login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A350817
Number of minimum total dominating sets in the 2 X n king graph.
1
1, 6, 9, 4, 8, 89, 56, 16, 64, 780, 304, 64, 384, 5472, 1536, 256, 2048, 33920, 7424, 1024, 10240, 194304, 34816, 4096, 49152, 1053696, 159744, 16384, 229376, 5488640, 720896, 65536, 1048576, 27721728, 3211264, 262144, 4718592, 136642560, 14155776, 1048576
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, King Graph
Eric Weisstein's World of Mathematics, Total Dominating Set
Index entries for linear recurrences with constant coefficients, signature (0,0,0,12,0,0,0,-48,0,0,0,64).
FORMULA
a(n) = 12*a(n-4) - 48*a(n-8) + 64*a(n-12) for n > 13.
G.f.: x*(1 + 6*x + 9*x^2 + 4*x^3 - 4*x^4 + 17*x^5 - 52*x^6 - 32*x^7 + 16*x^8 + 64*x^10 + 64*x^11 - 64*x^12)/((1 - 2*x^2)^3*(1 + 2*x^2)^3).
a(4*k) = 4^k; a(4*k+1) = 2*k*4^k for k > 0; a(4*k+2) = (k + 1)*(41*k + 48)*4^k/8; a(4*k+3) = (5*k + 9)*4^k.
MATHEMATICA
LinearRecurrence[{0, 0, 0, 12, 0, 0, 0, -48, 0, 0, 0, 64}, {1, 6, 9, 4, 8, 89, 56, 16, 64, 780, 304, 64, 384}, 40] (* Michael De Vlieger, Jan 19 2022 *)
PROG
(PARI) Vec((1 + 6*x + 9*x^2 + 4*x^3 - 4*x^4 + 17*x^5 - 52*x^6 - 32*x^7 + 16*x^8 + 64*x^10 + 64*x^11 - 64*x^12)/((1 - 2*x^2)^3*(1 + 2*x^2)^3) + O(x^40))
(PARI) a(n)={my(k=n\4); 4^k*if(n%2, if(n%4==1, (k==0) + 2*k, 5*k + 9), if(n%4==0, 1, (k + 1)*(41*k + 48)/8))}
CROSSREFS
Row 2 of A303335.
Cf. A350816.
Sequence in context: A131691 A258504 A273816 * A021063 A216638 A110649
KEYWORD
nonn,easy
AUTHOR
Andrew Howroyd, Jan 17 2022
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy