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Abstract

Controlling a squad of fixed-wing UAVs is challenging due to the kinematics complexity and
the environmental dynamics. In this paper, we develop a novel actor-critic reinforcement
learning approach to solve the leader-follower flocking problem in continuous state and ac-
tion spaces. Specifically, we propose a CACER algorithm that uses multilayer perceptron
to represent both the actor and the critic, which has a deeper structure and provides a
better function approximator than the original continuous actor-critic learning automation
(CACLA) algorithm. Besides, we propose a double prioritized experience replay (DPER)
mechanism to further improve the training efficiency. Specifically, the state transition sam-
ples are saved into two different experience replay buffers for updating the actor and the
critic separately, based on the calculation of sample priority using the temporal difference
errors. We have not only compared CACER with CACLA and a benchmark deep rein-
forcement learning algorithm DDPG in numerical simulation, but also demonstrated the
performance of CACER in semi-physical simulation by transferring the learned policy in
the numerical simulation without parameter tuning.

Keywords: unmanned aerial vehicle (UAV), flocking, reinforcement learning, actor-critic,
experience replay

1. Introduction

UAVs (unmanned aerial vehicles) have been widely used for survivor search, coaster-border
patrol, and anti-terrorist operations. These tasks typically require the collaboration of a
squad of UAVs supervised by human operators. However, controlling the UAV squad re-
mains a challenge because it requires tremendous human efforts to monitor each UAV’s
state which introduces heavy workload. In this paper, we consider the leader-follower prob-
lem that only the leader is controlled manually while the followers flock with the leader
autonomously.

In the literature, the consensus theory ( Sahu and Subudhi (2018); Wang et al. (2014))
has been used to solve the UAV flocking problem. However, it requires a precise kinematics
model which is complex, time-varying and non-linear, therefore is hard to obtain in real-
world environments. As an alternative approach, reinforcement learning (RL) methods have
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attracted attention for developing the flocking behavior. In particular, a Q-learning based
framework was developed for particle-based agents to learn how to flock in a self-organized
way to avoid predators ( Koichiro et al. (2006)). Similarly, a low-level flocking controller was
integrated with a high-level RL module for multiple robots to learn how to avoid predators
collaboratively ( La et al. (2015)).

These methods have been proved effective for ground robots or quad-rotor UAVs in sim-
ulation, but flocking with fix-wing UAVs in real-world environments is much more difficult.
The reason is that the policy learned by the RL agent is difficult to converge due to envi-
ronmental dynamics such as airspeed and side wind. Not much work has been done about
fixed-wing UAVs flocking in dynamic environments. The most related work ( Hung et al.
(2015)) proposed the Dyna-Q(\) algorithm to learn a control policy for the leader-follower
problem. The Dyna RL method learned an environment model and used the model to plan
actions that sped up the learning process. Then, the authors proposed a Q(A) algorithm
with adaptive learning rates ( Hung and Givigi (2017)). The algorithm was proved effective
for fixed-wing UAVs flocking in numerical simulation. However, the authors simplified the
problem by discretizing the state and action spaces. This is not appropriate for controlling
UAVs in real-world environments.

In order to solve high-dimensional and continuous RL problems, deep neural networks
(DNNs) have been used as function approximators to generalize over the state and action
spaces. The experience replay technique ( Lin (1992)) has been proved effective for the
training of deep Q-network (DQN) ( Volodymyr et al. (2015)) and deep deterministic policy
gradient (DDPG) ( Lillicrap et al. (2015)) by reusing the state transition samples. Instead of
sampling from the experience replay buffer uniformly, prioritized experience replay (PER)
( Schaul et al. (2015)) calculates the priority of samples to further improve the training
efficiency. For example, Hou et al. (2017) proposed a new DDPG method with PER.
Alternatively, a multi-critic DDPG method used the technique of double experience replay
( Wu et al. (2018)). However, there is no guarantee that the performance of an experience
replay mechanism is better than others for every RL algorithm. In other words, it is
necessary to optimize the experience replay mechanism for a chosen RL algorithm.

In this paper, we solve the fixed-wing UAVs flocking problem within the RL framework
in continuous spaces. Specifically, we choose continuous actor-critic learning automation
(CACLA) ( Van Hasselt and Wiering (2007, 2009)) as the baseline RL algorithm due to
its ease of implementation and good performance for continuous RL problems. We replace
the single-layer actor and critic networks with multilayer networks, and we propose a new
experience replay mechanism accordingly. The main contributions are as follows:

e We have proposed a novel RL algorithm for fixed- wing UAVs flocking in continuous
spaces.

e We have designed a double prioritized experience replay mechanism to speed up the
learning.

e We have designed a semi-physical system to test the proposed algorithm towards
real-world flocking.
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The paper is organized as follows. Section 2 formulates the flocking problem. Section 3
describes the proposed CACER algorithm, followed by experiments and results in Section
4. Finally, Section 5 concludes the paper and outlines our plans for future work.

2. Problem Statement

In this paper, we deal with the challenge of flocking with fixed-wing UAVs through rein-
forcement learning (RL). In accordance with Hung and Givigi (2017), we also assume that
there is only one leader and several followers that they fly at a constant average speed and
fixed different heights to simplify the collision problem. The leader has its own task-specific
control policy such as searching a given area or tracking a ground vehicle. It shares its state
information with the followers by broadcasting through a wireless communication channel,
including its position and pose. A follower has to control its roll angel in order to keep
a certain distance from the leader (d; < p < d2) in the top view (see Figure 1). As the
followers are collision-free, they are allowed to use the same control policy so that the ag-
gregate behavior emulates flocking in a leader-follower topology. Each follower maneuvers
by selecting a roll angle setpoint regulated by an autopilot using a PID controller, and the
roll angle setpoint is updated once every second.
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Figure 1: Left: Top view of the leader-follower topology. Right: Front view of the UAVs.

Without any prior knowledge of the leader’s state transition model or control policy, a
follower has to learn how to flock with the leader given the current state. In other words, the
follower RL agent learns a strategy that describes the best roll angle setpoint for a given
state, maximizing the expected accumulated rewards. Different with the previous work
( Hung and Givigi (2017)) that discretizes the state and action spaces, we solve a more
challenging problem in continuous state and action spaces towards developing intelligent
agents that can learn to flock in the physical world.

2.1. Fixed-wing UAV Kinematics Model

In this paper, we assume that the state transition model is not available for RL agents, so
we take the model-free RL approach. However, such RL methods typically require a long
time of trial-and-error training, which is not feasible in the physical world or simulation
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environment. Therefore, we simplify the UAV kinematics model and use simulated experi-
ence data to improve the policy learning efficiency. Then, we test the learned policy in a
semi-physical environment that uses a real autopilot to control UAVs.

In the physical world, UAV kinematics are usually described by a six degree of freedom
(DoF) aircraft model. Based on the assumptions of constant speed and fixed altitudes, we
can simplify the model to 4 DoF. In order to compensate for the loss of unmolded dynamics,
stochastic environmental disturbances are introduced in the roll, airspeed, and each of the
substates of the model as follows:

T S$COSY + Ny
f.:i Y _ ssin + n, (1)
dt | ¢ — (ag/s) tan ¢ + 1y
¢ f(é.7)

where (x,y) is the planar position of the UAV, 1 is the heading, ¢ is the roll angle, oy is the
acceleration due to gravity, s is the airspeed of the UAV drawn from a normal distribution
N (E, ag), and the disturbance terms (1., 7y,7y) are drawn from the normal distributions
N (ﬁx,ag) ,N (ﬁy,ag) and N <ﬁ¢, 0@), respectively. The function f(¢,r) defines the rela-
tions between the desired roll angel r and the response roll angle ¢.

We use a second-order system to simulate the initial condition response of the roll
dynamics ( Hung and Givigi (2017)), and stochastic terms are introduced to make the
response more realistic. The undamped natural frequency w, and the damping ratio ¢ are
based on the autopilot parameters of the UAV. In this paper, they are drawn from the

normal distributions N (wn, 03) and N (E, 0’2).

2.2. MDP model of Flocking

We formulate the problem of UAV flocking using a Markov Decision Process (MDP) model.
The main elements of the MDP model are described as follows.

