login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A355288
a(0)=1, a(1)=3, a(2)=7; thereafter a(n) = a(n-1) + a(n-2) + 1.
1
1, 3, 7, 11, 19, 31, 51, 83, 135, 219, 355, 575, 931, 1507, 2439, 3947, 6387, 10335, 16723, 27059, 43783, 70843, 114627, 185471, 300099, 485571, 785671, 1271243, 2056915, 3328159, 5385075, 8713235, 14098311, 22811547, 36909859, 59721407, 96631267, 156352675, 252983943, 409336619, 662320563
OFFSET
0,2
COMMENTS
a(n) is the minimum number of nodes required for a full binary tree of height n with every node height-balanced, and the root node has a balance factor of 0.
Full binary tree: A binary tree is called a full binary tree if each node has exactly two or no children.
Essentially the same as A022403. - R. J. Mathar, Sep 23 2022
LINKS
Lecture Notes for Computer Science 2530, Height-balanced trees
NIST, Root node
Wikipedia, Full binary tree
FORMULA
a(0)=1, a(1)=3, a(2)=7; thereafter a(n) = a(n-1) + a(n-2) + 1.
From Stefano Spezia, Jun 27 2022: (Start)
G.f.: (1 + x + x^2 - 2*x^3)/((1 - x)*(1 - x - x^2)).
a(n) = 2*a(n-1) - a(n-3) for n > 3.
a(n) = 2^(1-n)*((1 + sqrt(5))^(n+1) - (1 - sqrt(5))^(n+1))/sqrt(5) - 1 for n > 0.
E.g.f.: 4*exp(x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5 - exp(x) - 2. (End)
a(n) = 4*A000045(n+1) - 1, for n >= 1.
a(n) = 2*A001595(n) + 1, for n >= 1.
EXAMPLE
The diagrams below illustrate the terms a(3)=11 and a(4)=19.
R R
/ \ / \
/ \ / \
/ \ / \
o o / \
/ \ / \ / \
o N N o / \
/ \ / \ / \
N N N N o o
/ \ / \
/ \ / \
/ \ / \
o o o o
/ \ / \ / \ / \
o N N N N o N N
/ \ / \
N N N N
MATHEMATICA
Join[{1}, Table[4*Fibonacci[n + 1] - 1, {n, 1, 40}]]
PROG
(Magma) [n eq 0 select 1 else 4*Fibonacci(n+1) - 1: n in [0..40]];
CROSSREFS
Cf. A354902.
Sequence in context: A229086 A354902 A022406 * A132447 A132449 A132453
KEYWORD
nonn,easy
AUTHOR
Sumukh Patel, Jun 27 2022
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy