login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A350498
Convolution of triangular numbers with every third number of Narayana's Cows sequence.
0
0, 1, 7, 31, 114, 385, 1250, 3987, 12619, 39810, 125425, 394955, 1243433, 3914383, 12322293, 38789576, 122105944, 384377494, 1209981891, 3808901216, 11990036895, 37743426054, 118812495000, 374009739009, 1177344897390, 3706162867858, 11666626518622, 36725362368682, 115607732787126, 363921470561515
OFFSET
1,3
COMMENTS
This is the convolution of N(3*n-1) with t(n); in other words, a(n) = Sum_{i=1..n} N(3*i-1)*t(n-i) where N(k)=A000930(k) is the k-th number in Narayana's Cows sequence and t(k)=A000217(k) is the k-th triangular number.
REFERENCES
G. Dresden and M. Tulskikh, "Convolutions of Sequences with Single-Term Signature Differences", preprint.
FORMULA
a(n) = N(3*n-1) - A000217(n) where N(k)=A000930(k).
G.f.: x^2/((1 - x)^3 * (1 - 4*x + 3*x^2 - x^3)).
a(n) = A052529(n)-A000217(n), n>0. - R. J. Mathar, Aug 17 2022
EXAMPLE
For n=4, a(4) = N(2)*t(3) + N(5)*t(2) + N(8)*t(1) + N(11)*t(0) = 1*6 + 4*3 + 13*1 + 41*0 = 31, where N(k)=A000930(k) and t(k)=A000217(k).
MATHEMATICA
CoefficientList[
Series[x/((-1 + x)^3 (-1 + 4 x - 3 x^2 + x^3)), {x, 0, 30}], x]
CROSSREFS
Sequence in context: A055580 A364635 A097786 * A197649 A006458 A091344
KEYWORD
nonn,easy
AUTHOR
Greg Dresden, Jan 04 2022
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy