 1 1 1
2 2i 1+2i 5 = 1^2 + 2^2
3 -3 -2+2i 8 = 2^2 + 2^2
4 -4i -2-2i 8
5 5 3-2i 13 = 3^2 + 2^2
6 6i 3+4i 25 = 3^2 + 4^2
MATHEMATICA
z[0]=0; z[n_]:=z[n-1]+n*I^(n-1); a[n_]:=z[n]*Conjugate[z[n]]; Array[a, 55, 0] (* Stefano Spezia, Jun 28 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gerhard Kirchner, Jun 28 2020
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy