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FOREWORD 

In recent years there has been considerable interest in developing models for river 
and Jake ecosystems , much of it directed toward large and complex simulation models . 
However , this trend has given rise to a number of concerns, notably those of accounting 
for the effects of uncertainty and of establishing model validity and credibility. 

The International Institute for Applied Systems Analysis is addressing such concerns 
in its work on environmental quality control and management , one of the principal themes 
being to develop a framework for modeling poorly defined environmental systems. 

This paper discusses, for situations in which the available field data are sparse and 
uncertain, the problem of constructing , evaluating, and applying a model for prediction -· 
and ultimately management - purposes (see also K. Fedra , "Mathematical modelling - a 
management tool for aquatic ecosystems?" Helgoliinder Meeresuntersuchungen 34 :221 -· 
235 , 1980, also reproduced as BASA RR-81 -2). In particular , it emphasizes the close rela
tion between the process of model calibration and the predictions obtained subsequently 
(see also M.B. Beck, "Hard or soft environmental systems?" Ecological Modelling 11 : 
233- 251, 1981 , also reproduced as IIASA RR-81-4). 

Thus , uncertainty and the reliability of models and forecasts are key concerns of 
this paper. 

JANUSZ KINDLER 
Chairman 

Resources and Environment Area 
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ABSTRACT 

Fedra, K., van Straten, G. and Beck, M.B., 198 l. Uncertainty and arbitrariness in ecosystems 
modelling: a lake modelling example. Ecol. Modelling , 13: 87- 110. 

Mathematical models of ecosystems are considerable simplifications of reality, and the 
data upon which they are based are usually scarce and uncertain. Calibration of large 
complex models depends upon arbitrary assumptions and choices, and frequently calibration 
procedures do not deal adequately with the uncertainty in the data describing the system 
under study. Since much of the uncertainty and arbitrariness in ecological modelling is 
inevitable, because of both practical as well as theoretical limitations, model-based predict
ions should at least reveal their dependence on, and sensitivity to, uncertainty and arbitrary 
assumptions. 

This paper proposes a method that explicitly takes into account the uncertainty associated 
with data for modelling. By reference to a partly qualitative and somewhat vague definition of 
system behaviour in terms of allowable ranges, an ensemble of acceptable parameter vectors 
for the model may be identified. This contrasts directly with a more conventional approach to 
model calibration, in which a quantitative (squared-error) criterion is minimized and through 
which a supposedly 'unique' and 'best' set of parameters can be derived. The ensemble of 
parameter vectors is then used for the simulation of a multitude of future systems behaviour 
patterns, so that the uncertainty in the initial data and assumptions is preserved, and thus the 
predicted future systems response can be interpreted in a probabilistic manner. 

INTRODUCTION 

Mathematical models of ecosystems are inevitably considerable simplifica
tions of reality. The data available for analysis are usually scarce, they have 
mostly been measured infrequently, and are subject to high levels of sam
pling error. Furthermore, the stochastic variability of the systems themselves 
is also reflected in the data. Consequently, such data allow only an uncertain 
description of systems behaviour to be developed; the data are probably 
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inadequate for the calibration of large complex models. At the same time, 
more or less arbitrary choices have to be made about the structure of the 
model, the criteria to be used for model calibration and parameter estima
tion, and the calibration procedure itself. Such choices are neither unique 
nor absolute in some sense, yet they will affect the results obtained from the 
application of the calibrated model. Since it is necessary to make arbitrary 
assumptions and to use uncertain field data, the authors argue that our 
modelling results, i.e. model-based predictions about the future, should 
reveal their dependence on and sensitivity to such assumptions and uncer
tainty. 

Recently, formalized parameter calibration routines have begun to be 
applied in the field of modelling complex aquatic ecosystems, e.g. by Lewis 
and Nir ( 1978), J0rgensen et al. ( 1978), Di Toro and van Straten (1979), and 
Benson ( 1979). In these methods a loss function is defined, usually in a 
squared-error form, and, subsequently, a parameter vector is sought that 
minimizes this loss function. This procedure thus avoids the analyst's subjec
tive perception of which parameter ought to be adjusted to improve the fit 
inherent in the more commonly applied trial-and-error calibration proce
dure. Also, the equally subjective judgement of agreement between simula
tion and observation is replaced by a more formal quantitative notion. 
However, although frequently called 'objective function', this does not imply 
that the criterion chosen is free from subjective elements. For example, in 
problems with state variables having different physical dimensions some 
(subjective) form of weighting is required in the formulation of a single-valued 
loss function. Furthermore, it is not easy to account for uncertainty in the 
field data, although methods to do this have been attempted (Beck and 
Young, 1976; Jolankai and Szollosi-Nagy, 1978; Lewis and Nir, 1978; Beck, 
1979; Di Toro and van Straten, 1979; Fedra, 1979, 1980, 198la). Finally, 
however, it has to be recognized, that the assumption that a single 'best' 
parameter vector exists is at least questionable, especially if data uncertainty 
is considered, and in any case experience shows that it is extremely difficult 
to find such a unique vector if the number of parameters to be estimated is 
larger than, say, six to ten. 

This paper proposes a method that explicitly takes into account the 
uncertainty associated with data for modelling, including initial conditions 
and forcing functions; the method proposed also circumvents the problem of 
assuming parameter uniqueness. Basically, instead of assuming the existence 
of a 'best, unique' parameter vector, which may be found through minimiza
tion of a loss function, the method allows a set of vectors to be identified by 
reference to a more 'vague' definition of systems behaviour. The uncertainty 
in the available information is expressed in this 'vague' definition, through 
the specification of bounds between which 'acceptable' model simulations 
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should fall. Clearly, given these ranges, more than one vector exists that 
fulfills the requirements of being 'acceptable'. This part of the work owes 
much to the recently reported study of Spear and Hornberger ( 1980), 
although the emphasis and focus are different. 

Once it is recognized that the uncertainty of the field data suggests the 
specification of bounds on acceptable system behaviour, and nothing more 
precise, it ought also to be recognized that those parameter vectors that are 
found to give the defined behaviour are all equally good in view of the data 
uncertainty. Any sample parameter vector that is found to simulate the 
defined system behaviour can, since it has passed the 'test' of 'calibration', 
be applied in principle to generate future systems responses under changed 
conditions (represented by a change in any of the vector elements). Hence a 
multitude of simulated future system behaviour patterns can be generated 
from the set of acceptable parameter vectors. 

Two points are worth noting about this approach to model-based predict
ions. First, the close interdependence of estimation and prediction is em
phasized (see also Beck, 1980, Fedra, 198lb). Second, the uncertainty in the 
data has not been ignored in applying the model to the problem of 
prediction. Uncertainty about the system's behaviour is included explicitly 
and in effect 'preserved'; thus future responses of the system are predicted in 
the form of sampled probability distributions, as opposed to unique, average, 
and deterministic forecasts (see also O'Neill and Gardner, 1978; Tiwari et 
al., 1978; Di Toro and van Straten, 1979; Beck et al., 1979; Halfon and 
Beck, 1980; Fedra, 1979, 1980, 198la)~ 

We shaH illustrate the method with an application to a specific probiem 
relating to an Austrian lake (Attersee, Salzkammergut). 

METHOD 

The method used is estimation and prediction by Monte Carlo simulation. 
Let us suppose that a given structure for the model is assumed, i.e. we admit, 
an unavoidable (arbitrary) assumption that will subsequently affect the 
predictions obtained. Further, let us represent this model by a vector 
function f with domain 6D(/) and range '3l(f). If RD is a subset of '3l, then 
the inverse image of RD under f is the subset of 6D(f) given by 

1- 1(RD) = {x:f(x) ERD} 

which we will call CM (see Fig. 1). To identify CM, which in our terminol
ogy is the set of all character vectors (for a definition, see below) resulting in 
the defined realistic model response (RD), we proceed as follows. 

For the first step in the approach the system behaviour is defined in terms 
of the model to be used by a series of constraint conditions. From the field 
data typical features of the system's behaviour are derived. We consider it 
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6j) If! 

Fig. I. Set diagram of the relationships of character- and response-space. 6D (f): set of all 
possible character vectors (domain off); 0l(f) : set of all possible model responses (range of 
f); f : model (vector function) ; CD: defined set of plausible character vectors; RD: defined 
realistic response region; CM: inverse image of RD; CS: character vectors sampled in Monte 
Carlo procedure; RS: direct image of CS; CS': subset of CS, generating plausible realistic 
response RS' ; CS": subset of CS resulting in unrealistic response RS"; CS* : modified CS' 
used for prediction, resulting in RS*. 

significant that the behaviour definition, i.e. the constraint conditions, in
cludes both dynamic and aggregate features. The latter, e.g. yearly primary 
production, are usually more reliable than individual data at any single 
instant in time, thus they allow for a definition of the system's behaviour in 
which one intuitively would place more confidence. The set of m ranges of 
behaviour-describing measures, defines an m-dimensional box in the range
space of the model, or a set RD of plausible, acceptable model responses. 

Secondly, from empirical evidence and from previously quoted values for 
model coefficients, it is possible to specify ranges of inputs, forcings, initial 
conditions and model coefficients required by the particular model structure. 
A vector of numerical values taken from these ranges fully characterizes the 
response of the model. In order to make a distinction from the usual 
term-parameter vector, we shall call any sample combination from these 
ranges a character vector. The ranges of n character vector elements define a 
region CD (the set of all allowable character vectors) in the n-dimensional 
domain space of the model. 

Thirdly, this character vector region CD is now randomly sampled N 
times by a Monte Carlo technique. Each sample character vector CS; 
(i = 1, ... , N) is then used for a simulation run, and the resulting set RS of 
model responses RS; ( i = 1, ... , N) is classified according to the behaviour 
definition RD 
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behaviour: 

RS'= {RS;: (RS; E RD)} n(RS') = M 

non-behaviour: 

RS" = {RS;: (RS; fl RD)} n(RS") = N- M 

The set CS of sample character vectors is separated correspondingly into 
two complementary subsets CS' and CS", with M and N - M elements, 
respectively. In other words, by this 'calibration' procedure we are looking 
for a separation of the sample of character vectors into a behaviour-giving 
subset (CS') and a non-behaviour-giving subset (CS"). The total sample of 
M plausible beha~our-generating character vectors is then analysed to · give 
some insight into possible relations and interdependencies or the character 
space configuration. 

The character vectors cs; giving rise to a response Rs; completely within 
the behaviour-defining boundaries are considered as random samples from a 
character space region CM corresponding to the defined behaviour region 
RD of the model 

CS'CCM 

CM=/ - 1(RD) 

as illustrated in Fig. I. It should be noted that CM may not be fully included 
in CD so that there are character vectors, some of whose elements are 
outside the specified ranges, that give rise to the defined behaviour. 

Finally, the set CS' of M sample character vectors cs;, being identified as 
'acceptable' character vectors, is then used for computations of model 
responses under changed conditions. That is to say, one or more elements of 
the M character vectors are changed according to the extent of the assumed 
alteration, and the set of M modified vectors is used to generate probability 
distributions of model responses. This procedure can be repeated to repre
sent different conditions, and in fact the modification of the vector elements 
may be done systematically to investigate a range of possible future changes 
and their significance in terms of response probability distributions. 

APPLICATION 

Initialization 

The lake system 
In cooperation with the Austrian Lake Eutrophication Program, Project 

Salzkammergutseen, the Attersee, a deep, stratified, oligotrophic lake of 
almost 4000 X 106 m3 and a theoretical retention time of seven to eight years, 
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TABLE I 

Attersee: basic lake data (after FIOgl, 1974) 

Geographic position 
Catchment area 
Surface area 
Maximum depth 
Mean depth 
Volume 

47°52'N, 13°32'E 
463.5 km2 

45.9 km2 

171 m 
84m 

3934X 10 6 m3 

Length 
Average width 
Total shore length 
Retention time 
Average outflow 

20km 
3km 

53 km 
7-8 y 

17.5 m3 s - 1 

was subjected to our approach. Basic lake data are compiled in Table I. The 
investigations on the lake, carried out since 1974, and initially within the 
frame of the OECD Lake Eutrophication Program, indicated an increasing 
eutrophication of the lake. Increasing phytoplankton peak biomass and 
decreasing transparency of the water signalled a trend towards eutrophica
tion; however, the variability in the measurements and the comparatively 
short time-span of observations make it difficult to identify significant 
changes. Nevertheless, a preliminary study of the nutrient-loading/ produc
tion relations seemed to be promising (here primary production per unit lake 
area was taken as an approximate measure for the trophic state of the lake). 

Although the problem setting is somewhat diffuse from the point of view 
of possible management and water quality control measures, two principal 
features of the lake system allow us to address practical problems. First, the 
major nutrient input stems from one point source, namely the upstream 
mesotrophic Mondsee (14.2 km2 surface area, 510X106 m3

, 247 km2 catch
ment area, and a retention time of about two years). More than 50% of the 
phosphorus loading of the Attersee is attributable to the Mondsee discharge, 
and a very high fraction of particulate phosphorus is contained in this 
discharge (Muller, 1979). The impact of possilJle changes in the trophic state 
of the Mondsee on the Attersee is, therefore, of considerable interest. 
Second, a sewer system and associated treatment plant for the sewage 
discharge to the Attersee have been constructed recently (Flogl, 1974). 
Again, the impact of these installations on the water quality of the Attersee 
are of interest. 

The data available fot our analysis, comprising estimates of nutrient 
inputs and outputs as well as lake nutrient concentrations, were found to 
show a high degree of variability both within and between years, and this 
variability was especially pronounced for the phosphorus measurements. 
This is, at least in the case of the orthophosphate, due to its low concentra
tions around 1 mg m- 3, which is approximately at the same level as the 
absolute measurement error. This also led us to the simplifying assumption 
of a horizontally completely mixed water body; the data would not support a 
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more detailed spatial resolution for the model. It was also decided to add the 
observations of several years together to obtain a picture of a typical 
Attersee behaviour pattern. 

The simulation model 
For the simulation of the nutrient-loading/ production relationship on a 

yearly time-scale the dynamic lake phosphorus model by Imboden and 
Gachter ( 1978) was chosen. The model predicts primary production per unit 
lake area as related to imports of soluble reactive, as well as particulate 
phosphorus, various forcings, and model parameters. The relationship be
tween loading and primary production is described by means of a dynamic, 
one-dimensional, vertical (multi-layer) diffusion model for the two state 
variables of particulate phosphorus and soluble reactive phosphorus con
centrations. The model uses Michaelis-Menten kinetics and self-shading by 
algae, together with a production rate that varies in time according to the 
seasonal variations in irradiance and water temperature. Respiration, sedi
mentation, stratification with vertical eddy diffusivity and variable thermo
cline depth, lake morphometry, and finally, hydraulic loading are all 
accounted for in the model. A homogeneous, well-mixed epilirnnion is 
assumed, and phosphorus export is determined by its epilirnnion concentra
tion and by hydraulic loading. Zooplankton is not explicitly included in the 
model; its effects on phytoplankton are included in the first-order loss term 
describing respiration/remineralization. Consequently, the model is designed 
more for the simulation of yearly aggregate features than for the simulation 
of short-term algal population dynamics. 

Some minor modifications of the model were made in order to allow for a 
parameterized description of time-varying forcing functions (production rate 
and thermocline depth). Rather than specifying these coefficients in the form 
of tables, as was done originally for the model, we approached the time 
patterns by simple analytical functions of time. Thus, the dynamic pattern of 
the production rate is described by a sine function with the minimum, 
maximum, and the time of. the maximum as auxiliary parameters. Similarly, 
the thermocline depth is a linear function of time, characterized by the depth 
and time at the outset of stratification and the depth and time at the end of 
the stratified period. Other potentially time-varying data (e.g. nutrient in
puts, hydraulic loading, eddy coefficients) were kept constant, since the 
available field data did not allow a meaningful yearly pattern to be specified. 
In view of the morphology of the Attersee, the backflux of phosphorus from 
the sediments was set to zero in the model. 

Ultimately, a total of 22 character vector elements (parameters, forcing 
function-related parameters and initial conditions) were required in this 
application. These are listed by name in Table II, together with the ranges 
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TABLE II 

Character vector elements and the ranges used 

Data type Unit Minimum Maximum 

Parameters sensu stricto 
I. Michaelis constant (phosphorus) mgm3 0.20 2.00 
2. Respiration/ mineralization epilimnion d - 1 0.02 0.20 
3. Respiration/mineralization hypolimnion d - 1 0.01 0.025 
4. Net sedimentation velocity epilimnion md - 1 0.01 0.75 
5. Net sedimentation velocity hypolimnion md - 1 0.025 2.00 
6. Diffusion coefficient hypolimnion cm2 s - 1 0.02 0.50 
7. Diffusion coefficient thermocline cm2 s - 1 0.01 0.25 
8. Extinction coefficient m- 1 0.20 0.40 
9. Self-shading coefficient mi mg - 1 0.01 0.02 

I 0. Thickness of thermocline m 5.00 10.00 

Import and forcing describing data 
11. Orthophosphate import mg m- 2 d - 1 0.01 0.20 
12. Particulate phosphorus import mgm- 2 d - 1 0.25 1.50 
13. Hydraulic loading md - 1 0.03 0.05 
14. Minimum production rate d - 1 0.25 0.50 
15. Maximum production rate d - 1 1.00 10.00 
16. Time lag of production maximum d 180 270 
17. Initial thermocline depth m 3.00 6.00 
18. Final thermocline depth m 15.00 20.00 
19. Beginning of stratified period day 120 280 
20. End of stratified period day 280 330 

Initial conditions 
21. Initial orthophosphate mixed period mgm- 3 0.20 2.00 
22. Initial particulate P mixed period mgm- 3 2.50 7.00 

used in the Monte Carlo simulation. The rrlinimum and maximum values, 
which define the ranges, were obtained either from the known variability of 
available estimates (e.g. particulate phosphorus loading) or from expansion 
around values given in the literature. It should be pointed out that the results 
of the method are not critically influenced by the ranges selected, as long as 
they are ecologically or physically feasible. However, reduction of the ranges 
wherever possible is useful for increasing the efficiency of the computation. 
Thus, for several of the character vector elements the ranges given in Table 
II were obtained after reduction on the basis of an initial set of 10000 pilot 
runs. 

The simulation model was incorporated as a subroutine in a control 
program, that generated random sample character vectors from the ranges 
specified. Since a priori information on the probability distributions and 
correlation structure of the parameters was absent, independent rectangular 
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distributions were assumed. For each character vector, one simulation run 
was completed (for a period of one year) and the model response stored for 
subsequent analysis. 

Behaviour definition 
The output of any given model run has to be compared with the (defined) 

system behaviour in order to enable classification of the character vectors 
into a behaviour-giving class and a non-behaviour-giving class. It is obvious 
that the definition of the system's behaviour is a crucial step in the analysis. 
The system behaviour definition should reflect all the available, relevant 
knowledge on the system (e.g. that obtained from field observations). It is 
worth noting that a definition of system behaviour derived from the observa
tions does not depend upon the model. However, this definition has to be 
specified in terms of model output constraint conditions, or, in other words, 
the behaviour definition must be cast within the framework of the model 
actually used. 

Based on the available data and discussions with biologists acquainted 
with the Attersee system, seven indices were selected for inclusion in the 
behaviour definition. The constraints placed on these indices for the purpose 
of behaviour definition were specified such that the measurement uncer
tainty and the natural stochastic variability of the ecosystem (including 
variability among the years) were accounted for. Table III summarizes the 
resulting behaviour definition. 

In this way, the behaviour definition can be viewed as a seven-dimensional 
box in the response space and a model simulation run has to lie completely 
within this box in order to be classified as a simulation belonging to the 
behaviour-giving class. 

TABLE III 

Definition of the system's beha~our 

I. Total primary production per year has to be between 50 and 150 g C m- 2
. 

2. Total phosphorus export per year has to be between 2 and 8 tons. 
3. The peak value of particulate phosphorus in the epilimnion has to occur between Julian 

day 60 and Julian day 210. 
4. The peak value of particulate phosphorus in the epilimnion must not exceed 15 mg P m- 3. 

