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FOREWORD 

Problems of water quality management and protection have been the sub
ject of continuous interest in IIASA research activities for many years, 
because of their importance both for science and practice. There have been 
different ways in which these problems have been explored and studied in 
the framework of various research projects conducted here, but one thing 
cannot be questioned: the need for deep understanding of phenomena and 
mathematical methods used to describe them. 

The paper by M.B. Beck, an IIASA alumnus, addresses very impor
tant issues of uncertainty in water quality modeling . However, the issue of 
uncertainty is important not only for those who are interested in develop
ing or using water quality models, but also for a wide audience of research
ers involved in environmental modeling. Although Beck discusses issues 
which are not investigated in the framework of the project Decision Sup
port Systems for Managing Large International Rivers, this does not mean 
that the problems discussed in the paper are irrelevant to the scope of the 
project . His comprehensive review provides interesting and important 
information and may stimulate a critical evaluation of the concepts and 
opinions presented. 

K.A. SALEWICZ 
Project Leader 

Large International Rivers 
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Water Quality Modeling: 
A Review of the Analysis of Uncertainty 

M . B. BECK 

Department of Civil Engineering, Imperial College, London, England 

This paper reviews the role of uncertainty in the identification of mathematical models of water quality 
and in the application of these models to problems of prediction. More specifically, four problem areas 
are examined in detail : uncertainty about model structure, uncertainty in the estimated model parameter 
values, the propagation of prediction errors, and the design of experiments in order to reduce the critical 
uncertainties associated with a model. The review is rather lengthy, and it has therefore been prepared in 
effect as two papers. There is a shorter, largely nontechnical version, which gives a quick impression of 
the current and future issues in the analysis of uncertainty in water quality modeling. Enclosed by this 
shorter discussion is the main body of the review dealing in turn with(!) identifiability and experimental 
design, (2) the generation of preliminary model hypotheses under conditions of sparse, grossly uncertain 
field data, (3) the selection and evaluation of model structure, (4) parameter estimation (model calibra
tion), (5) checks and balances on the identified model, i.e., model "verification" and model discrimination, 
and (6) prediction error propagation. Much time is spent in discussing the algorithms of system identifi
cation, in particular, the methods of recursive estimation, and in relating these algorithms and the subject 
of identification to the problems of prediction uncertainty and first-order error analysis. There are two 
obvious omissions from the review. It is not concerned primarily with either the development and 
solution of stochastic differential equations or the issue of decision making under uncertainty, although 
clearly some reference must be made to these topics. In brief, the review concludes (not surprisingly) that 
much work has been done on the analysis of uncertainty in the development of mathematical models of 
water quality, and much remains to be done. A lack of model identifiability has been an outstanding 
difficulty in the interpretation and explanation of past observed system behavior, and there is ample 
evidence to show that the "larger," more "comprehensive" models are easily capable of generating highly 
uncertain predictions of future behavior. For the future of the subject, it is speculated that there is the 
possibility of progress in the development of novel algorithms for model structure identification, a need 
for new questions to be posed in the problem of prediction, and a distinct challenge to the conventional 
views of this review in the new forms of knowledge representation and manipulation now emerging from 
the field of artificial intelligence. 

CONTENTS 

Introduction .. ... . ........ .... ......... . ................ 1393 
Guidance for the reader .. . ... .... .. . . . . . ... . ...... . ... 1394 
The issues ..... . ................. .. . . . .... .. .. . .. . ... 1394 

Identifiability and experimental design . ..... . . . ...... ..... . 1397 
Generating preliminary hypotheses ........ . . .. ... .... ... . . 1399 

The Hornberger-Spear-Young algorithm . . ...... . ...... .. 1399 
Case studies ....................... . ....... ... ...... . . 1400 
Commentary .... . ........... . ............. . . .... ... .. 1400 

Selection and evaluation of model structure ..... . .. . ....... 1401 
Definitions of related problems . . ... . ............... . . . . 1401 
Recursive and batch estimation algorithms .. . .. .. ..... . .. 1402 
Uncertainty and state-parameter estimation ... . . . .. .. ... . 1402 
Model structure identification: an organizing principle ... . . 1405 
Case studies ........ . ........... .... . . ................ 1407 
Commentary .. . .. . ........... . ..... .... . .. . .. . . . .... . 1411 

Parameter estimation .............. . .. . ..... . ..... . .. . . . . 1412 
Types of estimator . . . .... . ........... . ...... . ... . . . ... 1412 
Algorithms for the implementation of batch estimation 

schemes .... . . ... ... . .......... . . . . . . .. . . ..... . . . . . 1414 
Case studies . . ... ...... ............................ . . . 1415 
Commentary: the problem of identifiability ... . .... .. .... 1416 
Prudent transformations of ill-posed problems . .. ... . ..... 1419 

Checks and balances . . ....... . ....... . .. .. .... . ..... .. .. 1420 
Analysis of the residual errors of mismatch . . . . . . ..... . .. 1421 
Model discrimination ... . ...... ... . .. . . .. .. . .... ... . . . . 1421 
Commentary . ... . .. . .. ... . ........ . .. . ...... . . . .. .. . . 1421 

Prediction error propagation ...... . ......... . . . ..... . .... 1422 
Prediction after identification .... . . . . . ......... .. .... . . . 1422 
Alternative conceptual frame works . ..... . . . . . . . .. .. . . .. 1423 
Approaches and methods .... . ....... . . . . . .. . ..... . . . . . 1424 
Case studies ....... ... . . ... . ... . ..... . . . ..... . .... . .. . 1426 
Commentary .. . ....... .... .... . .. ... . . ......... . ..... 1429 

Copyright 1987 by the American Geophysical Union. 

Paper number 6W0756. 
0043-1397 /87 / 006W-0756$05.00 

Further studies ..... . ...... . ... . . . .. .......... . . . . . . ... . 1430 
The nature of the data ... ... ..... . .... . . .. . . ...... .. ... 1430 
Failure . . ... . .... .. ....... . ....... . . . ..... . . . .. . ...... 1431 
Inference . ..... . ..... . ....... . .. .. ........ . . . ....... . 1432 
Knowledge representation ...... . .. ..... . ... . . . . ....... 1433 
Questions for prediction ............ . . . .... . . . . . . ... ... 1433 
The future under substantially changed conditions .. . . . . . . 1434 
Decision making under uncertainty ............... . .. . . . 1435 

Conclusions ........ . ... . .. . . . .... . ....... . ..... .... . . .. 1435 
Notation .. . ... . . . . ... .......... .. ........ . . . .... . ... .. . 1436 

1. INTRODUCTION 

Uncertainty is such a pervasive, common aspect of experi
ence that a review of its implications for water quality mod
eling might seem redundant or a statement of the obvious. 
The present emphasis on uncertainty and error analysis in 
water quality modeling, which first appears to have been di
rectly addressed by O'Neill [1973] in relation to ecological 
systems more generally, must at least partly be seen as a reac
tion to the absence of considerations of uncertainty in the 
mainstream developments of the subject during the 1960's and 
early 1970's. If there were a longer term view to be taken, 
current research activities might be interpreted as a swing of 
the pendulum away from determinism toward indeterminism. 
That indeterminism may itself become unfashionable is there
fore to be expected. Brush [1980], for example, in discussing 
the philosophical implications of quantum mechanics and 
Heisenberg's principle of indeterminacy, postulates just such a 
cyclical oscillation in "world views," which he traces well back 
into the nineteenth century. 

Why then, more specifically, has the analysis of uncertainty 
become so important, and what are the particular problems it 
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poses? Its importance is partly a reflection of the process of 
maturation typical of any subject of research. It is partly too a 
consequence of the liberating influence of the growth in the 
speed and capacity of digital computing equipment. The diffi
culties of mathematical modeling are not now questions of 
whether the equations can be solved and of the costs of solv
ing them many times; nor are they essentially questions of 
whether prior theory (on transport, dispersion, growth, decay, 
predation, etc.) is potentially capable of describing the system's 
behavior. The important questions are those of whether prior 
theory adequately matches observed behavior and whether the 
predictions obtained from models are meaningful and useful. 

The scope and purpose of this review are accordingly to 
survey, classify, and evaluate the methods that have been de
veloped and applied to analysis of the following four problem 
areas associated with uncertainty. 

Problem area 1 (P 1). Uncertainty about the relationships 
among the variables characterizing the dynamic behavior of 
systems, i.e., uncertainty about model structure. 

Problem area 2 (P2). Uncertainty about the value of the 
parameters (coefficients) appearing in the identified structure 
of the dynamic model for the system's behavior. 

Problem area 3 (P3). Uncertainty associated with predic
tions of the future behavior of the system. 

Problem area 4 (P4). The design of experiments, or moni
toring programs, for the specific purpose of reducing the criti
cal uncertainties associated with a model. 

1.1. Guidance for the Reader 

When confronted with a paper of this length, the attention 
of the casual reader is not easily engaged; indeed, some may 
not even have persevered this far. But the review is composed 
of two papers. There is a shorter, largely nontechnical version 
for those who wish merely to acquire a quick impression of 
the current and future issues associated with uncertainty. This 
comprises sections 1, 8, and 9; it is a philosophical comment 
on the status quo and a speculative view of future devel
opments of the subject. There is also the paper as a whole, 
which is therefore the longer version of the review for those 
with a determined interest in detail. Among this considerable 
detail, the reader who is most familiar with the long-standing 
problem of model calibration may wish merely to read section 
5, which is more or less self-contained for this purpose. 

The paper has a certain symmetry about it. We shall begin 
shortly in this section with questions of management and de
cision making and then transfer quickly to questions of a 
more detailed scientific nature. When the shorter version of 
the paper is resumed in section 8, it continues with a dis
cussion of essentially scientific issues but moves finally to mat
ters of decision-making uncertainty. This will clearly not satis
fy the reader whose primary concerns are the more practical 
problems of managing water quality, and that reader might 
therefore prefer to read a (equally lengthy) review of these 
topics presented recently elsewhere [Beck, 1985a]. 

The longer version of the paper is also symmetrical in that 
it reflects the cyclical nature of the problems: from experi
mental design (in section 2) through identification, to predic
tion, and back again to experimental design (at the end of 
section 7). Its connection with section 8 is precisely on this 
point of experimental design, and in fact, section 8 once again 
runs through the same cycle in its brief examination of the 
likely problems of the future. 

Each section of the main body of the paper (sections 2- 7) is 
organized as follows. It begins with a brief statement of the 

logic behind the position of the topic in the overall discussion. 
There is then a definition of the problem, followed by a de
scription of the approaches and, where appropriate, the speci
fication of certain important algorithms. The relevant case 
study results are then surveyed, and finally some critical com
ments are made on the notable successes and outstanding 
problems. Section 8 is thus a response to many of these out
standing problems. Some of the methods presented are rele
vant to more than one section, and some of the sections could 
easily be overwhelmed by a concentration of methodological 
detail. To provide a better balance therefore, and a more 
easily readable style, section 4 introduces the recursive meth
ods of state-parameter estimation {these methods also being 
relevant to sections 5 and 7), and section 5 is complementary 
in its introduction of batch methods of estimation. 

The scope of the review may be further qualified by defining 
the relevant field of water quality: the focus will be on water 
quality in surface freshwater systems, where this includes 
topics from the related but more general field of systems ecol
ogy. Despite this, however, the reader should be aware of the 
rich literature on statistical ecology that this review will over
look [e.g., Steinhorst, 1979; Tiwari, 1979; White and Clark, 
1979]. There will also be occasional reference to the study of 
groundwater quality {recently reviewed by Yeh [1986]), estu
arine water quality, and the adjacent disciplines of bio
technology {wastewater treatment) and biomedical systems 
analysis. 

Above all, the review is not about the elegance of methods 
for the solution of hypothetical problems. Its overriding con
cern is with the application of methods that will work in the 
difficult, usually inelegant, but highly enriching area of solving 
the problems of field case studies. 

1.2. The Issues 

There has always been uncertainty, but it was not really an 
issue in water quality modeling before the late 1970's. The 
beginnings of its more systematic and explicit analysis, how
ever, go back further than that. For instance, Bellman et al. 
[1966] appear to have been among the first to address prob
lems of system identification, or inverse problems, in the field 
of ecology, other early contributions having been made by 
Koivo and Phillips [1971], Parker [1972], and Shastry et al. 
[1973]. O'Neill [1973], as already indicated, and Argentesi and 
Olivi [1976] were instrumental in bringing the terms error 
analysis, or uncertainty analysis, to the fore in the context of 
studying prediction error propagation. 

Few would previously have associated the word uncertainty 
with the problem of system identification, although the way in 
which a model is derived from, or evaluated by reference to, 
the in situ field data must clearly influence both its ability to 
predict future behavior and the confidence to be attached to 
that prediction. Fewer still would have previously associated 
system identification (or much more narrowly, model calibra
tion) with the problems of decision making and management. 
An earlier view of system identification is summarized in the 
following quotation from DeLucia and McBain [1981] on a 
case study of managing water quality in the St. John River in 
the United States. 

Recognizing that a model is only an approximation of the real 
system, it appears logical to visualize that water quality modeling 
is merely curve fitting in a river system .... [The] statistical 
theory of estimation and hypothesis testing are all useful in 
model building .. . . On the other hand, failure to recognise the 
quality modeling as curve fitting has, in part, contributed to the 
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making of water quality modeling a field of ambiguity and mys
tery. Too often the calibration/verification procedure is described 
as a distinct and creative step in water quality modeling. How
ever, it is merely, in fact, an ad hoc procedure to fill partially the 
role of estimation and hypothesis testing. 

Misconceptions can, and do, occur. 
1.2.1. Management and science. The concern of environ

mental management, based, we assume, on environmental sci
ence, is the application of knowledge of the relationships be
tween causes and effects in guiding decisions about (1) the 
restoration of an "acceptable quality" to a damaged aquatic 
environment, (2) the prevention of damage to an environment 
as a result of contemplated development, and (3) the oper
ational maintenance of an acceptable environmental quality in 
the face of seasonal variability and the occurrence of acci
dents, failures, and extreme events. 

Few would disagree that in the light of these objectives 
there should be as little ambiguity and uncertainty as possible 
in the relationships between causes and effects. Nevertheless, it 
is easy to challenge the usefulness of any modeling exercise to 
decision making, for there is little published evidence with 
which to support its relevance [Beck, 1985a]. What is worse, 
the problems of system identification and the analysis of un
certainty are still further removed from the (political) decision
making process and therefore still more easily dismissed as 
irrelevant abstractions. 

Much depends on how the "scientist" communicates with 
the "manager." (These are understood as roles assumed by the 
individual; they are not mutually exclusive.) It may not be 
necessary to burden the manager with the details of an analy
sis of error propagation. But most certainly it is important to 
be concerned about the scientific basis underpinning the 
model and its predictions, and this is becoming acutely impor
tant given the impressive and persuasive technology of com
munication now within reach [Loucks et al., 1985; Fedra and 
Loucks, 1985]. At the same time, it is surprisingly difficult to 
convince the scientist, let alone the manager, that system 
identification and the analysis and interpretation of field data 
are integral to the development of scientific theories about the 
behavior of complex environmental systems [Young, 1978; 
Beck, 1982, 1985b]. They are (arguably) the "distinct and cre
ative step" that the above quotation denies. It is essential for 
system identification to involve a critical questioning of, and 
creative speculation about, prior hypotheses; to do otherwise 
is to ignore the role of experiment in theory development. 
System identification is not "merely curve fitting," if that is the 
end in itself; it is, if anything, curve fitting as a means to an 
end, where the end is the rigorous, scientific interpretation of 
field data. This paper takes the view that there is no obli
gatory need of system identification in the application of 
models to the resolution of management issues. But if manage
ment calls for a model, it is better that the way in which the 
model is to be developed and evaluated is agreed generally to 
be on a sound scientific footing. And without system identifi
cation, in its broadest sense, the process of model develpment 
and evaluation should not be accorded the label of "scientific." 
In some ways, then, this is little more than what has already 
been discussed elsewhere on the relationship between manage
ment and science [Thomann, 1982]. 

1.2.2. Classes of models. For certain philosophical and 
methodological reasons,, it is convenient to distinguish be
tween three classes of models, developed as follows. It is obvi
ous that all environmental systems are inherently of a 
distributed-parameter form. If the analyst were to attempt as 

complete a conceivable description of the system as possible, 
we would have the following form of model. 

Class I 

dx(t, r)/dt = f{V 2x, Vx, x, u, 9; t, r} (1) 

Here x is the state vector, i.e. , physical, biochemical, and eco
logical attributes of water quality, u is a vector of measured 
input disturbances, 9 a vector of model parameters (coef
ficients), t is (continuous) time, and r is a vector representing 
the three spatial directions (a list of symbols used in the paper 
is given in the notation list). 

From the points of view of the available in situ observations 
and the applicable methods of system identification, the 
question is to what extent must simplifying assumptions be 
made to the description of(l) in order to formulate an identifi
cation problem capable of solution. We shall assume that this 
means in practice either a finite-element or a finite-difference 
approximation where spatial variability is accounted for by an 
appropriate redefinition of the state vector, i.e., x may include 
elements for the same attribute of water quality in several 
spatial volumes. Here the finite-element approximation would 
give the model for the state variable dynamics as 

Class II 

dx(t) jdt = f{ X, U, IX; l} + l;(t) (2a) 

with (output) observations of the states given by 

{2b) 

where now IX is the vector of model parameters relating to this 
lumped form of model (IX may vary with time t), y is the vector 
of measured output response variables, I; is a vector of un
measured, possibly random, input disturbances, and 'I is a 
vector of random output measurement errors. The argument 
tk in (2b) indicates the pragmatic restriction of the observa
tions y to discrete instants of time (the same is in fact the case 
for u in (2a)). 

The nature of (2), which is central to the remainder of the 
paper, places the discussion of this review firmly in the con
ceptual framework of control theory. This is perhaps an un
familiar framework, but it should not cause undue difficulties 
in understanding the problems at hand (except possibly in 
section 7). 

A third class of commonly encountered model is the input/ 
output, transfer function model defined by the discrete-time, 
difference equation 

Class III 

y(tk) = f{y(tk - 1), . .. ' y(tk _n), u(tk-1), ... ' u(tk_n), 

ro(tk_,), ···, ro(tk - n), ~} (3) 

in which ~ is the relevant model parameter vector and all the 
sources of error (other than prior parameter estimation errors) 
are lumped under the definition of the single noise process ro. 

1.2.3. A taxonomy of uncertainty. As we have said, the 
analysis of uncertainty associated with the class II models 
introduced above will be the central concern of this review. 

It is now necessary to relate the sources of error and uncer
tainty implied by (2) to the basic scheme of Figure 1, i.e., to 
define a "taxonomy of uncertainty" (a term borrowed from 
A/camo and Bartnicki [1985]). At least until near the end of 
the review (in section 8), uncertainty will be understood in a 
probabilistic sense, encapsulating therefore the variability in 
the outcome of a random event (including the attributes of a 
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PRIOR ASSUMPTIONS/KNOWLEDGE 

INTERNAL DESCRIPTION OF 
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Iii ERRORS OF AGGREGATION 
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(iii NUMERICAL ERRORS OF 
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i 
i 
i 
i 
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INPUT I ANO OUTPUTI 
VARIABLES 

Fig. 1. Frame of reference for the analysis of uncertainty. 

biological population) and embracing the notions of erroneous 
assumptions or the distribution of errors associated with ob
served or estimated quantities. 

There are three perspectives from which to view Figure 1: 
(1) as providing the logical connections between the cyclical 
triplet of (prior assumptions---> identification---> prediction) and 
thus the propagation of uncertainty in the unfolding of these 
procedures, (2) as the taxonomy itself (see below), and (3) as 
distinguishing between uncertainty associated with an external 
and an internal description of the system's behavior. 

Most of the details of Figure 1 are self-explanatory and will 
be amplified fully as the review proceeds. There are two excep
tions, however, both relating to the uncertainty of the internal 
description of the system. First, errors of aggregation, es
pecially in the spatial and ecological senses implied by the 
lumping approximations of a class II model, will only be men
tioned in passing. Some work on the errors of aggregation 
resulting from the approximation of a three-dimensional spa
tial continuum by a two-dimensional model representation 
has been reported by McLaughlin [1985] for groundwater sys
tems. Others have investigated in depth the errors arising from 
the aggregation of groups of heterogeneous biological species 
into single ecological "compartments" [O'Neill and Rust, 
1979] (see also section 7). Second, the errors of model struc
ture, although the focus of much discussion throughout the 
review, are in fact extremely difficult to quantify in a formal 
manner. Technically, within the context of the class II model 
defined above in (2), they could be subsumed under the defini
tion of either the parameter estimation errors or the sources of 
uncertainty lumped in the definition of !;, ostensibly the "un
observed system disturbances." The latter is conceptually per
haps the more satisfactory means of accounting for such un
certainty, although it has rarely been used for this purpose 

and is in any case subject to notoriously arbitrary choice (as 
we shall see in section 4). 

To summarize the taxonomy, the sources of uncertainty 
most usually accounted for are uncertainty in the initial state 
of the system, uncertainty in the model parameter estimates, 
uncertainty in the observed input disturbances and output 
responses, and uncertainty arising from unobserved input dis
turbances of the system. 

1.2.4. Some philosophical points: different models for differ
ent roles. Overall, a Popperian view of the scientific method 
is assumed in this review, although hopefully not in the 
"naive" sense discussed by Chalmers [1982]. The relevant 
consequences of this are several. 

First, Popper [1968] has drawn a distinction between sci
ence and nonscience as a matter of whether the hypotheses 
associated with any attempt at a description of nature can be 
formulated in a manner whereby they can be unambiguously 
falsified. Given the currently available field observations of the 
behavior of environmental systems, "comprehensive" models 
(of the class I type), which have become enormously complex 
assemblies of very many hypotheses, cannot be effectively 
falsified. This is partly a function of uncertainty in the field 
data, certainly a function of current limitations in the methods 
of system identification, and essentially a function, in the event 
of demonstrating a significant mismatch between the model 
and observations, of being unable to distinguish which among 
the multitude of hypotheses have been falsified. In fact the 
detailed spatial patterns of water circulation and equally de
tailed differentiation of ecological behavior described by the 
more complex models would demand experimental observa
tions that are simply not technically feasible. This is clearly a 
problem intrinsic to the unavoidable process of aggregation, 
especially between class I and class II models, and specifically 
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deriving from the fact that the dimensions of the input/output 
observations { u, y} are (much) smaller than those of the state 
and parameter vectors {x, a}. 

Second, this facilitates a more "comfortable" view of models 
as either formalized archives of hypotheses or as vehicles for 
the exhaustive analysis and interpretation of data. The debate 
about preferred approaches to modeling can therefore be shift
ed away from the customary confrontations between the large 
and the small or the statistical and the mechanistic models. 
Such a view reconciles the role of the class I model, as the 
archive, with the role of the class III model, often the only 
vehicle for the analysis of data. It allows one to acknowledge 
that in seeking an understanding of the system's observed be
havior, a class III model is not a satisfactory end point to the 
analysis. It is instinctive for the scientist to ask how and why 
certain types of behavior or anomalies are observed, not 
merely to accept that they are. For instance, a linear (regres
sion) relationship identified between the concentrations of alu
minium and hydrogen ions in an upland stream will prompt 
many questions, since it runs counter to the expected deduc
tions from chemical equilibrium theory [Whitehead et al., 
1986]. The interpretation of anomalies and the revision of 
inadequate hypotheses are not therefore matters that can be 
resolved without recourse to the archive of hypotheses associ
ated with a class I model. In fact, there is an important inter
play between the two sides of the dichotomy. 

Third, in light of the above, it is convenient to adopt as an 
organizing principle for the procedure of system identification 
the following complementary (and iterative) questions of how 
to expose the failure (inadequacy) of the constituent hypoth
eses of a model structure, and how to infer the form of an 
improved model structure from diagnosis of the failure of an 
inadequate structure and from the prior knowledge associated 
largely with the class I models. 

In answering these questions, the class II models play a 
central role as intermediaries between the other two classes of 
models. In spite of their aggregated form, they still embody 
the spirit of the hypotheses about those phenomena thought 
to govern system behavior and in a form for which the identi
fication problem is capable of solution. 

1.2.5. Hydrology and water quality. It is also instructive 
to draw a distinction between hydrological system identifi
cation and environmental (water quality) system identification. 
The essential problem of hydrological management in the 
narrow sense of having the right quantity of water in the right 
place at the right time is one that has always been present and, 
as a problem for study, unchanging. Cause and effect in hy
drology are unambiguously related (precipitation causes 
runoff and hence streamflow), although undoubtedly the pre
cise mathematical form of this relationship can be extremely 
difficult to identify for complex hydrological systems. Cause 
and effect are not always self-evident in managing water quali
ty; and the essential problems of water quality have changed 
and continue to change significantly (first it was easily degrad
able organic wastes, then eutrophication, then the nitrate 
problem, and now toxics and acid rain [Beck, 1985a]). The 
emergence of new problems causes shifts of analytical study 
from one area to another and lessens therefore the effort de
voted to analyzing the "classical" problems in greater detail, 
including greater statistical detail. Consider, for instance, a 
model relating rainfall-runoff to observed precipitation and a 
residual noise process. Hydrology has advanced to the point 
where one would be much concerned about the assumptions 

made about the stochastic processes affecting the identifi
cation of this model. The analyst of water quality problems 
would be content to make any convenient assumption about 
such processes providing there was available a robust esti
mator for establishing in the first place the relationship be
tween the relevant input and output system characteristics. 
Moreover, it may well be that water quality will always be so 
concerned because it is in the nature of the subject that analy
sis is more usually directed at the determination of new re
lationships among new sets of variables rather than continual 
refinement of models for the same relationships among the 
same pairs of variables. 

In effect, almost all the problems of environmental system 
identification can be viewed as problems of model structure 
identification, and although they are here not treated under 
that title, many of the methods and case studies discussed in 
sections 5 and 6 are relevant to that problem. 

1.2.6. Uncertainty, ambiguity, and identifiability. Until the 
issue of uncertainty in water quality modeling had risen to 
significance in the late 1970's, it had been the paradigm to 
develop as comprehensive a "physics-based, mechanistic" rep
resentation of the system as possible [e.g., Park et al., 1974; 
Chen and Smith, 1979]. Our concern about such models, and 
effective tests of their many associated hypotheses, have al
ready been noted both above and elsewhere [Reckhow and 
Chapra 1983a]. That the constituent hypotheses of these 
models cannot be effectively falsified can be stated alter
natively as a lack of identifiability, as a case of ·over
parameterization, or that the model contains surplus content 
[Young, 1978]. The crux of the problem is that what one 
would like to know about the internal description of the 
system {x, a} is of a substantially higher order than what can 
be observed about the external description of the system { u, 
y}. The model may contain descriptions either of a type of 
behavior not actually observed in the particular sample of 
data, or of multiple types of behavior, the individual compo
nents of which cannot be disentangled from observations of 
their collective effect. The consequences are usually apparent 
in the absence of a uniquely "best" combination of parameter 
values that fit the data (many combinations are "equally 
good") and in parameter estimates with high error variances 
and covariances. 

On philosophical grounds the problem of model identifia
bility is clearly undesirable. It implies an uncertain and am
biguous interpretation of past observed behavior and, equally 
so, the possibility of ambiguous (and even contradictory) pre
dictions from a given model. Identifiability will subsequently 
emerge as the dominant problem of model parameter esti
mation in section 5 (see also Sorooshian et al. [1983], Sor
ooshian and Gupta [1983], and Gupta and Sorooshian [1983] 
for an exhaustive treatment of the problem in hydrological 
models). It is also the key conceptual link between the topics 
of identification and prediction that form the two halves of 
this review. 

But this now is as far as it is necessary to go in discussing 
the issues for review. The casual reader, if still with us, we shall 
rejoin in section 8. 

2. IDENTIFIABILITY AND EXPERIMENTAL DESIGN 

In Jess philosophical and more quantitative terms, what can 
be done to detect and avoid the potential problems of identifi
ability? 

The problem lies in the "choices" of { x, a} and { u, y} or, in 
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other words, in inappropriate choices of model structure (prior 
theory) and the set of input/output variables to be (or that 
have been) observed in a planned experiment. Some of the 
difficulties arise solely from the form of the model structure, 
some are obviously difficulties with the awkward properties of 
the data, and others arise from particular combinations of the 
two. In any case, the problems of identifiability are intimately 
related to the issue of experimental design, or problem (P4) as 
defined in the introduction: the design of experiments, or 
monitoring programs, for the specific purpose of reducing 
critical uncertainties associated with a model. 

In fact, in answer to our question, very little can be done a 
priori to detect and avoid subsequent identifiability problems, 
and for three very practical reasons. 

1. Planned experiments are in general not possible for en
vironmental systems; there is usually little freedom to choose 
u and y, to isolate a single cause-and-effect couple for experi
mentation along the lines of laboratory science, or to design 
the experimental perturbations in u (as would normally be 
assumed in the relevant literature of control theory [e.g., Gu
stavsson, 1975; Goodwin and Payne, 1977; Isermann, 1980]). 
There are exceptions, however, notably dye-tracer studies, 
which will be discussed below [e.g., Jakeman and Young, 1980; 
Beer and Young, 1983], the use of tubular enclosures in lakes 
[Lack and Lund, 1974], and the whole-lake experiments in 
eutrophication reported by Schindler and co-workers [Schind
ler and Fee, 1974; Schindler et al., 1978]. 

2. A good experimental design requires good prior knowl
edge of the system's behavior, i.e., a good model, which begs 
the original question. 

3. Formal analysis of the identifiability of a model struc
ture [Bellman and Astrom, 1970] does not appear to have 
yielded any easily computable procedures (as noted by Cobelli 
et al. [1979]); it leads to a cumbersome computational effort 
for all but the simplest problems [Holmberg, 1981; Gentil, 
1982] and is often approached within the (unfamiliar) context 
of frequency-domain representations of system behavior [God
frey et al., 1982]. 

Most first attempts at the design of sampling programs will 
not be addressed to the problem of system identification as 
discussed here. They will usually derive from the exclusive 
interests of management [Reckhow, 1978; Ellis and Lacey, 
1980; Ward and Loftis, 1983] and will not involve any more 
complicated prior knowledge than some elementary statistical 
models for the distribution of random variables. 

The one area of water quality modeling in which consider
able prior knowledge is available and where deliberate experi
mentation is possible is that of the identification of pollutant 
transport and dispersion. Experimental design in this area has 
accordingly attracted quite detailed analysis, specifically from 
the point of view of system identification, and indeed exploits 
the fact that uncertain and poorly estimated parameter values 
result from a model structure that is overparameterized [Jake
man and Young, 1980; Beer and Young, 1983]. The analysis is, 
however, restricted to particular forms of model structure, in 
fact the single input/single output versions of the class III 
models of (3). But what it shows is of considerable practical 
relevance, for it suggests that an "optimal" injection point for 
the tracer would be located some distance upstream of the 
system (the stretch of river) under study. The intermediate 
length of river prior to the system input then has the physical 
effect of filtering out a portion of the noise processes that 
would otherwise degrade the capacity to identify a model from 
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Fig. 2. Relative sensitivities for the change in estimated biomass 
concentration (in g L - 1

) that would result from changes in the maxi
mum specific growth rate constant (curve 1) and the saturation con
centration (curve 2) [after Holmberg, 1981]. 

the field observations [Jakeman and Young, 1980]. Closely 
similar conclusions have also been reached from quite a differ
ent perspective by van Straten et al. [1985]. 

It is not surprising that the conditions governing identifia
bility are closely related to sensitivity analysis, and while not 
wishing to pre-empt the discussion of section 7, there are cer
tain general observations that are best made here. They refer 
to the identifiability of the Monod kinetic expression for bio
logical growth, which although quite specific, is of sufficiently 
general importance because of its widespread use in ecological, 
fermentation, and biomedical system models. Figure 2 shows 
the relative sensitivities for the change in estimated biomass 
concentration (in grams per liter) that would result from 
changes in the maximum specific growth rate constant (curve 
1) and the saturation concentration (curve 2) in a model of a 
continuous culture fermentation process [Holmberg, 1981]. 
The qualitatively identical fluctuations in these two relative 
sensitivity coefficients would cause the associated parameters 
not to be uniquely identifiable; errors in the values of the two 
parameters would tend to be mutually self-cancelling in terms 
of the net model response and therefore not detectable. Note 
that such an analysis deals only with the intrinsic properties of 
the model, i.e., the internal description of the system's behav
ior {x, ot}, and makes no reference to any particular set of field 
data, other than that biomass concentration would need to be 
an observed variable. In fact, given a set of observations from 
an entirely deterministic simulated system (the noise processes 
I; and 11 being identically zero in (2)), Holmberg and Ranta 
[1982] have shown further that a typical least squares param
eter estimation algorithm has great difficulty in converging to 
an optimal and unique pair of estimates for the maximum 
specific growth rate and saturation concentration constants. 
The essential problem is that the surface of the (squared-error) 
objective function has the shape of a long, narrow, steep-sided 
valley running roughly parallel to the axis of the saturation 
concentration constant in the two-dimensional parameter 
space. In other words, in the neighborhood of its minimum, 
the value of the objective function is virtually insensitive to the 
value of the saturation concentration, and hence many pairs of 
values for the two parameters constitute effectively the least 
squares estimates. 

There have been other studies on the use of sensitivity coef
ficients to establish the identifiability of a model, for instance, 
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Gentil [1982] in a case study of Lake Aiguebelette in France 
(her paper is also of interest for its discussion of identifiability, 
observability, and controllability as concepts in linear system 
theory), and to determine an experimental sampling strategy 
for model identification [Via/as et al., 1985]. 

However, without considerable prior knowledge of model 
structure and model uncertainty, there is little of substance 
that can be said of identifiability and experimental design for 
system identification, and we shall defer further discussion of 
identifiability, in particular, until section 5. In the hydrological 
sciences more generally, the subject of identifiability has re
ceived barely any attention until relatively recently [e.g., Sor
ooshian and Gupta, 1985]. Should it become more relevant, 
there is much to be learned from the record of its parallel 
study in the adjacent disciplines of biotechnology and bio
medical systems analysis [Godfrey and Distefano, 1985]. 

3. GENERATING PRELIMINARY HYPOTHESES 

We come then to the problem of model building in its pris
tine state, with little confident, prior knowledge and few exper
imental observations. Broadly, this is the first of our four 
problem areas as defined in the introduction (section 1), i.e., 
problem (Pl): uncertainty about the relationships among the 
variables characterizing the dynamic behavior of systems, i.e., 
uncertainty about model structure. 

The issue is one of how to get started, of how to start, in 
particular, against a background of gross uncertainties. 

We noted earlier the preferred view of system identification 
as separating into the dual procedural steps of (1) exposing the 
failure of inadequate, constituent model hypotheses, and (2) 
speculating about, generating, or inferring the form of im
proved hypotheses. 

The exposure of failure, which is a relatively "crisp" concept, 
implies both bold, confident prior hypotheses and the avail
ability of adequate time-series observations of the inputs (u) 
and outputs (y). But this is rarely the case. It is much more 
common that a few quantitative observations are available 
(probably sampled irregularly and infrequently) together with 
less quantitative, more qualitative, empirical evidence of the 
system's behavior. In such situations (the subject of this sec
tion) it is apparent that the problem is one of generating some 
preliminary hypotheses about the possible mechanisms gov
erning qualitatively observed behavior. The approach to such 
problems, as described below, is a speculative exercise. And 
although it is convenient to think of it as an implementation 
of the second of the above two procedural steps of system 
identification, in practice the approach operates on a principle 
of sifting through a set of prior hypotheses and rejecting from 
further consideration those to which observed behavior ap
pears to be insensitive. 

The approach is due collectively to Hornberger, Spear, and 
Young [Young et al., 1978 ; Hornberger and Spear, 1980, 1981; 
Spear and Hornberger, 1980; Young, 1983] and .has variously 
been labeled a regionalized sensitivity analysis, a procedure 
for hypotheses generation, and speculative simulation mod
eling, names that themselves are revealing of the interwoven 
concepts of this review. The approach is stated most generally 
and succinctly by Hornberger and Spear [1981]. It is placed 
properly in the context of modeling "poorly defined" systems 
by Young [1983], much the same as here, and it is best illus
trated by a case study of cultural eutrophication in Peel Inlet, 
western Australia [Hornberger and Spear, 1980; Spear and 
Hornberger, 1980]. 

For want of a better name, we shall refer to it here under 
the rubric of the Hornberger-Spear-Young (or HSY) algo
rithm. It is not really an algorithm, and we shall leave poster· 
ity to invent a more adequate title. 

3.1. The Hornberger-Spear-Young Algorithm 

Let us begin, perhaps paradoxically, by giving a definition 
of the familiar problem of parameter (and state) estimation, 
typically for a class II model. 

Given a set of experimental, time-series field data comprising the 
measured inputs, u(tk), and the measured outputs, y(tk), of the 
system, determine values for the model parameters, a(t), and state 
variables, x(t), such that some (error, loss, or objective) function 
of the differences between the estimated ((y)) and observed (y) 
output responses is minimized. 

For the present this is a highly restrictive problem defini
tion. It does not capture at all the situation in which the field 
data are sparse, but it can be made to do so by making the 
following two fundamentally important substitutions, as pro
posed by Hornberger, Spear, and Young. 

1. The trajectories of the time-series observations {(y(t0), 
y(t 1), · · ·, y(tN)}, against which the performance or the model 
is to be evaluated, are replaced by a definition of (past) behav
ior (B) in terms of less detailed (more qualitative) constraints 
derived from the limited available observations (thresholds, 
topological constraints, and logical constraints, among others, 
are permissible). 

2. The error-loss (objective) function for locating a unique 
and best estimate ( o: ) of the parameter vector is replaced by a 
criterion that either accepts or rejects a sample vector o:* as 
giving rise to the past behavior (B) defined according to point 
1, above. 

In other words, the model is required, as it were, to pass 
through a "corridor" of constraints with "hurdles" to be over
come (as in the most simple form of Figure 3c), and it either 
succeeds or fails. 
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Time 

(c) (d) Random realizations of parameter 
values over specified ranges 
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Fig. 3. A comparison of (a and b) the concepts of estimation and 

(c and d) the HSY algorithm : (a) fitting the model response to the 
data, (b) contours of the fitting-function surface in the parameter 
space, (c) specification of constraints on acceptable model responses, 
and (d) analysis of model parameter values (dots indicate values 
giving rise to acceptable behavior, and crosses indicate values giving 
rise to unacceptable behavior). 
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For example, to quote from the original study of Peel Inlet, 
one item of the behavior definition (B) was chosen to con
strain the estimated yearly peak biomass of the nuisance alga 
Cladophora to be greater than 1.5 times and less than 10.0 
times its initial biomass at April I (defined as time t0 ), i.e. , 

(4) 

In addition, the ranges of permissible values from which the 
sample model parameter vectors are to be drawn were speci
fied as rectangular distributions with upper and lower bounds, 
i.e., 

(5) 

The two types of inequalities (4) and (5) reflect the uncertainty 
of the empirical evidence and the uncertainty of the prior 
hypotheses, respectively. 

The procedure of the analysis is a form of Monte Carlo 
simulation. In the original study the pattern of input distur
bances u(t) and the initial conditions x{t 0 ) were assumed to be 
known and not subject to uncertainty (assumptions that are 
not restrictive, as we shall see later). And since l;(t) = 0 was 
also assumed for (2a) of a class II model, it is apparent that all 
the uncertainty of the problem can be lumped under the title 
of parameter uncertainty. A sample vector ix• is drawn at 
random from its parent distribution and substituted in the 
model of (2) to obtain a sample realization of the trajectory 
x(t), which is then assessed for its satisfaction, or otherwise, of 
the set of constraints defined in the form of inequality (4). 
Repeated sampling of ex*, for a sufficiently large number of 
times, allows the derivation of an ensemble of parameter vec
tors that gives rise to the behavior (B) and a complementary 
ensemble associated with not-the-behavior (BJ. For this analy
sis therefore there is no meaningful interpretation of a degree 
of closeness to a uniquely best set of parameter estimates. 
Each sample vector ex* giving rise to the behavior is equally as 
"good" or as "probable" as any other. The crux of the analy
sis, with regard to resolving the questions of our problem (Pl), 
in the introduction, is the identification of which among the 
hypotheses parameterized by ex are those that are significant 
determinants of observed past behavior. "Significance" is here 
indicated by the degree to which the central tendencies of the 
marginal and joint distributions of the (a posteriori) ensembles 
of the "behavior-giving" parameter values cx*(B) and their 
complement cx*(B) are distinctly separated. Thus, for instance, 
the distinct clustering of parameter combinations that give the 
behavior, toward high values of rx 2 and low values of rx, in 
Figure 3d, suggests that the hypotheses associated with rx 1 and 
rx2 are likely to be fruitful speculations in understanding the 
observed system behavior. Rank ordering of the separation of 
the distributions of rx;*(B) and Cl; *(BJ for each individual pa
rameter i allows the rejection of some of the hypotheses as 
probably insignificant [Hornberger and Spear, 1981] ; they 
might alternatively be said to be part of the surplus content of 
the model, a point discussed earlier in the introduction (sec
tion 1) with respect to the problem of identifiability. 

The speculative character of the analysis should be obvious. 
The objective is to generate a preliminary set of promising 
hypotheses about a system's behavior. The origins of the term 
regional sensitivity analysis, as opposed to a local sensitivity 
analysis (as in the work by Jorgensen et al. [1978], Rinaldi and 
Soncini-Sessa [1978], and van Straten and de Boer [1979]) 
should also be apparent. A local sensitivity analysis is usually 
concerned with determining the changes in the state variable 
trajectories (in the neighborhood of a set of nominal reference 

trajectories) that would result from small changes in the values 
of the parameters. The regional aspect of the approach out
lined above is its evaluation of the sensitivity of a broad range 
of possible realizations of the state trajectories to (nonlocal) 
ranges of values for the parameters. For example, had there 
been no clustering discernible in Figure 3d, an intuitive con
clusion would have been to say that the behavior definition is 
not sensitive to any particular values of ix 1 and ix 2 • Finally, we 
may note that the focus on hypotheses parameterized by ix, as 
opposed to the tendencies of the specific values assumed by 
ix*(B) and ix*(BJ, concentrates the analysis on problems of type 
(Pl) and not on those, i.e., parameter estimation, of type (P2). 

3.2. Case Studies 

The significance of the work conducted by Hornberger, 
Spear, and Young is readily apparent from the number of 
other studies that have already adopted a similar approach. 
Van Straten [1981] has applied it in order to evaluate a hy
pothesis of phosphate sorption on particulate matter and the 
association of this mechanism with the exchange of nutrients 
between sediments and water in a shallow lake (Lake Balaton, 
Hungary). Halfon and Maguire [1983] report results for a 
study of the fate of fenitrothion (a pesticide used to control 
spruce budworm) in an aquatic environment, and Whitehead 
and Hornberger [1984] have used the approach to examine 
certain aspects of algal population dynamics in the Thames 
River basin in United Kingdom (see also section 4). 

All of these case studies do not deviate significantly from 
the basic approach outlined above. Fedra, however, has been 
prominent in extending the approach in other important di
rections. 

1. In formally adjoining bounded distributions for u(t) and 
x(t0 ) in (2) to the parameter distributions of inequality (5), i.e. , 
hypotheses about the patterns of u(t) and x(t0) and their uncer
tainty are parameterized via ex [Fedra et al., 1981; Hornberger 
and Spear, 1981; Hornberger and Cosby, 1985a]. 

2. In deliberately associating the residual (a posteriori) un
certainty of an "identified" model with subsequent analysis of 
prediction uncertainty [Fedra et al., 1981; Half on and Ma
guire, 1983; Hornberger and Cosby, 1985a] (see also section 7). 

3. In using the approach to address much more explicitly 
the problem of model structure identification, as defined in 
section 4 [Fedra, 1981]. 

4. In combining the use of error (objective) functions with 
the behavior definition as a means of broadening the concept 
of determining acceptable model performance [Fedra, 1983; 
Hornberger and Cosby, 1985a; Hornberger et al., 1985]. 

Fedra's style is typically philosophical and provocative, and 
the reader will not be disappointed by the synthesis he has 
given his ideas in Fedra [1983], where he uses as case studies a 
problem of lake eutrophication in the Attersee, Austria [Fedra 
et al., 1981], a pelagic food web in the North Sea [Fedra, 
1981], and a simple rainfall-runoff model for a small moun
tainous watershed in upper Austria. 

3.3. Commentary 

The appeal and power of the HSY algorithm are undeni
able. Simplicity and flexibility of method, together with the 
enforced declaration of arbitrary assumptions (as Fedra has 
observed) are virtues rarely matched by most of the other 
topics of this review. Above all, the approach occupies a pre
viously empty niche in the analysis of uncertainty, identifi
cation, and prediction. Its applicability is essentially indepen
dent of the complexity of the model structure, since the classi-
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fication scheme remains a simple binary system of giving, or 
not giving, rise to the behavior defined. 

There are, however, some disadvantages. First, the interpre
tation of the derived a posteriori parameter distributions be
comes more difficult as the dimension of the parameter vector 
increases, and for all practical purposes, it seems probable that 
any conclusions will have to be restricted to the properties of, 
at most, the univariate and bivariate marginal distributions 
associated with the multivariate joint distribution. 

Second, if the primary advantage of an approach is its sim
plicity, then much of that advantage will be surrendered 
should it lose the attribute of being simple. Fedra's introduc
tion of what are, in effect, sampled time series of permissible 
ranges for the state variable trajectories (as opposed to point 
observations from an associated probability distribution) and 
his use of terms such as best estimates and estimation schemes 
that "optimize" are redolent of old habits. They are suggestive 
of ways in which to use the approach that go against its two 
cardinal points. There are indeed signs elsewhere [e.g., Horn
berger and Cosby, 1985b; Hornberger et al., 1985] of a loss of 
focus on the original motivations for the development of the 
approach, i.e., the acute need to handle situations of sparse 
data and to generate preliminary hypotheses about a system's 
behavior. These more recent developments have dealt with 
extensive (notably hydrological) data sets and the problems of 
identifiability and surplus content, and it is again the en
croaching complication of what is supremely a simple ap
proach that gives cause for concern. 

Third, Sharejkin's [1983] criticism that the approach lacks 
refinement in its crude binary classification procedure is also a 
tempting, but possibly counterproductive, step in the direction 
of complication. 

And fourth, when a technique is easy to apply, such facility 
may mask the rigor that is necessary in other less technical 
aspects of the analysis. The subtlety and difficulty of the HSY 
algorithm, and perhaps too the probability of a successful 
outcome, lie in careful assembly and composition of the hy
potheses that go to form the model structure. It is revealing, 
for example, to contrast the relative richness of the clear-cut 
conclusions of the Peel Inlet study using a problem-specific 
model [Spear and Hornberger, 1980], with the relative incon
clusiveness of the Attersee project [Fedra et al., 1981], which 
made use of a model developed for more general, nonspecific 
purposes (a corruption of the popular computing aphorism 
would have this : blandness in, blandness out). 

4. SELECTION AND Ev ALUA TION 

OF MODEL STRUCTURE 

A more likely conclusion from the foregoing speculative 
form of analysis is that further more specific, more intensive 
experimental study should be made of the system. Were this to 
be the case, thus yielding a set of time-series field data, the 
selection and evaluation of model structure could then pro
ceed in a more refined fashion . The problem area of interest is 
still that of problem (Pl), though now in the sense of what we 
shall define as the problem of model structure identification: 

The unambiguous determination, by reference to the in situ field 
data { u(r.), y(r.)}, of how the measured input disturbances u are 
related to the state variables x and how these latter are in turn 
related both among themselves and to the measured output re
sponses y of the system under study. 

This is still quite a broad problem definition and certainly 
much broader than the problem of estimation as defined pre-

viously in section 3. It amounts to identification of the func
tional relationships f{ · } and h{ · } in (2), and this in turn 
implies distinguishing among choices for the state (x) and pa
rameter (ex) vectors. 

In relation to the discussion of section 3, the focus of the 
problem has changed and, if anything, narrowed somewhat: 
there are more field observations, fewer gross uncertainties 
about the observed nature of the system's behavior, and in 
principle, some more confident prior hypotheses about the 
mechanisms believed to govern that behavior. The selection 
and evaluation of model structure are not equivalent to a test 
of the hypothesis that the model as a whole should be accept
ed (or rejected). Rather, what is required is a test of the ade
quacy of each constituent model hypothesis. Yet this test 
cannot merely be conducted on a part of the model isolated 
from the whole, any more than the experimental conditions 
can be so reduced. 

So we need a method of solution that can accommodate 
both the inherently multivariable character of the model and 
field observations as a whole, yet establish the "success" or 
failure of any of the individual, constituent hypotheses. This is 
no easy demand to satisfy. In this section we shall develop a 
conceptual picture of the problem of model structure identifi
cation and then describe how the idea of recursive state
parameter estimation can be used to solve the problem. This 
presupposes a familiarity with recursive estimation algorithms, 
which therefore will be introduced shortly. The details of these 
algorithms are not crucial to an appreciation either of the 
problem solution or the illustrative case study results, and 
they are therefore confined to a largely self-contained section 
(section 4.3), which may be omitted without loss of continuity. 
This detail, however, is well worth absorbing on at least three 
accounts. First, it reveals how the propagation of uncertainty 
influences the process of identification; second, it prepares 
much of the theoretical ground necessary for the subsequent 
discussion of prediction error propagation in section 7; and 
third, it explains the conceptual basis on which the history 
and origins of this review are founded [Beck and Young, 1976; 
Young, 1978; Beck, 1982]. But there should be no suspicion in 
the reader's mind that recursive estimation is a panacea. It is 
not; it is one among several perspectives on the problem of 
model structure identification. Nor will the application of such 
algorithms deliver "automatically" a solution to this problem; 
any solution requires experienced judgment on the part of the 
analyst. 

4.1. Definitions of Related Problems 

But, to begin with, model structure identification is not an 
easily understood term, or rather it is often misunderstood as 
something other than what is intended here. It is not the same 
as model-order estimation, which, given the input/output form 
of a class III model (equation (3)) would normally be defined 
as 

The determination of an appropriate integer value for n (in (3)), 
i.e., the order of the relevant polynomials in the backward shift 
(or lag) operator. 

Even for this more narrowly and more easily defined prob
lem for which there are relatively systematic procedures of 
solution [e.g., Box and Jenkins, 1970; Soderstrom, 1977; 
Ha/fan et al., 1979; Hipel, 1981; Young et al., 1980], there is 
not necessarily any truly "objective" indicator of having iden
tified the best model order, nor are these procedures especially 
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Fig. 4. Methods of parameter estimation (a) off-line and (b) recur
sive. Superscript i in (a') denotes the estimate for the (i + l)th iter
ation through the data. 

effective on the data typical of environmental systems [e.g., 
Beck, 1979a]. Since model-order estimation is usually associ
ated with a class III model structure, it will not be a primary 
concern of this review. 

Model structure identification is not quite the same as 
model discrimination, defined as 

An analysis with the objective of discriminating among com
peting hypotheses about a system's behavior, i.e., among models 
with different structures. 

Such a definition does not embody the notion of inferring 
the form of an improved model structure from diagnosis of the 
failure of an inadequate prior structure, and this as we shall 
see, is central to our interpretation of model structure identifi
cation. 

4.2. Recursive and Batch Estimation Algorithms 

Although the primary concern in this section is with uncer
tainty about the model structure, access to a resolution of this 
form of uncertainty is (once again) gained via the estimation of 
the model parameters (and states). 

Consider therefore Figure 4. It illustrates the essential differ
ences between the recursive (on-line) and the more usual batch 
(off-line, en bloc) forms of data processing algorithms. With a 
batch procedure (as in Figure 4a), the parameter estimates are 
assumed to be constant and equal to their a priori values, 
(ex0

), while the complete block of time-series field data, from 
time t0 -+ t N of the experimental period, is processed by the 
algorithm. A loss function, typically based on the errors be
tween the observed and model responses, is calculated at the 
end of each iteration; the algorithm searches then for suitable 
directions toward the minimum of the loss function over the 
parameter space and computes an updated set of parameter 
values (ex 1

) for substitution into the next iteration through 
the data (from t 0 -+ tN). We shall have much more to say 
about batch estimation algorithms in section 5. 

A recursive algorithm, in contrast, computes revised param
eter estimates, (ex0(tk)), at each sampling instant tk of the field 
data (Figure 4b); the minimization of the error loss function is 
implicitly, rather than explicitly, accounted for in the algo
rithms. At the end of the block of data the estimates (ex0(tN)) 
are substituted for the a priori parameter values (ex 1(t0)) of 
the next iteration through the data. Subsequent iterations 
through the set of field data may be required, depending upon 
the nature of the recursive algorithm chosen, or for reasons of 
short-length data records. 

The essential problem of model structure identification is 

that, given observations of the external description of the 
system { u(tk), y(tk)}, inference about the internal description of 
the system is required, i.e., information about the states and 
parameters { x, ex} and the functional relationships f{ · } and 
h{ · } in the class II model of (2). Clearly f and h cannot be 
directly identified in some automatic fashion. It is possible 
only to postulate forms for f and h, then to estimate the corre
sponding { x, ex} , and thence to infer from these estimates the 
adequacy or otherwise of the choices for f and h. How precise
ly this latter might be achieved will be discussed later, but it 
depends crucially upon the ability to estimate possible vari
ations with time of the model parameter (ex) estimates; hence 
the special significance of a recursive estimation algorithm. 