2.2.1. STATE REPRESENTATION

Denote by & := (z1,y1,v1, ¢1) the leader’s state and &y := (vy,ys, ¥y, ¢5) the follower’s
state. Then, the system state z := (21, 29, 23, 24, 25, 26) is defined as

( |:21:| _[ COS¢l Sin¢l:| |:xfxl:|
2z | | —sinty cosiy Yf — Ui
z3 =Yy —
2 = & (2)
25 =@
26 =T

where (z1, 22) denotes the planar position of the follower relative to the leader, z3 denotes
the difference in the heading between the leader and the follower, r; denotes the leader’s
roll command. In accordance with Hung and Givigi (2017), the leader’s roll command is
assumed randomly given rather than predefined, which introduces additional stochasticity
to the problem. However, we do not discretize the state space. This makes the problem
much more difficult than that Hung and Givigi (2017) deals with.

67



CACER ALGORITHM FOR FIXED-WING UAVS FLOCKING

2.2.2. ACTION SPACE

As mentioned, the roll command is the only way for the UAV to change its state. The roll
command is updated every one second, during which the autopilot carries out the closed-
loop control. To avoid sharp changes in the roll, we define the roll command a, € A in a
continuous space where:

A= [-15° 415 (3)
If the follower’s current roll angle is ¢, then the next roll angle setpoint r is defined by:
Thd if ¢ +a, > rpa

r= —Tbd if (f) + ar < —7Tbqd (4)
¢ +a, otherwise

where [—7pq, Tbd] is the allowed setpoint range of the roll angle.

2.2.3. REWARD FUNCTION
The reward function is defined in accordance with Hung and Givigi (2017):

( g = —cost

cost = max < d, 7611 ]
(1 + wd)
d =max{dy — p,0,p — da}

p=1/4+23

where ¢ stands for the immediate reward, p is the distance between the leader and the
follower (see Figure 1), and w is a tuning parameter. We note that maximizing the reward

means minimizing the cost.

3. Continuous Actor-Critic with Experience Replay (CACER)

In this paper, we propose a continuous actor-critic reinforcement learning algorithm with
experience replay (CACER) based on CACLA ( Van Hasselt and Wiering (2007, 2009)).
CACER consists of an actor and a critic. Different with CACLA that uses a single-layer
feed-forward neural network, we use a multilayer perceptron (MLP) to represent the actor
that maps the state space to the action space, i.e., Act* : S — A, where Act*(s) denotes the
optimal action in the state s. We also use an MLP to represent the critic that approximates
the state value function: V' : S — R . Denote by (sg, ag, 7k, Sk+1) the tuple of state, action,
and reward at the time step k and k + 1, respectively. The critic is updated as follows:

Vit1 (Skwv) =V (Skwv) ~+ Bk (6)
in which ¢y, is the Temporal Difference (TD) error defined by:

Ok =1+ Vi (s6+1[0Y) — Vi (s1]60") (7)
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where 0 < «v < 1 is the discount factor, 0 < § < 1 is the learning rate of the critic. The
parameters 6" of the critic network are adjusted by performing gradient descent with the
loss of ||6x]|°.

In contrast to the critic, the actor is updated only when the TD-error is positive, which
means the current state is better than expected. Therefore, the probability of selecting the
previous action should be increased. The update rule of the actor is defined as follows:

A\ Acty, (SkwA) + « (ak — Acty, (Sk|9A)) if 6 >0
Atk (Skw ) - { Acty, (sk|0‘4) otherwise (8)

where 0 < o < 1 is the learning rate of the actor. The parameters 8 of the actor network
are updated through gradient descent with the loss of Hak — Acty (sk\ﬁA) H2 when the TD-
error is positive.

Gaussian exploration is used for selecting exploratory actions. In other words, the
action is randomly selected from the Gaussian distribution G(z, i, o) centered at the current
output of the actor Acty, (sk\HA):

G (z, Acty, (skwA)),g) = ;6—(I—Actk(sk\€‘4))2/2o-2 ()

2o
where o is the Gaussian exploration parameter. In this paper, the action space is one-
dimensional.

The control policy of the leader is defined with environmental dynamics, and we treat
the leader as part of the environment for the followers (see Figure 2).

In every training episode, both a follower and a leader are randomly initialized. Then,
the follower agent obtains the system state z by combining its own state and the leader’s
state. The agent selects an action a, according to the Gaussian exploration (Eq. 11).
Consequently, the UAV kinematics model gives the next system state 2, and the immediate
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Figure 2: The interaction between a follower and a leader.
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reward g is obtained. Compared with the original CACLA algorithm ( Van Hasselt and
Wiering (2009)), we use the technique of experience replay( Lin (1992)). In other words,
every tuple of (z,a,,g,2’) is saved to the experience buffer rather than used only once as
done in Van Hasselt and Wiering (2009). Then, a batch training is carried out by random
sampling in the experience buffer. If the experience replay buffer is full, then the oldest
data is replaced by the latest one. This mechanism alleviates the correlation between the
sequential training data while increasing the data utilization.
We summarize the proposed CACER algorithm in Algorithm 1.

Algorithm 1 Continuous Actor-Critic with Experience Replay (CACER)
Input: Ny — maximum time steps; max episodes — maximum training episodes
1: Empty experience replay buffer D with capacity N as needed for Algorithm 2; empty
experience replay buffer Dy with capacity N and Dy with capacity N/2 as needed for
Algorithm 3
2: repeat
3:  Initialize z + (&, &y, ) randomly; t =1
4 while ¢t < Ng do
5: Select the follower’s roll command a, according to Eq. 9
6
7

Calculate the follower’s roll angle setpoint r; using Eq. 4
Apply the selected r; and the leader’s roll angle setpoint r; to the UAV dynamics
model, respectively

8: Observe the subsequent state (fl’ , 5})

9: Calculate the immediate reward g using Eq. 5

10: Choose the leader’s roll command from A in Eq. 3 randomly

11: Calculate the leader’s next roll angle setpoint r; using Eq. 4

12: Create the next system state 2’ < (51’, & rf) using Eq. 2

13: Experience replay and network update (see Algorithm 2 and see Algorithm 3)
14: t(—t+1;(§l,ff,rl)(— (f{,f},r;);z(—z’

15:  end while
16: until max episodes

As described in Line 4 of Algorithm 2, CACER randomly samples transition tuples
from the experience replay buffer. This training approach is not as efficient as prioritized
experience replay (PER, Schaul et al. (2015)) that considers the importance of samples to
speed up the learning. In this paper, we propose a novel experience replay mechanism called
double prioritized experience replay (DPER). Its combination with CACER is referred to
as CACER-DP, see Algorithm 3.

Considering the actor and the critic of CACER are updated under different conditions,
we use two separate experience replay buffer (D; for the actor and Dy for the critic) to save
the transition tuples. Specifically, every transition tuple is saved to Dy for updating the
critic network, while D; only saves the transition tuples whose TD-errors are positive for
updating the actor network. Similar to ( Schaul et al. (2015); Hou et al. (2017)), CACER-
DP samples a mini-batch of transition tuples from Dy with the sampling probability P(7)
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Algorithm 2 Experience Replay and Network Update

Input: z,a,, g,z — a state transition sample; N, — training batch size
1: Delete the oldest tuple in D if |D|| = N

2: Save (z,a,,9,2') to D

3: Empty the temporal buffer D’ = @

4: Sample a mini-batch of IV, tuples (27, al, ¢/, 271 from D randomly

5: for each tuple (z7,a}, g7, 27 *!) do

6:  Calculate the TD-error 87 using Eq. 7

7:  Save the tuple (27, al, g7, 27t1) to D' if 67 > 0

8: end for )
9: Update the actor using Eq. 8 with loss of ﬁ i al — Act (zj/|9A) H
10: Update the critic using Eq. 6 with loss of N%, Zj H(5jH2

when training the critic:
A

. D;
P(i) = = (10)
2onPh
in which the exponent A determines the degree of prioritization, and p; is the priority value
of the corresponding transition tuple i:

pi = |(5¢’+6 (11)
where |9;] is the absolute TD-error, and ¢ is a small positive constant to avoid zero proba-
bility.

The loss function for updating the parameters of the critic network can be written as
E <ZZ w; ”51'”2)7 where w; is the importance sampling weights defined by:
N - P(3))™"
w; = ( (4)) (12)
max,, Wy,

where N is the size of Dy, and the exponent 77 determines the amount of importance sampling
correction.

The same with CACLA, the actor of CACER is updated only when the TD-error is
positive. It is intuitive to design a different experience replay mechanism for updating the
actor. Based on CALCA+Var( Van Hasselt and Wiering (2007)), we define the priority of
a transition tuple j € Dy as follows:

pj = max (0;/,/varj, ) (13)

where var is the averaged running variance of the TD-errors, which measures whether an
action is an outlier. This variance can be tracked over time as follows:

varg, 1 = (1 — 7) varg +762 (14)

We note that the loss function combined with the importance sampling weights can be

rewritten as E (Z] w ‘

, } 2
al — Act (29]6”4)” ) when updating the parameters of the actor

network.
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Algorithm 3 Double Prioritized Experience Replay and Network Update (CACER-DP)

Input: z,a,,g,2’ — a state transition sample; N, — training batch size
1: Delete the oldest tuple in Dy if |D;| = N/2

: Save (z,a,,g,2') to D1 with maximal priority p; = max;«¢ p; if § >0

: Delete the oldest tuple in Dy if ||Da]| = N

: Save (z,a,,g,2") to Dy with maximal priority p; = max;«; p;

Empty the temporal buffer D’ = &

Sample N, tuples (27, al, ¢, 27*1) from Dy with probability P(j) (Eqg. 10)

. for each tuple (27, a}, ¢’, 27*1) sampled from D; do

Compute the importanc sampling weight w’ using Eq. 12

Calculate the TD-error ¢/ using Eq. 7

Update the running variance of the TD-error using Eq. 14

Update transition priority according to Eq. 13

Save the tuple (27, a7, g7, 271 to D" if 67 > 0

: end for

— = = = e
Wy 2o

" v . 2
: Update the actor using Eq. 8 with loss of ﬁ > w? ‘ ar — Act (zﬂ \9A> H

: Sample N, tuples (2¢, at, g, i) from Dy with probability P(i) (Eq. 10)
. for each tuple (2%, al, g%, 2*1) sampled from Dy do

Compute the importance sampling weight w® using Eq. 12

Calculate the TD-error 6° using Eq. 7

Update transition priority according to Eq. 11

: end for

: Update the critic using Eq. 6 with loss of Nib > w’ H(F’HQ

O N I o i e

4. Experiments and Results

We compare the proposed algorithms with a range of methods in numerical simulation, and
then transfer the learned policy to semi-physical simulation.

4.1. Experiment Settings

In this paper, both the actor and the critic use the same structure of MLP (see Figure 3).
Specifically, each MLP consisted of 3 hidden layers. Both the first hidden layer and the
second hidden layer had 256 nodes, followed by the third hidden layer with 128 nodes. We
note that each hidden layer was followed by a Rectified Linear Unit (ReLU) ( Nair and
Hinton (2010)) activation function layer. The output layer of the critic used the linear
activation function, while the output payer of the actor used the tanh activation function.
This guaranteed the output of the actor was within the range of [—1,+1], which coule
be linearly magnified to the action space [—15,+15], as mentioned in Eq. 3. We used
TensorFlow ! and Keras 2 for implementation.

The desired number of training episodes (maz episodes) was set to 50000, in which each
episode had a maximal number of 30 time steps (Ng = 30), i.e. 30 seconds. The network

1. https://www.tensorflow.org/
2. https://keras.io/
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Actor Network Critic Network
Input (s) | 6 Input (s) | 6
Dense | 256 | ReLU Dense | 256 | ReLU
Dense | 256 | ReLU Dense | 256 | ReLU
Dense | 128 | ReLU Dense | 128 | ReLU
Dense (a) | 1| Tanh Dense (V) | 1| Linear

Figure 3: The network structure for CACER. Each layer is featured by its type, dimension
and activation function.

parameters of the actor and the critic were both trained using the Adam optimizer ( Kingma
and Ba (2014)) with the MSE loss function. The exploration parameter and the learning
rates (o, «, ) were annealed exponential from the initial values (0.25, 0.01, 0.001) to the
minimum values (0.025, 0.001, 0.0001), respectively. In other words, these parameters were
multiplied by 0.99 every 100 episodes. According to Schaul et al. (2015), the exponent A
in Eq. 10 and the small positive constant € in Eq. 11 were set to 0.6 and 0.01, respectively.
The exponent 7 in Eq. 12 was annealed linearly from 0.4 to 1 over 6 x 10° time steps.
Additionally, when tracking the variance of TD-errors in Eq. 14, we used varg = 0 and
7 = 0.001 ( Van Hasselt and Wiering (2007)). The empirical values of the parameters are
listed in Table 1, which are in accordance with Hung et al. (2015); Hung and Givigi (2017);
Lillicrap et al. (2015).

Table 1: Parameter settings

Name Value Name Value
dy 40 da 65
w 0.05 ay 9.8
5 10 O 0.8
Wn 6.3 0w 0.1
¢ 0.5561 oc 0.01
(ﬁx?ﬁy’ﬁ¢>) 0 (UI,O'y,U¢) 1
N 100000 0% 0.95
Nb 32 T'bd 30°
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4.2. Results of Numerical Simulation

We have compared CACER-DP (Algorithm 1 + Algorithm 3) with several other methods
including the original CACLA, a state-of-the-art deep reinforcement learning algorithm
DDPG, CACER with random experience replay (Algorithm 1 + Algorithm 2), and CACER
with the original PER ( Schaul et al. (2015); Hou et al. (2017)) (called CACER-P). The
above algorithms used the same deep network structure and the same parameters except
for CACLA. We note that CACLA only used a single-layer feed-forward neural network
with 32 nodes, as recommended in Van Hasselt and Wiering (2007). We have compared
the above algorithms in the training stage as well as in the testing stage.

4.2.1. REsuLTS OF PoLicy LEARNING

In the training process, we calculated the averaged reward Gave obtained within a certain

number of N, episodes:
N. Ns

GAve = ﬁzzgf (15)

5 k=1 i=1

where gf denoted the immediate reward decided by Eq. 5, and N, = 100.

As shown in Figure 4, CACLA did not perform as well as the other approaches, which
demonstrated the advantage of DNNs as function approximators and the better training
efficiency of the experience replay technique. The reward curves of CACER, CACER-P and
CACER-DP grew slightly slower than DDPG at the beginning, but they all achieved higher
rewards than DDPG after about 1000 episodes of training and became stable afterwards.
This meant that the proposed CACER based algorithms were slightly better than DDPG

-10

=30

Average reward

~70 — CcAClA
DDPG
— CACER
—— CACER-P
-80 —— CACER-DP

0 100 200 300 400 500
Episodes %102

Figure 4: Averaged reward comparison of CACLA, DDPG, CACER, CACER-P and
CACER-DP in the training stage. We note that N, = 100, i.e., we calculated
G Ave every 100 episodes.
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Figure 5: The trajectory results of the Figure 6: g, p, and z3 results of the learned
learned CACER policy in the nu- CACER policy in the numerical
merical simulation. simulation.

for this RL task. Further results of policy testing are given in Table 2. In addition, the
curves of CACER and CACER-P almost overlapped, indicating that the direct combination
of the popular PER technique and CACER (i.e., CACER-P) did not work well. In contrast,
the curve of CACER-DP grew much faster than CACER and CACER-P in the beginning,
which proved the effectiveness of the proposed DPER mechanism. Besides, CACER-DP
obtained a higher averaged reward than DDPG in most training episodes, meanwhile had
the similar learning speed in the early episodes.

4.2.2. REsuLTSs OF PoLicy TESTING

After the training stage, we first tested the learned CACER policy in a flocking task with
two followers as shown in Figure 5.

In this experiment, the time steps Ny = 120, i.e. the testing took 2 minutes. The
actions of the leader were randomly generated, and the followers used the learned CACER
policy to follow the leader. The trajectory results illustrated that the followers succeeded
to follow the leader most of the time. In addition, we recorded the distances between the
leader and the followers (p), the difference in the heading (z3) and the immediate reward
(¢9) in Figure 6. The best performance of the following behavior was achieved between 50s
and 90s, during which the heading of the leader did not change much.

We also compared the CACER-based algorithms with CACLA and DDPG as well as
the imitation policy in the testing stage. The rewards were also averaged using Eq. 15 over
100 experiments. The imitation follower selected the same roll angle setpoint as the leader.
Intuitively, the imitation policy seemed to be a good choice for the follower when the initial
states of them were exactly the same. In each experiment, the initial states of the imitation
follower were the same with the leader, while other followers’ initial states were randomly
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generated and taking the same value for comparison. This meant the task was easier for
the imitation follower than the other followers.