5. The concentration of orthophosphate during the mixed period must not exceed 2.5 mg P 
- 3 m . 

6. The peak value of particulate phosphorus must be at least twice the minimum value. 
7. The maximum total phosphorus content of the lake during the year must not exceed twice 

the minimum value. .. 
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Analysis 

Character vector space structure 
Out of 10000 runs only 293 character vectors were found that gave rise to 

a model output fully within the behaviour constraint conditions given in the 
previous section. Inspection of the sample ranges of individual elements of 
these 293 vectors showed that no further 'rectangular' reduction of the 
character vector space (CD) was possible. In other words, the boundaries of 
the behaviour-giving character vector space region (CM), as sampled by the 
293 behaviour-giving vectors (CS') extended up to the boundaries of the 
22-dimensional character vector box (CD). Figure 2 shows the distribution 
of the behaviour-giving class for one of the character vector elements in 
order to illustrate this point. Figure 2 also suggests that there are regions in 
the character vector space (CD) where one is more likely to find a behaviour 
response than in others. 

Due to the high dimensionality of the character vector space the geometry 
of the behaviour-giving region is in general difficult to investigate. However, 
a tentative exploration of the distributions of Fig. 2 can be made by 
projecting these distributions onto a two-dimensional surface. An example is 
given in Fig. 3. From this figure it is apparent that the behaviour-giving 
parameter combinations are more densely clustered in certain regions. It is 
also evident that other regions in the 22-dimensional box are 'empty'. 

35 

30 

25 

"' 
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"' :::> 
O" 
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Fig. 2. Frequency distrib~tions of behaviour-giving values of individual character vector 
elements within the ranges sampled (compare Table II), and probability distributions fitted; 
C4: sedimentation rate epilimnion; C5: sedimentation rate hypolimnion; CS: extinction 
coefficient. 
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Fig. 3. Projection of character vector space for the behaviour-giving ensemble; combinations 
of two character vector elements over their initial ranges used for sampling. 

However, in view of the large number of non-behaviour-giving combinations, 
we must conclude that almost every individual value of a character vector 
element can give rise to the behaviour or not, depending on the sample 
values of the other elements. Thus, as also suggested by Fig. 3, it is the 
(multiple) correlations between the character vector elements that determine 
the shape of the behaviour-giving character space. 

To gain insight into the- structure of the model (and, hopefully, of the 
system) a correlation analysis was performed. Consequently, 13 out of the 22 
character elements were found to be significantly correlated with one or 
more of the other character elements. The most complex relations, with four 
or five significant pairwise correlations, were found for the respiration/ 
mineralization rate in the hypolimnion, the net sedimentation velocities, the 
particulate phosphorus import, and the hydraulic loading. Also, production 
rate maximum and time lag showed more than one significant correlation. 
Correlations between the character vector elements of the behaviour-giving 
class reflect the ability of the model to balance one extreme with another, 
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Fig. 4. Frequency distributions of individual model response variables used for the definition 
of realistic behaviour; constraint conditions delimiting the realistic range are indicated. 
Model response to 10000 independent random samples from the character space CD. 

while still fulfilling the behaviour definition constraints. Character vector 
elements which would force the behaviour-defining variables in the same 
'direction' (relative to the boundaries of the seven-dimensional behaviour 
box) can be expected to be negatively correlated, and vice versa for the 
positive correlations. In this way, e.g. the strong positive correlation of 
particulate phosphorus import and sedimentation velocity ( epilimnion), it 
indicates that the constraint variables yearly primary production and/ or the 
allowable algal biomass peak value are sensitive to the 'net' effect of these 
counteracting processes. The constraint of maximum allowable orthophos
phate concentration provides another example. Hypolimnic remineralization, 
a major process affecting the value of orthophosphate concentration, is 
consequently negatively correlated with orthophosphate import and with the 
initial phosphorus concentrations. 
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In geometrical terms it can be said that the correlations indicate the main 
axes along which the behaviour-giving character vector region (CM) is 
oriented. Consequently, the model response (of giving the defined behaviour) 
is most strongly influenced by varying the parameter values in a direction 
orthogonal to these axes. In this sense the correlation matrix can be 
interpreted in terms of a sensitivity analysis as well. 

According to the character vector correlation structure, the Attersee 
system, as defined by its geomorphology and the behaviour definition, is 
characterized by a delicate balance between the processes responsible for 
primary production and phosphorus export (which is mainly determined by 
the epilimnic phosphorus concentration) and those which determine the 
orthophosphate_ peak concentrations, namely (besides the imports), sedimen
tation to the comparatively large hypolimnion and hypolimnic remineraliza
tion. This balance can only be achieved with a high phosphorus turnover in 
the epilimnion and comparatively slow net remineralization in the hypolirnn
ion. For a lake in the geographical position of the Attersee and with 
Attersee's morphometric features and associated temperature distributions, 
this seems to be a reasonable interpretation. 

The role of the behaviour definition 
Choosing values for the constraints on the allowable behaviour patterns is 

subject to a two-sided problem. On the one hand, the constraint ranges 
should be sufficiently narrow so as to restrict the allowable patterns such 
that they represent unambiguously the system's empirical behaviour in a 
meaningful way. On the other hand, all the variability in the system 
behaviour and the uncertainty in the observations should be taken care of 
with a minimum of arbitrariness. Since a reconciliation of these two objec
tives is rather difficult in practice, we examined the effects of the constraint 
setting on the character vector classification. For this purpose, the model 
response space was projected onto the individual model output variable axes. 
The position of the constraints in relation to the resulting frequency distribu
tions (Fig. 4) gives some indication of the relative importance of the individ
ual constraints. Figure 5 shows two contrasting examples for a pair of critical 
and uncritical constraints, respectively. 

The original constraint values were altered and the effects of this on the 
character vector separation were studied by logging violations of the con
straints. For the standard set of constraint values (Table III) the numbers of 
violations together with a relative coincidence matrix of violations are shown 
in Table IV. Clearly, the allowable phosphate level and the first permissible 
day for the algal peak are the major constraints on achieving an overall 
'acceptable' model response. Some of the other constraints are either not 
violated at all, e.g. minimum relative biomass increase, or are rarely violated, 
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Fig. Sb. Model response space projection on planes of two response variables, indicating the 
position of the constraint conditions for a pair of critical conditions. 



TABLE IV 

Constraint violations 

(Standard definition; 10000 runs) 
I. Primary production too low 
2. Primary production too high 
3. Biomass peak too early 
4. Biomass peak too late 
5. Biomass peak too high 
6. Relative biomass increase too low 
7. Phosphate level too high 
8. Phosphorus export too low 
9. Phosphorus export too high 

IO. Relative change in P-content too high 

Percent coincidence matrix 

Condition I 2 3 

I 100.0 0.0 77.8 
2 0.0 100.0 13.3 
3 18.8 2.4 100.0 
4 6.8 23.9 0.0 
5 98.9 I. I 98.9 
6 0.0 0.0 0.0 
7 6.1 12.6 42.9 
8 34.9 0.0 77.7 
9 0.0 100.0 0.0 

IO IO.I 4.0 81.0 

4 

8.2 
39.5 
0.0 

100.0 
I. I 
0.0 

18.5 
5.1 

100.0 
9.5 

5 6 

28.5 0.0 
0.4 0.0 
6.9 0.0 
0.3 0.0 

100.0 0.0 
0.0 0.0 
0.1 0.0 

14.7 0.0 
0.0 0.0 
0.1 0.0 

1237 cases 
904 cases 

5I08 cases 
1492 cases 
357 cases 

0 cases 
7201 cases 
2398 cases 

I case 
2148 cases 

7 

35.6 
100.0 
60.5 
89.1 

1.1 
0.0 

100.0 
30.2 

100.0 
45.7 

8 9 IO 

67.7 0.0 17.5 
0.0 0.1 9.5 

36.5 0.0 34.1 
8.1 0.1 13.7 

98.9 0.0 0.6 
0.0 0.0 0.0 

IO.I 0.0 13.6 
100.0 0.0 36.0 

0.0 100.0 0.0 
40.2 0.0 100.0 

0 
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e.g. the upper limit of total phosphorus output. There are also some notable 
relationships in the violations observed. For example, in almost all cases in 
which condition 5 is violated (upper limit for biomass peak) so too are 
conditions l, 3 and 8 violated (primary production too low, biomass peak 
too early, and phosphorus export too low) ; however, only I% of this subclass 
violates the most critical condition 7 on maximum phosphate level. Excessive 
primary production always occurs together with an excessive level of phos
phate, and about half of this subclass gives the biomass peak to be either in 
the required interval of time or too late ( 40% ). Excessive variations in the 
total phosphorus content of the lake are mostly paralleled by a too early 
biomass peak, but almost never occur in conjunction with an excessive peak 
value. 

Changing condition 7 from the initial 2.5 mg P to 3.0 mg P allowable in 
the mixed period, decreased the number of violations of this condition from 
720 l to 5680, and resulted in 665 'behaviour-giving' character vectors. Thus, 
372 of the 1521 vectors located in that 'interval' (compare with Fig. 5) do not 
violate any other condition. Further change in the allowable phosphate level 
from 3.0 to 3.5 mg P increased the number of behaviour-giving vectors to 
1127, with 4126 residual violations of the constraint condition, indicating a 
fraction of about 500 potential 'behaviour' vectors within that interval. For 
comparison, a reduction of the allowable values from the original 2.5 to 2.0 
mg m· 3

, decreased the number of behaviour runs quite dramatically to 68 
with a corresponding number of constraint violations of 8565. Again, a 
considerable number of the vectors in that interval (more than 1000 of the 
total of 1350) were already violating at least one other constraint condition. 
In addition, as another example, changing condition 3 from day 60 to day 
50, resulted in only two additional 'behaviour' vectors, although the number 
of violations of condition 3 dropped from 5108 to 5074. The remaining 32 
samples thus give a model response that violates at least one other condition. 

In conclusion, it can be said that although the specification of some of the 
constraint conditions is rather critical for the resulting character vector 
separation, the high degree of coincidence makes the method less sensitive to 
the individual conditions. This analysis may give some indication of where 
further efforts in data collection or analysis should be concentrated. Ad
mittedly, however, evaluation of the sensitivity of the approach to the 
behaviour definition should be carried out in terms of response probability 
distributions for predictions, which remains to be done. 

Projections into the future 

Having established an ensemble of 'model calibrations' for the range of 
empirical conditions covered by the behaviour definition, this ensemble can 
now be used for making predictions of the lake system's response to changes 
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in nutrient loading. The mean total phosphorus loading in this ensemble was 
estimated to be 1 mg P m- 2 d- 1 (S.D. = 0.33), which corresponds well with 
independent field estimates (Muller, 1979). For the predictions, the loading 
(character elements 11 and 12 in Table II) were now varied from 0-5 mg P 
m- 2 d - i in steps of 0.25. The proportion of the available phosphorus in the 
total loading was set to 10% after a series of runs in which ratios of 0, 10, 
and 25% were compared. For each of the 21 new loading values the first 150 
sample character vectors from the behaviour-giving ensemble were taken, 
thus generating a set of 150 estimates for several output variables (yearly 
primary production, algae peak biomass, phosphate maximum, phosphorus 
export, and phosphorus sedimentation) for each loading value for a series of 
10 years. Figure 6 summarizes the results for primary production, showing 
the situation after years 1, 2, 5 and 10. 

As indicated in Fig. 6, the probability distributions in the higher-loading 
classes level out with time. Taking the coefficient of variation as a measure 
of prediction uncertainty, a saturation curve type pattern in time can be 
observed for this measure (see also below). When plotting this coefficient of 
variation against loading for the first year's response, a distinct minimum, in 
the empirical (observed) range of loadings, can also be observed (Fig. 7). One 
may conclude therefore, that prediction uncertainty increases with increasing 
extrapolation, away from both the present time and the presently observed 
input loading conditions. Certainly, the predictions for larger deviations 
from the empirical situation are rather trivial after only a few years: an 
estimate of yearly primary production between 100 and 1000 g C m- 2 for a 
phosphorus loading of 5 mg m- 2 d - 1 is certainly of little value as a 
prediction. However, it should serve as a warning to the analyst that the 
uncertainty in the data available or the variability of the system itself simply 
do not support such an extrapolation. 

The samples of predictions can now be interpreted in terms of the original 
problem setting. Only the loading values close to the empirical range result 
in meaningful distributions in the ten-year projections, but these are of 
course the most interesting and 'realistic' alternatives to be studied. At the 
end of the 10-year period of simulations the lake system is found to be in a 
kind of new dynamic equilibrium with regard to the output variables 
considered. Whereas the variability of the predictions rapidly increases 
during the transient stage of the first six years (or less in some cases) after a 
change in the loading, this variability has stabilized by the end of the 
simulation period (the somewhat unrealistic zero-loading class is omitted 
from these evaluations). The time to reach a new equilibrium was found to 
be related to the relative change in the loading. The comparison of different 
loadings in terms of primary production, peak biomass, or phosphate level 
can now be made by either comparing the mean levels and their confidence 
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Fig. 6. Estimates of primary production for different loading levels (293 runs each): (a) 
simulation year l; (b) simulation year 2; (c) simulation year 5; (d) simulation year 10. 
Empirical range is used for initial conditions for the first year; simulation is extended for a 
period of ten years. 
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intervals, or by comparing the probabilities for reaching or exceeding certain 
levels. This is especially interesting, as in fact almost all of the probability 
curves fitted are skewed, which clearly implies that a simple comparison of 
mean values might be misleading for certain problems. 

DISCUSSION 

This paper, in line with a growing number of other publications (e.g. Beck 
et al., 1979; Di Toro and van Straten, 1979; O'Neill and Gardner, 1979; 
Reckhow, 1979; van Straten and de Boer, 1979; Hornberger and Spear, 
1980; Spear and Hornberger, 1980), has discussed the problem of uncer
tainty in ecological modelling. We have, in fact, taken the scope of the paper 
one step further to include an examination of problems of arbitrariness. In 
order to carry out an analysis in which these problems of uncertainty and 
arbitrariness can be considered explicitly we have prepared a method for 
model 'calibration' and subsequent prediction with the model which is based 
on the idea of Monte Carlo simulation. Given the uncertainties in the field 
data and our a priori knowledge of a system's behaviour, 'calibration' of the 
model depends upon a 'vague' definition of observed behaviour and a 
comparison with this definition of responses obtained from the model. The 
structure of the relationships among the variables represented in the model is 
fixed a priori. The parameter values and other information required to run 
the model, such as input forcing functions, are gathered together in a 
character vector, random realizations of which are used to generate a large 
sample of simulated responses. Each realization of the character vector is 
drawn from prespecified rectangular distributions for the character-vector 
elements; each simulation run thereby obtained is classified as either 'giving 
the defined behaviour' or 'not-giving the defined behaviour'. All the char
acter vector realizations that give the defined behaviour are then regarded as 
equally good 'calibrations' of the model and they can subsequently be used 
to generate distributions of the future behaviour of the system under study. 

There are five key themes of ecosystems modelling which we wish to 
discuss in this section: 'uncertainty', 'arbitrariness', 'calibration', 'prediction', 
and (to a lesser extent) "management'. Uncertainty, as related to model 
calibration, is considered explicitly both in defining the range of observed 
behaviour patterns and in defining the intervals of allowable parameter 
values and forcing functions (the character vector elements). When the 
sample of behaviour-giving character vectors is used for generating predict
ions under changed conditions, the uncertainty of the prior calibration 
process is preserved and will propagate forward with the predictions. For the 
case study reported (the Attersee problem) it is clear that the data available 
for calibration are particularly uncertain. The effects of this are clearly 
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reflected in the model predictions, which tend quickly to degenerate into 
rather trivial and meaningless statements about the future. This is, of course, 
a clear warning that the data available and the observed variability of the 
system itself simply do not support such extrapolation. We would indeed 
prefer to make predictions about the range and variability of behaviour 
patterns rather than 'best' estimates of possibly meaningless average values. 

Arbitrariness in ecosystems modelling is at first sight most apparent in the 
problem of model calibration. There are more or less arbitrary choices that 
have to be made for the structure of the model, for the specification of the 
behaviour definition, and for the permissible ranges of the character vector 
elements. But ultimately, as with the effects of uncertainty, it is for the 
purposes of prediction that the effects of arbitrariness are important. In this 
paper, therefore, we have examined the sensitivity of the model response to 
the arbitrary· choices of the calibration procedure. It has not been possible, 
however, to study the influence of our particular choice of model structure. 
One could propose that the approach be applied to alternative model 
structures in parallel, but given a study with only one hypothesis for the 
model structure, it is necessary to supply the appropriate qualifying state
ments for any interpretations placed on the prediction results. 

There are several challenging aspects of the method adopted here for 
model calibration. Since the model structure was fixed a priori in this study 
we have not addressed the difficult problem of model structure identification 
(e.g. Beck, 1979, 1980); the 'calibration' exercise here has essentially been 
concerned with a 'parameter estimation' problem. Nevertheless, the induced 
distributions of the parameter values (in the character vector) that result 
from the analysis can provide not only meaningful insight into the nature of 
the system's behaviour but also a posteriori information about the adequacy 
of the model structure. For instance, a high variability or absence of 
clustering in the parameter values that give the defined behaviour could 
indicate .an over-parameterization of the model. In other words, this is the 
equivalent of the problem of parameter identifiability that is commonly 
encountered in modelling poorly-defined systems (Young, 1978; Young et 
al., 1978). We might alternatively suggest that such 'random' distributions of 
the behaviour-giving parameter values are an indication of 'true' stochastic 
variability in the parameters. However, this seems a less plausible interpreta
tion, and again it is important to recall that the data of the Attersee case 
study exhibit especially high levels of uncertainty. It is also pertinent to 
consider in more detail the nature of the criterion for model 'calibration', i.e. 
the 'vague' definition of the system's behaviour. As knowledge of observed 
behaviour accumulates and improves so it is possible to imagine that the 
behaviour constraints can be made both more numerous and narrower. Thus 
the 'vague' definition becomes progressively less vague. Does this suggest 
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that the logical conclusion of this argument is that the 'vague' definition 
eventually approximates a least-squares-like criterion? It does not: the 
'vague' definition of system behaviour embodies no such concept as a degree 
of closeness to a 'true' behaviour; it is merely a binary classification of 
parameter values that either 'give' or 'do not give' the defined behaviour. 
Accordingly, one could thus speculate on the merits of a ternary classifica
tion procedure with a 'marginal' class separating the behaviour-giving and 
non-behaviour-giving classes. 

The fourth theme for consideration in this discussion is prediction. Of 
primary concern here is a problem of the persistence of 'extreme' conditions. 
The problem has its origins in the 'calibration' procedure. In defining the 
system's behaviour a number of aggregate yearly observations and features 
were added together. The behaviour definition was of necessity particularly 
wide in our case study and thus some of the behaviour-giving character 
vectors reflect conditions of behaviour (towards the boundaries of the 
defined ranges) which we would intuitively, but not formally, term 'extreme' 
conditions. When these specific character vector realizations are used for 
prediction, say for ten years into the future, this is tantamount to assuming 
that extreme conditions persist for long periods of time. Whether such 
persistence of extreme conditions contributes to a greater apparent varia
bility of future behaviour is a difficult question to answer. However, it is a 
question that deserves further study. 

Finally, let us turn to the topic of ecological modelling in a management 
framework. Management usually requires answers now to questions of 
immediate significance; and these answers must be derived on the basis of 
the currently available observations. The choice that management has be
tween the obscure, uncertain predictions given here and a detailed, determin
istic, and apparently confident statement of \uture behaviour, is indeed a 
sensitive issue. What choice would any of us make between an honest, but 
depressingly ambiguous prediction and a faithfully-promoted, complex, and 
seemingly accurate prediction? Contributors to a book on adaptive environ
mental management (Holling, 1978) discuss the 'issue of uncertainty' in 
considerable depth. The idea of benefiting from uncertainty, in terms of the 
learning process and in the design of new experimental or monitoring 
programmes to reduce critical uncertainties, is one with which this paper is 
in sympathy. Our conclusion is that there should be careful and critical 
appraisal of 'deterministic' modelling and prediction exercises, which tend to 
ignore uncertainty and which tend to attract the approval of being accurate 
because they are complex and contain much detail. 
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