4.3. Uncertainty and State-Parameter Estimation 

All problems of system identification are concerned with 
this translation of information about the external description 
of the system into information about the internal description 
of the system. What has not yet been explored is the question 
of how the (assumed) uncertainties of these two forms of de
scription influence the process of "translation," i.e., of identifi
cation or state-parameter estimation. In order to discuss this 
point we must now introduce a model for the propagation of 
errors associated with the state-parameter estimates. This 
error model is quite general and, together with other models 
of error propagation, has been discussed extensively by 
Schweppe [1973]. For our purposes it has particular impor
tance in providing an explicit, quantitative connection be
tween the subjects of identification and prediction. 

4.3.1. A model of error propagation. Since the temporal 
variability of the model parameters is also to play an impor
tant role, it is necessary to make some assumptions about how 
to model this variability. Let us suppose therefore that the 
state vector dynamics of (2a) can be augmented by an equiva
lent expression for the parameter dynamics, so that 

[
dx(t)/dt] = [f{x, u, ex; t}J + [~(t)J (6a) 
dex(t)/dt 0 ~(t) 

y(tk) = h{ x, ex ; tk} + t}(tk) (6b) 

in which the augmented state-parameter vector x. would be 
defined as 

x. T = [x, ex] 

where superscript T denotes the transpose of a vector or 
matrix. The assumed model for the variations of the parame
ters with time is that they vary in an unknown, random-walk 
fashion (more specific models are, of course, possible). The 
random process ~ in (6a), representing the sequence of un
known "parameter disturbances," is an additional source of 
uncertainty; it reflects the intensity of the variability to which 
any parameter is expected to be subject. Clearly if the parame
ters of the model are thought a priori to be truly constant, 
then ~(t) = 0 for all t should be assumed, although this does 
not imply that the recursive estimates of ex will be invariant 
with time, a point of fundamental significance to solving the 
problem of model structure identification. Henceforth in this 
derivation of the error model, the states and parameters will 
be treated identically. Although the ultimate goal is the state
ment of a particular form of recursive estimation algorithm 
(the extended Kalman filter), in this first stage we shall formu
late simply the principles of a general, first-order error analy
sis. 
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Let us assume that it is possible to generate a nominal 
(deterministic) reference trajectory for the states x(t) (and for 
the parameters a(t)) by assuming a set of known initial states 
x(t 0 ), known (prior) parameter values a(t0 ), and a sequence of 
input disturbances ii(t) known for all t. The x(t) and a(t) can 
now be generated as (in terms of the augmented state
parameter vector) 

dx.(t)/dt = r. { x, ii, a; t} (7a) 

with a correspondingly generated set of "reference" output 
observations 

(7b) 

For the augmented state-parameter vector dynamics (7a), 
r.{ · } = [f{ · }IOJ, which for the simple random-walk model 
for the parameter variations implies that a is a constant for all 
t. 

The reference model of (7) is the basis for linearization of 
the original nonlinear problem. Hence if we introduce the 
small perturbations (variations) or errors x, &, ii, and y defined 
as 

X=X-X ii= u-ii &=oc-a y=y-y (8) 

and then take first-order Taylor series approximations off{ · } 
and h{ · } in (6), the nonlinear system model of (6) can be 
approximated by the combination of the reference model 
(equation (7)) and the following linear error propagation 
model (or small perturbations model): 

dx.(t)/dt = F 0 (t)x.(t) + G0 (t)ii(t) + ;.(t) (9a) 

y(tk) = H(tk)x.(tk) + 11(tk) (9b) 

Here x. is the augmented state-parameter error vector, and ;. 
is defined as [;l~Jr. The matrices F 0 , G

0
, and Hare appropri

ate Jacobian matrices (containing derivatives off and h with 
respect to x, oc, and u); they derive from the linearization 
procedure, are in general functions of x, ii, and a, and are 
therefore time var.ying, as indicated in (9). 

The error model can alternatively be written in a discrete
time difference equation format by integrating (9a) over the 
sampling interval tk - i to tk, so that [e.g., Dorf, 1965] 

x.(tk) = <I>.(tk _ ,)x.(tk_ ,) + r.(tk_ ,)ii(tk_ ,) + ;.(tk _ ,) (!Oa) 

y(tk) = H(tk)x.(tk) + 'l(tk) (!Ob) 

in which ~.(tk_ 1) is the discrete-time equivalent of the 
continuous-time noise process ;.(t). 

We have therefore a model for the deterministic reference 
trajectories of the states and parameters (equation (7)) and a 
general linear model for the propagation of errors associated 
with these states and parameters (equation (9)). The reference 
trajectory can be specified by a suitable choice of x(t0 ), a(t0 ), 

and ii(t) for all t. Any errors associated with these choices, 
together with uncertainty in the unobserved input distur
bances of the system (;.), are propagated with time according 
to (9a). All these sources of error, together with uncertainties 
in the observed responses of the system (11), can be trans
formed via (9b) to account for the errors associated with esti
mates of y (as opposed to x.). Such an error model is appli
cable, irrespective of whether we are discussing identification, 
prediction, the extended Kalman filter, or any other esti
mation scheme. 

4.3.2. The extended Kalman filter (EKF). There is a 

common structure to all recursive estimation algorithms de
signed for the processing of discrete-time observations of the 
system's behavior. It breaks down into three components: (1) 
a prediction step across the sampling interval tk- i-> tk, (2) a 
correction step at the sampling instant tk as new observations 
y(tk) become available, and (3) a feedback gain matrix (or 
Kalman gain matrix), which provides a weighting procedure 
for taking account of the mismatch between the estimate and 
observed values of the system's response (y). 

Each component has its counterpart, roughly speaking, in 
the nature of the propagation of the various sources of uncer
tainty. 

1. Equation (lOa) of the error model defines the uncer
tainty associated with the predicted states and parameters at 
time tk as a function of the errors in the prior ("initial") state 
and parameter estimates and in the observed and unobserved 
input disturbances (all at time tk _ 1). 

2. Equation (!Ob) defines the uncertainty of the mismatch 
between the observed and predicted output responses to be a 
function of their respective uncertainties. 

3. The gain matrix can be chosen such that it minimizes 
the uncertainty of the corrected state and parameter estimates 
[Gelb, 1974], and in fact this choice will be seen to involve a 
"balance" between the two types of uncertainty referred to in 
point 2 above. 

Overall therefore the form of the recursive estimator is such 
that it embraces a solution to the problem of prediction and 
prediction error propagation as a part of its structure. · This 
approximate solution, as derived here, is equivalent to a first
order error analysis; it is a general statement of the propaga
tion with time of the mean and variance-covariance matrix of 
the state and parameter estimation errors. The additional fea
ture of the estimator is the change made to these uncertainties 
each time a new observation of the system's behavior is pro
cessed. Ideally the change will be a reduction in the uncer
tainty of the state and parameter estimates, i.e., a reduction in 
the uncertainty of the internal description of the system's be
havior. 

The most important differences among the types of recur
sive estimator to be discussed in this review (the EKF, an 
instrumental variable (IV), and a least squares (LS) algorithm) 
lie in their assumed models of the state-parameter dynamics 
and in the assumed presence (or absence) of the various 
sources of uncertainty. 

The special significance of the EKF for the present dis
cussion is that it refers to a class II form of model; it refers 
also to the most general formulation of the problem of model 
structure identification, and it illustrates most completely the 
way in which uncertainty influences the solution of this prob
lem. There are several routes by which to derive the filter (as 
discussed in the general texts by J azwinski [ 1970], Gelb 
[1974], and Young [1984], some of which expose its origins in 
linear, least squares regression analysis and its relationship 
with the other recursive estimation algorithms to be discussed 
below [Young, 1984; Beck, 1979b]. The details of these deri
vations are clearly outside the scope of this review and are not 
essential to the desired qualitative understanding of the func
tioning of the algorithms. What we should note, however, is 
that none of the estimation algorithms was ever developed 
with the problem of model structure identification in mind. 

The estimation problem for our class II model has a high 
degree of difficulty, being nonlinear, and requiring estimates of 
quantities (principally the states) that vary with continuous 
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time (as opposed to discrete time). The model of the system's 
behavior has been partitioned into a component assumed to 
be known with certainty a priori (the nonlinear reference 
model, equation (7)) and an approximate component into 
which all the uncertainty has been lumped (the linear error 
propagation model of (9) and (10)). It would thus be possible 
to incorporate the linear error model within a linear Kalman 
filter formulation in order to obtain estimates (x.(tltk)) of the 
errors, or small perturbations in states and parameters, x.(t). 
Here the notation (tltk) indicates an estimate at time t con
ditioned upon all the input/output observations up t-0 and 
including those available at tk. Hence approximate estimates 
of the states-parameters (x.(tltk)) could be reconstructed using 
the reference model, i.e., 

(11) 

Such a reconstruction, however, depends on a good prior 
choice of the model structure and the values for x(t0 ), ii(t 0 ), 

and ii(t) that are used to generate the reference trajectory x.(t). 
In order to overcome this obvious difficulty two quite specific 
substitutions are incorporated into the algorithms of the EKF. 

1. In the absence of better choices it is sensible to substi
tute ii(t) = u(tk_ 1) for tk- l :::; t:::; tk, i.e., to utilize the observed 
input information to generate the reference trajectory. 

2. In order to minimize the possibility of large deviations 
of the reference trajectory from the true state trajectory it is 
prudent to "relinearize" at each sampling instant by the sub
stitution of x.(tk) = <x.(tkltk)). 

This latter is evidently the means whereby observed infor
mation about the system's response (y) is fed back for adap
tation of the reference trajectory (paradoxically this might be 
seen as a disadvantage from the perspective of developing 
novel and improved algorithms for model structure identifi
cation). 

To summarize, the qualitative structure of the EKF is as 
follows. It assumes that the proposed model can be used in a 
deterministic fashion to generate a reference state-parameter 
trajectory; all the uncertainties of the internal and external 
descriptions of the system are lumped into a first-order ap
proximation of error propagation. The propagation of these 
uncertainties influences the way in which the states
parameters are estimated, and these continuously revised esti
mates are in turn used to adapt the reference trajectory. 

Quantitatively, the extended Kalman filter can thus be 
stated as (in its continuous-discrete form). 

Prediction 

(12a) 

(12b) 

Correction 

( x.(tkltk)) = ( x.(tkltk_ 1)) + K(tk)[y(tk) 

- h{(x(tkltk_ 1)), (cx(tk_ 1!tk_ 1))}] (12c) 

P.(tkltk) = [I - K(tk)H]P.(tkltk _ 1)[1 - K(tk)HY 

+ K(tk)RKT(tk) (12d) 

Gain matrix 

K(tk) = P.(tkltk - 1)HT[HP.(tkltk - 1)HT + Rr 1 (12e) 

Here the following assumptions and definitions hold: (1) P. 
is the variance-covariance matrix of state-parameter esti
mation errors, (2) K is the Kalman gain matrix, (3) !;.(tk) is a 
zero-mean, white Gaussian sequence with variance-covariance 

Q.=[~] 
in which Q5 and QP are the variance-covariance matrices of 
the state and parameter disturbances, respectively, (4) 11(t.) is a 
zero-mean, white, Gaussian sequence with variance
covariance R, and (5) <I>. and H refer to the linearized system 
of (10) and will in general be a function of time (their argu
ments have been omitted for notational clarity). 

4.3.3. Some comments on the filter. There are several 
points to notice about the EKF. First, any deleterious effects 
of the first-order linearization are propagated primarily 
through the variance-covariance recursions of (12b) and (12d). 
Equation (12b), for example, is derived by setting up the prod
uct of the errors x.x. T from the linear model of (lOa) and then 
applying the operation of expectation. The partitioned form of 
this variance-covariance equation can be likewise formulated 
from appropriate product terms in i and ii and will be dis
cussed in section 7. 

Second, the sources of uncertainty are represented in the 
fitler as (recalling Figure 1) (1) the prior uncertainty P.(t 0 1t0 ) 

associated with the state-parameter estimates, (2) the uncer
tainty Q. associated with !;., which conceptually covers here 
prior uncertainty of model structure (if not assumed to be part 
of P.(t 0 lt0 )), the uncertainty of the unmeasured input distur
bances, and (in this case) the uncertainty in the measured 
inputs (u), and (3) the uncertainty R associated with the mea
sured output responses. 

Prior assumptions about all these quantities are required, 
together with prior assumptions for the estimates (x.(t 0 lt0 )). 

Third, (12c), correction of the state-parameter estimates, is 
fundamental to the functioning of the algorithm. It comprises 
a correction term that is the product of an error, the residual, 
one-step-ahead or innovations process error, v(tkltk_ 1): 

v(tkltk-1) = y(tk)- h{ ( x(tkltk-1)), ( cx(tk-1ltk-1))} (13) 

and the gain matrix K. Thus the gain matrix weights the 
account taken of the mismatch between the model and the 
observations of past behavior. It achieves this, as some reflec
tion on (I 2c) will show, by "balancing" the uncertainties of the 
internal description of the system, namely P., with the uncer
tainty in the external description of the system, in part R. 
Roughly speaking, if the internal description is not well 
known, relative to the external description (i.e, relatively accu
rate observations), relatively large account is taken of the pre
diction errors and relatively large changes are made to the 
model parameter estimates. This is intuitively what one would 
expect, and the converse is true when the model (states, pa
rameters) is "believed" to be accurate and subject to little 
uncertainty. Beyond this we may note that the gain matrix can 
be shown to be chosen such that the variance of the esti
mation errors x.(tltk) is minimized [Gelb, 1974] and that the 
form of (12c) is equivalent to the gradient algorithms of the 
hill-climbing, search procedures of numerical optimization in 
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general and to stochastic approximation methods in particular 
[Young, 1984]. 