Table 2 compares the results of the averaged reward and its variance Var. the averaged
reward G aye obtained by the three CACER-based policies and the DDPG policy were much
higher than the reward of the CACLA policy and the imitation policy. Also, the correspond-
ing variances were also much lower. Overall, the CACER-based policies achieved similar
performance with the DDPG policy. Specifically, the CACER-DP policy obtained a higher
reward than the DDPG policy while having a lower variance. However, the CACER policy
and the CACER-P policy were less stable with higher variances than DDPG. This illus-
trated the advantage of the proposed DPER mechanism in combination with the CACER
algorithm.

Table 2: Policy testing results of CACLA, DDPG, CACER, CACER-P, CACER-DP, and

imitation.
Method G ave Var
CACLA -98.38 3949.60
Imitation -65.61 2892.08
DDPG -12.90 12.78
CACER -12.05 26.70
CACER-P -11.37 16.26
CACER-DP -11.39 12.08

4.3. Results of Semi-Physical Simulation

We further tested the CACER algorithm in semi-physical simulation experiment. The high-
fidelity semi-physical simulation system ( Wang et al. (2018); Ma et al. (2017)) consisted of
an X-Plane 10 Flight Simulator 3, two PX4* / Pixhawk® autopilots, two onboard computers
and a SuperStation ground control station(see Figure 7). X-Plane 10 can simulate complex
environmental conditions such as weather changes and wind disturbance. SuperStation
can control multiple UAVs by switching control modes and planning path. The above
modules were operated or connected with Robot Operating System (ROS) °. We chose the
HilStar17F model in X-Plane for both the leader and the follower. Their control policies
were running independently on their onboard computers that were connected through an
RJ45 patch cable. The leader sent its state information to the follower via UDP socket.

In one experiment, we started the leader and the follower in the MANUAL mode using
SuperStation. First, the MISSION mode was turned on and the UAVs kept a certain
distance from each other by following predefined paths. Then, the OFFBOARD mode was
turned on. The leader chose a random roll command at each time step, and the follower
used the CACER policy learned in the previous numerical simulation experiment without

3. https://www.x-plane.com/manuals/desktop/
4. https://px4.io/

5. http://pixhawk.org/

6. http://www.ros.org/
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Figure 7: The high-fidelity semi-physical simulation system

any revision to select a roll angle setpoint. After 120 seconds, the RETURN mode was
turned on and the experiment ended.

The trajectory result is shown in Figure 8, and the results of the distance between the
leader and followers (p), the difference in the heading (z3) and the immediate reward (g)
are shown in Figure 9. In the beginning of the 120 seconds, the distance was beyond 125
meters, and the follower was in front of the leader. As both of the UAVs had the same
speed of 10 m/s, the follower had to decrease the distance by changing its heading angle.
After about 51 seconds (time steps), the distance dropped below 65 meters for the first
time. Then, the distance was kept between 25 to 50 meters most of the time. The results
illustrated that the trained CACER policy was able to deal with new situations without
the need of parameter tuning.

5. Conclusion

In this paper, we have proposed a CACER algorithm to solve the leader-follower problem
for flocking a squad of fixed-wing UAVs. In contrast to the literature, we have solved a more
challenging problem in continuous state and action spaces without the need to discretize the
spaces. Compared with the original CACLA algorithm, the CACER algorithm uses a more
advanced MLP network to represent both the actor and the critic. In addition, the training
efficiency has been improved by using the proposed double prioritized experience replay
technique. In the numerical simulation, the results have shown that the CACER-based
algorithms are efficient for learning the UAV following behavior. Specifically, CACER-DP
is better than the state-of-the-art DDPG algorithm in both the learning and testing stages.
Then, the policy learned in the numerical simulation has been transferred directly to the
semi-physical simulation without any tuning, and the UAVs are able to adjust its distance
to keep up with the leader autonomously. However, we have made the same assumptions
with the previous research that the UAVs fly at a constant average speed and fixed different
heights to simplify the collision problem. In the future work, we will relax these assumptions
towards more UAVs flocking in real-world environments.
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