Finally, looking at the prediction step of (12a) and (12b), it 
is possible to see how the problem of analyzing prediction 
error propagation might be viewed as that of applying the 
EKF to a situation in which the next observation of the 
system's (future) behavior is to be observed at an infinite time 
horizon. Alternatively one can think of this as the case where 
at each future sampling instant the anticipated observations 
are missing. Both points of view amount to the omission of 
the correction and gain matrix functions from the algorithm. 

Given then the observations of the system's behavior, i.e., 
{ u(tk), y(tk)} for k = I, · · ·, N, we now have an algorithm that 
can compute recursive estimates (O!(tkltk)) of the model pa
rameter values. However, for the purposes of this paper the 
real significance of being able to estimate (O!(tkltk)) is not that 
we can estimate the posterior estimates (O!(tNltN)) but that 
knowledge and interpretation of the variations in these esti
mates over the interval t 1 ---> tN can be used for the identifi
cation of model structure. 

4.3.4. Least squares and instrumental variable algo

rithms. The EKF takes observed information about the ex
ternal description of the system and reconstructs information 
about the system's internal description { x, ix} according to the 
class II model structure of (2). In order to achieve this it 
requires extensive assumptions about the types and sources of 
uncertainty affecting both such descriptions, and therein as we 
shall see, lie serious limitations of the EKF. 

The IV algorithm, in the particular form due to Young 

[1974], requires no such assumptions. In an equivalent fash
ion it can be said to take information about { u, y} and, for an 
input/output class III model (equation (3)), generates estimates 
of {x*, p}, where x* can be thought of as the instrumental 
variable vector and p is an appropriate vector of model pa
rameters. Caution must be exercised in referring to {x*, P} as 
part of either the internal or the external description of the 
system's behavior. In the original motivation for the devel
opment of an IV algorithm, to overcome the problem of 
biased parameter estimates generated by an LS estimator, the 
requirements of the instrumental variables were that they 
should be strongly correlated with the hypothetical noise-free 
output of the system and entirely uncorrelated with the noise 
processes affecting the system's observed behavior, namely, ro 
in (3). In this case {x*, P} would appear to be associated with 
an (alternative ) expression of the external description of the 
system's behavior. As such they encapsulate the identified re
lationship between u and y but make no reference to the 
physical, chemical, or biological phenomena thought to 
govern that relationship. The limitations of the IV algorithm, 
if any, stem from the objections that might be raised about 
such a seemingly superficial model of a system's behavior. It is 
often said that the parameters p of the input/output model 
have "no physical meaning." 

This distinction, however, between the use of the class II 
model representation for the EKF and a class III model repre
sentation for the IV algorithm is important but misleading, if 
it obscures a proper appreciation of the different ways in 
which the different assumptions about the sources of uncer
tainty influence solution of the identification problem. In ess
ence the EKF, IV, and LS estimators achieve much the same 
objective in much the same algorithmic fashion. This is es
pecially apparent for the not uncommon case in which the 

outputs y are simply error-corrupted observations of the states 
x, and with all states being observed. The instrumental vari
able vector x* is then conceptually indistinguishable from a 
state estimate. Moreover, if the class II model is linear, it can 
be transformed by integration over the sampling interval 
(tk- t --> tk) to a class III model representation, and indeed the 
IV algorithm can be shown to be a self-adaptive state esti
mator [Young, 1979]. In this case, p can be related explicitly 
to the parameter vector O! and, insofar as O! is believed to be 
physically meaningful, so too then is p. Thus for special cases, 
{x*, P} can be thought of as an internal description of the 
system's behavior, and deliberate use will be made subsequent
ly of one of the case studies in order to emphasize this point 
(see also Beck [1985c]). 

Young's [1974] form of the IV algorithm exploits what is 
called an auxiliary model of the system in order to generate 
the instrumental variables. The instrumental variables, as with 
the state estimates in the EKF, are quantities that must be 
known in order to estimate the model parameter values. In 
this sense the IV is conceptually and computationally equiva
lent to the EKF. The differences between the two algorithms 
are that the IV assumes that the sole source of uncertainty is 
uncertainty in the prior parameter estimates (essentially that 
all values are more or less equally probable) and that, con
versely, the instrumental variables (states) are always known 
perfectly, i.e., with no uncertainty. Likewise, the recursive LS 
estimator assumes the same sole source of uncertainty, but in 
contradistinction to the IV estimator, it assumes that infor
mation about the states (instrumental variables) can be substi
tuted directly by the observed output responses y without 
explicitly accounting for the errors and uncertainties of this 
substitution. 

An exhaustive discussion of the recursive IV and LS esti
mators is given elsewhere, by Young [1984]. For the present 
purpose it suffices to conclude with the observation that differ
ent assumptions about the sources of uncertainty lead to dif
ferent forms of estimators and that these assumptions are 
probably linked to the differences in the robustness of the 
performances of the different algorithms. It is certainly true 
that the EKF has conceptual appeal in its completeness and 
elegance, but it is not as robust in performance as the IV, a 
point to which we shall return in section 8. 

4.4. Model Structure Identification : 
An Organizing Principle 

The model structure to be evaluated is a more or less com
plex assembly of several (if not many) constituent hypotheses. 
Acceptance or rejection of the hypothesis that the model as a 
whole is adequate will therefore be regarded as a by-product 
of the analysis. It is possible to formulate a test of this aggre
gate hypothesis in more conventional statistical terms (as, for 
example, in the work by Schweppe [1973, 1978]), and this 
would most probably involve some assessment of the proper
ties of the residual errors defined by (13). However, in this 
review such problems will only be considered insofar as they 
are part of model-order estimation or model discrimination as 
defined above (see also section 6). 

4.4.1. Exposing the failure of constituent hypotheses. To 
visualize how this process of failure might occur, let us sup
pose that the constituent model hypotheses are parameterized 
through O!. Suppose further that the state variables x of the 
model (6) can be represented by the nodes of Figure 5b and 
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Recursive parameter 
estimates 

Time Ill 

Fig. 5. An illustrative example showing the concept of using a 
recursive parameter estimator in the context of model structure 
identification: (a) hypothetical model response with observations (de
noted by dots) ; (b) conceptual picture of model structure; and (c) 
recursive parameter estimates. 

that the parameters a are the branches (or "elastic" con
nections) between the state variables. The parameters in this 
simplified sense express the relationships among the system's 
variables. If now the assumption has been made that all the 
parameters have values that are constant with time (i.e., ~(t) is 
identically zero in (6a)) yet a recursive algorithm yields an 
estimate of one or more of the parameters that is significantly 
time varying, one may question as follows the correctness of 
the chosen model structure. The general tendency of an esti
mation procedure is to provide estimates ( y) of the output 
responses that track the observations y. Hence if any persist
ent structural discrepancy is detected between the model and 
"reality" (in other words, the innovation errors v of (13) exhib
it a significantly nonrandom pattern), this will be revealed in 
terms of significant adaptation of the estimated parameter 
values. There may well be good reasons why the parameter 
estimates vary with time, and indeed, that is precisely what 
one is looking for. 

Over period 1 of the example in Figure 5a the model re
sponses ( y) and output observations y are essentially in 
agreement, and there is no significant adaptation of the pa
rameter estimates (according to Figure 5c). At the beginning of 
period 2, however, there is a persistent discrepancy between 
( y ) and y. It might be supposed, for example, that the un
derlying cause of the discrepancy is an inadequacy in the be
havior simulated for x 1 and x 2 , that ex 1 is sensitive to this 
discrepancy (Figure 5b), and that (persistent) adaptation of the 
estimate ( ex 1 > (Figure 5c) partly compensates for the error 
between ( y) and y. Again in the third period there is disagree
ment between the observations and model responses, which 
leads to adaptation of the estimate (ex 2 ). 

In a qualitative, nonrigorous sense it is these changes of the 
estimates of unknown but constant parameters that are symp-

toms of the failure of individual hypotheses [Beck and Young, 
1976 ; Beck, 1979a, 1983]. By analogy with physical engineer
ing structures, there has been a plastic deformation, or col
lapse, of a structural member (component hypothesis). Intu
itively, such an interpretation, and its similarities with a Pop
perian view of the scientific method (section 1.2), has consider
able appeal. Indeed, this has practical significance for the im
plementation of the EKF in particular and profound impli
cations for the assumptions made about the uncertainty 
associated with the prior model hypotheses (and therefore the 
model structure). If one seeks to expose the failure of hypoth
eses in this way, it is arguably inconsistent to assume a priori 
that the parameters a are not only uncertain but are also 
variable with time. This would be tantamount to seeking the 
collapse of an extremely "flexible" structure, and clear-cut an
swers to the identification of model structure would not be 
generated because, in effect, clear-cut questions are not being 
asked. So as a practical computational consequence of this 
philosophical position, the assumption that ~(t) = 0 for all t in 
the model for the parameter dynamics, and thus that QP = 0, 
is crucial to exposing the failure of hypotheses. 

The prior assumption is that da(t)/dt = 0, i.e. , the parame
ters are truly constant, with the expectation of the posterior 
result that d( a(t) )/dt #- 0, i.e., the parameter estimates vary 
significantly, thus denying the prior assumption and revealing 
the failure of a constituent hypothesis. 

4.4.2. Further speculation. To be able to demonstrate the 
inadequacy of a model structure is one thing. To be able to 
draw inference about how to restructure the model in order to 
eliminate the cause of the inadequacy is quite another, but it 
can still in part be accommodated within the framework of 
using recursive estimation algorithms. 

Consider therefore Figure 6a, and let us suppose that the 
foregoing steps in the identification of the model structure 
have exposed the failure of the hypothesis relating state x 2 to 
x3 . The assumption that ~(t) #- 0, and hence that QP > 0, now 
becomes equally crucial in assisting and prompting specu
lation about possible revised model structures. Given this 
prior assumption, that the parameters vary in an unknown, 
random-walk fashion, the expectation of the posterior result is 
that a more insightful model for the estimated parameter vari
ations can be postulated, for example, in this case, 

(ex 2(t) ) = g{ x '(t), a', u(t)} (14) 

in which x' and a ' are possibly revised definitions of the 
model's state and parameter vectors. In other words, one is 
looking for a correlation between the estimated variations in 
ex 2 (when deliberately created as a random walk) and observed 
or explicable variations in another dependent variable. The 
ultimate objective would be to interpret the estimated vari
ations in the prior model parameter estimates in some mean
ingful manner and hence replace an inadequate model struc
ture with essentially time-varying prior parameters a(t) by a 
structure with essentially constant posterior parameters a.'. In 
our hypothetical example the structure of Figure 6b might be 
such a posterior description of observed behavior, so that 
when subjected to the preceding test for the failure of hypoth
eses, it survives, yielding parameter estimates with no signifi
cant temporal variability. 

Of course, the immediate problem in this case is the need to 
specify QP so that the potential for the prior model structure 
to reveal the roots of its inadequacy can be intelligently 



BECK: UNCERTAINTY IN WATER QUALITY MODELS 1407 

(al x, a, X2 

Cl4 Cl2 Prior model structure 

X4 Cl3 X3 

~ Generation of revised 
constituent hypotheses 

(bl x, a, X2 

Cl5 

Cl4 X5 Posterior model structure 

Cl5 

X4 Cl3 X3 

Fig. 6. The process of model structure identification: revision of 
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probed. Suppose therefore that a set of estimates ( tx(tN) ) has 
been obtained for this model structure under the assumption 
that QP = 0. Suppose further that the a posteriori parameter 
estimation error variance-covariance matrix PP(tN) has also 
been determined. Given (tx(tN)) and PP(tN), a final pass 
through the set of observations over t0 --> t N could then be 
made in which tx is assumed to be subject to perturbations ~ 
with a variance-covariance structure proportional in some 
way to PP(tN), e.g., 

(15) 

in which A. is a scalar [Young, 1974, 1984]. Hence those pa
rameters that have been poorly estimated and are associated 
with the larger elements of PP(tN)--in part, possibly the prior 
assumption of truly constant parameters is invalid-would 
have a higher probability of having estimates that exhibit con
siderable variation with time. Conversely, those parameters 
that have been well estimated are unlikely to yield signifi
cantly varying estimates. To summarize, such an analysis is 
tantamount to an evaluation of the appropriateness of the 
identified model structure. The analysis is, as it were, a con
trolled speculation using PP(tN) as a synopsis of the residual 
uncertainty of identification; in this it is conceptually similar 
to the HSY algorithm discussed in section 3. Any latitude 
afforded by PP(tN) will be exploited in the event of a signifi
cantly nonrandom mismatch between the model structure and 
the observed behavior. Defining QP according to (15) has 
much to recommend it, including the fact that the only arbi
trary assumption is the choice of a value for the scalar A.. 
However, (15) does depend upon a reliable estimate of PP(tN), 
which though possible for the IV algorithm, is dubious in the 
case of the EKF as presently formulated. 

So we see that the selection and evaluation of a model 
structure are iterative processes, alternately seeking to falsify 
confidently stated hypotheses and then attempting to specu
late about relatively uncertain (but improved) hypotheses. The 
process might be initiated by an analysis of the form discussed 
in section 3 (generating preliminary hypotheses; see also 
Whitehead and Hornberger [1984]) and would ideally need to 
be terminated by an appropriate stopping rule. Here again, 

the definition of a quantitative measure of an "adequate" 
model structure is elusive, other than the qualitative dis
cussion of Figure 6b and the residual error analysis discussed 
in section 6. There is, in short, no readily apparent equivalent 
of Akaike's information criterion or the other measures of 
adequacy applied to the problem of model-order estimation 
[Young et al., 1980; H ipel, 1981]. 

4.5. Case Studies 

Much of what has been said above has considerable appeal 
in principle. In practice, however, these procedural steps for 
model structure identification have many limitations. 

Perhaps as for all good problems, the interest in model 
structure identification arose unintentionally, in this instance 
from a seemingly straightforward case study in "verifying" a 
model for dissolved oxygen/ biochemical oxygen demand (DO
BOD) interactions in the River Cam, England [Beck and 
Young, 1976; Beck, 1983]. It is only with hindsight that the 
problem of model structure identification has been defined as 
such, and the superstructure of the procedural steps using 
recursive estimation algorithms imposed. These steps, devel
oped largely as they were from the Cam study, can be seen to 
work relatively well on that example. The argument is clearly 
circular, and there are other, more advanced case studies, for 
example, of DO-BOD-algae interactions in the Bedford Ouse 
River in England, where the approach itself fails [Beck, 1982, 
1983]. In fact in this latter the approach fails because of an 
inability to determine unambiguously where the constituent 
model hypotheses can be said to have failed and because of 
the difficulty of absorbing and interpreting the sheer volume 
of extensive evidence on how the model structure might be 
improved. 

4.5.1. Failure and speculation in the case of Lake Bala
ton. Some of these difficulties stem from the manifest limi
tations of the EKF. These, and the relative advantages of the 
IV algorithm, will be evident in the following discussion of a 
case study of wind-induced sediment resuspension in Lake 
Balaton, Hungary (see also Beck [1985b, c], Somlyody [1986], 
and Pinter et al. [1987]). A simple model of the relevant pro
cesses, and one which can be derived straightforwardly from a 
class I representation [Somlyody, 1980], is given by 

dx(t)/dt = -fx(t) + gu(t) + ~(t) 

y(tk) = x(tk) + h + ri(tk) 

(16a) 

(16b) 

where x is the depth-averaged suspended solids (SS) con
centration at a point location in the lake, u is the input wind 
velocity,! is a parameter associated with particle settling rates, 
and g is a parameter associated with particle resuspension 
mechanisms; h can be viewed as a background concentration 
of SS, i.e., that observed fraction of SS not influenced by wind 
disturbances, or possibly as a measure of the phytoplankton 
population concentration, which would also be observed as 
suspended particulate matter. Collectively, ~, t], and h can be 
thought of as representing the possible effects of all the many 
other factors that might influence the SS dynamics but are not 
represented explicitly in the model of (16). The model can be 
straightforwardly incorporated into the EKF algorithm of(12) 
and, given that we are seeking to expose the failure of the 
constituent prior hypotheses of this model, with f, g, and h 
specified as parameters that are constant but unknown. 

The observed time series comprise (among other variables) 



1408 BECK : UNCERTAINTY IN WATER Q UALITY MODELS 

100 

80 

60 

2.5 

2.0 

1.5 

1.0 

4.0 

3.0 

2.0 

1.0 

0 

(a) • Observations y(tkl in [gm- 355) 

- Estimates [xlt k I 10 I + h J 

25 50 75 100 125 150 175 
Time (days) 

Fig. 7. Recursive state and parameter estimates generated by an 
extended Kalman filter for sediment resuspension in Lake Balaton. 

hourly observations of the wind velocity u, and its direction, 
and daily observations y of the SS concentration (in fact, daily 
observations at five depths in the water column are available). 
They cover the period May 14, 1979, to October 31, 1979. The 
results of Figure 7 are derived from the EKF and are for the 
case where an estimate ( h) = 4.0 (gm - 3 SS) has been chosen 
a priori and not included in the state-parameter vector for 
estimation purposes. Figure 7a shows a comparison of the 
observed output y(tk) with the deterministic model response 
[ ( x(tklt0) ) + ( h) ]. Figures 7b and 7c show the recursive tra
jectories of the parameter estimates ( f(tkltk) ) and ( g(tkltk) ), 
respectively. 

There are three salient features in these results. The parame
ter estimates fluctuate in a transient manner before settling 
out by about t 25 ; the period of missing observations is a 
period of summer vacation, although the record of wind veloc
ities is still complete, and most important of all, over the final 
45 days of the record the parameter estimates show a signili
cant drift and the observed concentration of SS is persistently 
overestimated. This "drift" is indeed "significant," for it occurs 
at a time when the gain matrix K of the EKF is likely to be 
relatively small, with all but the largest and most persistent 
errors of mismatch between the model and observations being 
"ignored" (see the discussion of (12e)). On the basis of Figures 
7b and 7c it is difficult to distinguish which of the hypotheses 
for the two mechanisms (sedimentation or resuspension) is the 

more inadequate. Over the final 1! months (September
October) both associated parameter estimates exhibit the non
stationarity that is an essential indication of the failure of a 
component of the model structure. Overall, the model can be 
said to fail because during this period the sediment particles 
appear to be more difficult to resuspend. Looking back, 
Figure 5 is the conceptual ideal toward which one should be 
working ; Figure 7 is more typical of what will arise in practice 
with the presently available algorithms. 

There now has to be further speculation about why the 
prior model structure fails. One among at least two competing 
hypotheses is that the direction of the wind (and not merely its 
absolute velocity) is important : wind direction affects fetch 
length, which influences wave action, shear stresses at the 
water and bottom surfaces, and hence the turbulent vertical 
movement of water and particles. Noting therefore that the 
dimensions of Lake Balaton (70 x 10 km) give it an elongated 
shape along a northeast-southwest axis, it turns out that in 
line with (14) the term gu(t) in (16a) can be substituted by 

(17) 

to give improved performance (in terms of smaller residual 
errors). Here u1(t) is (as before) the wind velocity, and u2 is the 
angle between the direction of the wind and the principal axis 
of the lake. 

This is progress-a clue to the roots of the inadequacy
although the importance of the transversal component of the 
wind is not consistent with the more obvious ways in which 
sediment resuspension might be expected to be a function of 
fetch length and wind direction. Further progress is possible, 
in particular, using a class III model representation and an IV 
estimator. If (16a) is integrated over the interval tk - i-> tk, 

then (by comparison with the integration of (9a) to (lOa)) 

(18) 

where u* is now the modulus of the transversal component of 
the wind velocity (thus incorporating the modified hypothesis 
of (17)). Substituting for x(tk) from (18) into (16b), we obtain 

y(tk) = <f>x(tk _ 1) + yu*(tk _ 1) + h + [Wk - I) + IJ(lk)] (19) 

which closely approximates the corresponding class III model 
(equation (3)) given by 

y(tk) = <f>'y(tk _ 1) + y'u*(tk _ 1) + h' + w(tk_ 1) (20) 

where w is a single lumped-noise process covering the two 
sources of uncertainty ~ and IJ of (19). The structural equiva
lence between (19) and (20) would in fact be exact but for the 
presence of the bias term h in (16b). Nevertheless, notice that 
we have an input/output model whose parameters [¢>', y', h'] 
are essentially similar to parameters that themselves can be 
related back to physically meaningful quantities. 

If a random-walk model is assumed for the possible vari
ations with time of [¢>', y', h'], where the expected variability 
(uncertainty) of these parameters is specified according to the 
discussion of (15) in section 4.4., the model of (20) can be 
usefully employed to probe the structural inadequacies of our 
prior hypotheses. Moreover, it is both feasible and desirable to 
consider not the analysis of the depth-averaged SS con
centrations but rather an analysis of the response of the 
system at each of the five spatial points in the vertical to 
which the original time series refer. In other words, the in
put/output model of (20) can be applied to each of five com bi-
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centration and temperature in Lake Balaton (the estimates have been 
estimated by a recursive, dynamic least squares algorithm). 

nations of the wind input u* and observed SS concentration y 
at a particular depth in the water column. 

It emerges that the parameter representing the background 
concentration of SS, h' in (20), is apparently poorly estimated, 
varies with time, and is correlated with contemporaneous ob
servations of temperature and chlorophyll a (phytoplankton) 
concentration [Chan, 1984]. Furthermore, the functional re
lationship with temperature and/or chlorophyll a con
centration is depth dependent. For instance, Figure 8 shows 
the trajectory of the recursive estimates ( h'(tkltk) ) derived from 
the analysis of the SS concentration at a depth of 1.3 m below 
the water surface. (The estimates are generated by a dynamic 
least squares algorithm but within the general framework of 
IV estimation [e.g., Young, 1984].) It is certainly tempting to 
speculate that these estimated variations of ( h') are correlated 
with the observed variations in chlorophyll a, at least for the 
first two-thirds of the record, and that this would be consistent 
with the growth of a population of phytoplankton in the 
upper layers of the water column, where access to solar radi
ation is greater (the missing period of observations of Figure 
7a has simply been omitted from the plots of Figure 8). We 
have already alluded to the fact that the SS measurement will 
be influenced by particulate phytoplankton matter. At the 
lowest depth at which observations were taken (at 4 m, where 
the depth of the lake bed is 4.3 m), a different pattern for the 

corresponding estimates ( h') is apparent (Figure Sb). Here the 
overall trend in ( h') is correlated with seasonal variations in 
temperature, albeit rather tenuously and with obvious anoma
lies. Such a relationship is not at all straightforward to ex
plain. One can construct a simple argument about temper
ature influencing the viscosity of water and hence the mov
ment of a particle through the water. But this argument runs 
counter to what is observed, and it might equally well be that 
the seasonal variation in ( h') is a function of day length and 
its apparent influence on the diurnal pattern of wind events. 

Suffice it to say that a simple modification of (20) to include 
the effects of temperature variations improves marginally the 
performance of the model (accounting for chlorophyll a vari
ations is, conversely, not a success). To summarize the case 
study, the identification of the importance of wind direction, 
temperature, and chlorophyll a were all to some extent unex
pected, and we are still distant from a rigorous and coherent 
explanation of why this environmental system behaved as it 
did. For this part of the analysis too, Figure 6 is an ideal : we 
have merely begun to amass the diagnostic evidence with 
which to make the required step from Figure 6a to Figure 6b. 

The key point about the Balaton example is that its results 
are typical : they are not entirely crisp and clear-cut; but the 
analysis has yielded a rich source of anomalies, some of which 
can be partly explained ; and it emphasizes the role of 
models- including a class III representation- as vehicles for 
the exhaustive interpretation of field data. 

4.5.2. Other studies. If anything, there are on balance 
more difficulties in the design of algorithms that perform well 
in exposing the failure of constituent model hypotheses. Some
what more encouraging results have been obtained for the 
second step of the procedure, i.e., speculation. For instance, 
Figure 9 shows a comparison of the trajectory of the recursive 
estimate ( oc(tkltk) ) for the net rate of addition of BOD in a 
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Fig. 9. Results for model structure identification from a case 
study of the River Cam : (a) recursive parameter estimates <a(t.lt.)). 
using an extended Kalman filter, for the net rate of addition of BOD 
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state variable representing the concentration of dead algae in the 
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reach of river (the Cam) with the simulated vanat1ons of a 
hypothetical state of the system (x(t.)) defined to be the con
centration of dead algal material in the river [from Beck, 
1983]. Here (x(t.)) has been generated as a deterministic func
tion of the observed hours of incident sunlight (as an input, 
u(t.)). The speculation to be included in a revised posterior 
model structure, as a consequence of the analysis of the prior 
model structure, is that there is an addition of BOD in the 
reach of river whose rate is linearly proportional to the hypo
thetical concentration of dead algal material. A second exam
ple, also using the EKF, is illustated in Figure 10 and is taken 
from Whitehead's [1983] study of nitrification dynamics in the 
Bedford Ouse River. In this case, the estimated variations of a 
first-order rate constant (ix(t.lt.)) for the conversion of ammo
nium N to nitrite N and ultimately to nitrate N are clearly 
inversely related to the variations of stream discharge u(t.). 
The associated speculation that the rate of conversion of am
monium N can be modified as (in line with (14)) 

ix(t) = ix' /u(t) (21) 

leads, in a revised posterior model structure, to recursive esti
mates (ix'(t.lt.)) that are sensibly stationary (see Figure !Ob). 
For a third example, Figure 11 has been presented by Scavia 
[1980] in a study of eutrophication in Saginaw Bay, Lake 
Huron, in the United States. It shows the recursive estimates 
from an EKF algorithm for the variations of a parameter 
characterizing the phytoplankton phosphorus-to-chlorophyll 

ratio and observed values of the ratios of phytoplankton dry 
weight to chlorophyll. Among other factors, Scavia has specu
lated that the variable parameter estimate may reflect a se
quence of changes in the dominant observed phytoplankton 
groups, as also shown in Figure 11. A similar speculation has 
been offered by Whitehead and Hornberger [1984] in their 
study of modeling algal population dynamics in the River 
Thames, England. 

There are several other applications of the EKF reported in 
the literature on the modeling of water quality ecological sys
tems, although most of these, for example, Lettenmaier and 
Burges [1976] (an introductory paper), Bowles and Grenney 
[1978a, b], Constable and McBean [1979], and Whitehead et 
al. [1981], deal with the more conventional problem of pa
rameter estimation (as opposed to model structure identifi
cation). Among these, Bowles and Grenney's [1978a] study of 
nitrogen-cycle kinetics in the Jordan River, Utah, offers useful 
comments both on several minor extensions of the basic algo
rithm and on practical limitations to the performance of the 
EKF. Cosby and Hornberger [1984] and Cosby et al. [1984] 
have recently reported a study on the application of the EKF 
to a problem of discriminating among competing model struc
tures for the description of nonlinear light-photosynthesis re
lationships in a freshwater stream. We shall, however, defer 
further discussion of this type of problem until section 6. Two 
other papers, by Koivo and Phillips [1976] and Tamura 
[1979], though they do not deal with the analysis of in situ 
field data, are notable from the point of view of problem 
formulations leading to the use of a linear Kalman filter. 
Tamura, for example, formulates the problem of parameter 
estimation as if it were a simplified problem of pure state 
estimation for a system whose state is time invariant. Indeed, 
the form of duality between state and parameter estimation 
that this suggests may have especially important implications 
for the development of novel algorithms for model structure 
identification (as discussed in section 8 and in the work by 
Beck [1985c]). 

The IV algorithm has been less widely applied than the 
EKF, most probably because of its usual association with an 
input/output class III model representation and the objections 
raised against such models with parameters said to be not 
physically meaningful. The discussion of wind-induced sedi
ment resuspension, however, should have countered some of 
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these objections. The algorithm is well worth closer attention, 
perhaps best approached (particularly for hydrological and 
environmental systems) via the introductory text of Y oung 
[1984]. It is not restricted to multiple-input/single-output 
model forms, although these have been its most common area 
of application. A version of the IV algorithm suitable for 
multiple-input/multiple-output models has been proposed by 
Y oung and Whitehead [ 1977] for the previously discussed case 
studies of DO-BOD-algae interaction in the Rivers Cam and 
Bedford Ouse (see also Whitehead and Young [1975], Young 
[1978], and Whitehead [1979]). Another version, appropriate 
to a class II representation, has been illustrated by Whitehead 
[1980], again for the Cam example. 

The IV algorithm is by no means the only estimator suit
able for the classical input/output models of time-series analy
sis ; there are several others [e.g., Astrom and Bohlin, 1966; 
Box and Jenkins, 1970; Astrom and Eykhoff, 1971 ; Eykhoff, 
1974], most of which can be written in recursive form 
[Soderstrom et al., 1978]. Gentil [1984], for instance, has re
ported an interesting example for the analysis of 
phytoplankton-zooplankton dynamics in Lake Aiguebelette, 
France, using a recursive version of a maximum likelihood 
estimator. In this case the input/output variables are in fact 
what we have referred to as the small perturbations in a model 
similar to (10) and representing perturbations about a nonlin
ear reference class II model structure (such as (7)). In the event, 
Gentil concludes from the invariance of her recursive parame
ter estimates that the prior model structure is adequate (al
though it is not clear under what precise conditions these 
estimates have been generated). 

4.6. Commentary 

No analysis of real field data is ever neat, elegant, or 
straightforward in practice. There is no panacea for the prob
lems of model structure identification and no easy substitute 
for the painstaking piecing together and sifting of evidence on 
the rejection and generation of model hypotheses. It is notable 
that few, if any, rigorous, procedural steps have been intro
duced in this section, except for the duality of testing a prior 
model structure to the point of failure and then attempting to 
infer the form of an improved model structure from the failure 
of that inadequate prior structure. Even the superstructure of 
how to employ recursive estimation algorithms that has been 
built upon this single, simple duality is in danger of becoming 
overly complicated and convoluted. Something more straight
forward would be highly desirable, without denying the latent 
contribution that the development of such a superstructure 
has made to the whole of this review. Recursive estimation 
algorithms provide a unique type of information (on the tem
poral variability of the model parameters) that is useful in 
solving the problem of model structure selection and evalu
ation. However, they are not the only means of solving this 
problem. 

Of the methods, the EKF is certainly not without either its 
critics or serious limitations. But it has to be said that there 
are few practical alternatives for the identification of multi
variable (class II) model structures, and as an engineering 
solution to a commonly occurring problem of nonlinear state 
estimation, the EKF was never intended to satisfy the de
mands of model structure identification. Its most important 
limitations are given below. 

1. The performance of the algorithm is determined largely 

by the evolution of the gain matrix K, which itself is deter
mined, indeed "prejudiced," by the prior choices of Q

0
, 

P
0
(t 0 lt0 ), and R, and these choices, especially for Q

0
, are more 

or less arbitrary. 
2. It is difficult to distinguish what constitutes a significant 

variation in a parameter estimate, although one should not 
exclude the role of expert knowledge of the system from this 
process. In the particular results of Figure 7 the large initial 
variations in the parameter estimates have been assigned to 
transient fluctuations due to the algorithm, while the drifts at 
the end of the record, where the gain matrix K is relatively 
small, are supposed to be due to an important mismatch be
tween the model structure and the data. 

3. It takes no account of the sample statistics of the inno
vations, v(tkitk_ 1), that accrue as the algorithm sequentially 
processes the observations, a point that underlines the domi
nant influence of prior assumptions on the performance of the 
algorithm. 

4. Because of the linearization approximation of which the 
EKF is based, it is not possible to interpret the relevant ele
ments of the matrix P

0
(tdtJ as accurate estimates of the pa

rameter estimation error variances. 
5. The assumption of normal distributions for all random 

variables is rarely valid, although not as seriously for the pre
cipitation events that dominate hydrological time-series analy
sis. 

If one were to seek to eliminate some of these limitations, 
pragmatism would set at least three ideals toward which to 
aim in the development of new algorithms : (1) a minimum 
number of prior assumptions, including those required to 
quantify the various sources of uncertainty, in order to imple
ment the algorithm, (2) a minimum amount of computational 
effort, and (3) a maximum degree of robustness in the per
formance of the algorithm. 

On all three accounts the IV algorithm can at present claim 
superiority over the EKF. The purist might protest that these 
ideals are too pragmatic. But the concern of this review is for 
methods that perform reliably on extremely difficult sets of 
data, and experience has shown that certain algorithms with 
impeccable statistical credentials (for example, good asymp
totic convergence and efficiency) have been unable to deliver 
such performance. It is highly relevant that most of the devel
opment of recursive estimation algorithms in control theory 
has taken place in an environment where model structure 
identification (as defined here) is not usually seen to be a 
problem. 

The IV algorithm does, however, suffer from two disadvan
tages, both of which are perhaps more apparent than real. 
First, it is most usually formulated for discrete-time, 
difference-equation models, which are not the most natural 
means of describing the behavior of environmental systems. 
This alone should not be the cause of any difficulty. It is when 
the continuous-time, differential-equation model contains non
linearities, as do most of the models of interest, that the clear 
links between the discrete-time and continuous-time structure 
become obscured (see, for example, Gentil [1979] on a study 
of lake eutrophication). Second, and more philosophical, is the 
general unease about input/output models with parameters 
that are not physically meaningful. It is hard to imagine an 
aspect of water quality modeling with seemingly better defined 
prior theories and more physically meaningful parameters 
than the conventional advection-dispersion model of pollutant 
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transport in a river. All the more reason therefore for the 
skeptical reader to join the debate opened by Young [1983], 
Beer and Young [ 1983], and Young and Wal/is [ 1986], on the 
use of input/output class III model representations of longi
tudinal dispersion in natural streams. 

Of the approach, it is fair to conclude that its cardinal 
points of attempting to falsify confidently stated hypotheses 
and then engaging in creative speculation with relatively un
certain hypotheses, are both satisfying and reassuringly consis
tent with a Popperian view of the scientific method. They are 
satisfying because they illuminate the role of uncertainty in 
evaluating and selecting a model structure; and Popper's view 
of the scientific method, perhaps surprisingly, gives direction 
to the possible development of novel algorithms for model 
structure identification (about which more will be said in sec
tion 8). There are minor caveats, however. For example, the 
inclusion of unobserved state variables in a model can render 
quite ineffective the principle of seeking to expose the failure 
of constituent model hypotheses. The distortion (or collapse) 
of the model structure, in making it fit the observed data, will 
tend to be accommodated by significant adaptation of the 
estimates of these unobserved states, whose variability may or 
may not be meaningless [Beck, 1983] (see also Fedra [1983] 
for related discussion). 

Above all, it is a variety of perspective and approach that is 
the key to the identification of model structure: a trading of 
the computational effort of solving natural formulations of 
ill-posed problems (for example, a class II model with the 
EKF) against the analytical effort of transforming these to 
better posed, if slightly distorted, problems (for example, into a 
class III model for use with the IV algorithm). The models are 
vehicles for the exhaustive interpretation of field data, and 
while they may not be satisfactory end points of this process, 
the oft-maligned class III representations have a legitimate 
role to play. Both the Balaton (as here) and Cam examples (as 
in the work by Beck [1978]) are illustrative of this role. 

5. PARAMETER ESTIMATION 

Most readers, whether or not they have thought about un
certainty, model structure identification, and prediction error 
propagation, will be familiar with the notion of model calibra
tion, or parameter estimation. It is this perhaps rather re
stricted view of the subjects of this paper that lies behind the 
observations quoted earlier from DeLucia and McBain [1981] 
at the beginning of section 1.2. 

Having selected and evaluated a model structure, we come 
then to what has been defined as problem area (P2) in the 
introduction. 

Uncertainty about the values of the parameters (coefficients) ap
pearing in the identified structure of the dynamic model for the 
system's behavior. 

The solution to this problem will be understood here to 
involve not merely the generation of accurate estimates for the 
model parameters but also some quantification of the matrix 
of a posteriori estimation error variances-covariances. The 
basic issue is can the unknown, but constant, parameter values 
of a well-identified model structure be estimated accurately, 
uniquely, and with as little uncertainty as possible? 

It is far beyond the scope of this review to cover the entire 
field of parameter estimation. The texts by Eykhoff [1974], 
Young [1984], and to a lesser extent, Jazwinski [1970], 
Schweppe [1973], and Gelb [1974] provide very good intro-

ductions to the subject; the recent books by Ljung and 
Soderstrom [1983] and Soderstrom and Stoica [1983] give a 
more advanced treatment of the theoretical underpinnings of 
the subject, especially with respect to recursive estimation al
gorithms and the input/output class III model structures; and 
there have also been some important review and tutorial 
papers, of which those by Astrom and Eykhoff [1971], Iser
mann [1981], and Young [1981] are most relevant to the pres
ent discussion. This is, of course, a biased sample of the litera
ture, for it reflects solely the control theoretic view of the 
subject and, with the possible exception of Young [1984], 
makes little reference to the undoubtedly substantial contri
butions from statistics and econometrics. Yet unification of the 
subject and the cross fertilization of ideas among disciplinary 
compartments are becoming increasingly evident. The Inter
national Federation of Automatic Control (IF AC) has held 
regular symposia on "Identification and System Parameter Es
timation" since 1967. The most recent [Barker and Young, 
1985] signalled to a notable extent a reassuring departure 
from the disciplinary confines of control theory: it included 
special sessions on identification and estimation in the context 
of operations research and on statistics/ time-series analysis. 
There is too a reciprocal development: econometricians, in 
particular, have become well aware of the now ubiquitous 
Kalman filter, though possibly not for the purposes of param
eter estimation [Durbin, 1984; Hendry, 1984; Harvey, 1984]. 

These changes are encouraging and so are other devel
opments of interest; but some are less encouraging. For in
stance, on the positive side there is much to be learned from 
the adjacent fields of biomedicine and pharmacokinetics, par
ticularly in respect of the exactly parallel problems of model 
identifiability and validation [Godfrey and Distefano, 1985; A/
Dahan et al., 1985; Flood et al., 1985]. Equally positive is the 
formal introduction of forecasting as a problem area germane 
to system identification. Somewhat neutral, but certainly of 
interest, is the maturity achieved in the conceptual and theo
retical framework of instrumental variable estimators; as a 
class of estimators, they now stand alongside least squares, 
maximum likelihood, Bayesian, and Kalman filter estimators. 
Finally, from the point of view of identifying models of en
vironmental systems, it is mildly discouraging to note the in
creasing emphasis of these IF AC symposia on adaptive (real
time) control and an absence of what can be discerned (by the 
practitioner) to be radically novel algorithms. True, the pe
ripheral observer might not appreciate the implications of the
oretical progress, and we shall have more to say on novel 
algorithms later in section 8. 

For water quality models the overriding difficulty of param
eter estimation is that of a Jack of parameter identifiability. 

5.1. Types of Estimator 

There are two important classifications to be made: first, a 
classification according to the type of estimator, and this, as 
with the foregoing discussion of model structure identification, 
is defined by the different assumptions that can be made about 
the sources of uncertainty affecting the estimation problem, 
and second, a classification of the different algorithms used to 
implement a batch estimation scheme (which is essentially a 
matter of choosing a constrained opimization algorithm; see 
below). A recursive or a batch scheme could in principle be 
used for each of the four estimators that follow. But since the 
former have already been discussed in section 4 and since they 
do not reflect the vast majority of applications to the problem 
of parameter estimation, it is convenient to concentrate here 
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on batch estimation algorithms. The four estimators are dis
tinguished in an ascending order of the degree of completeness 
in accounting for the various sources of uncertainty (as in the 
work by Eykhoff [1974]). 

5.1.1. Least squares estimator. No a priori knowledge of 
the statistical properties of any of the sources of uncertainty is 
required for LS estimation. The estimates of the augmented 
state-parameter vector x. = [x, ccY are derived by minimizing 
the sum J of the squared errors (e) between the observed and 
estimated behavior of the system, i.e., 

N 

J =I eT{( x.) }e{( x.)} (22) 

Here the summation is over the N sets of errors e(tk) for all the 
sampled observation instants tk. Equation (22) emphasizes the 
fact that e is a function of estimates of both the states and 
parameters, although in most instances the determination of 
the minimum value of J will be achieved by adjusting only the 
values of the (constant) parameters ( cc) and not the values of 
the states for all the instants tk, i.e., ( x(tk)) . The error e may be 
specified in several ways [Young, 1981], or indeed there may 
be several component error terms, as discussed below, each 
referring to errors of mismatch originating from the different 
sources of uncertainty [Eykhoff, 1974 ; Schweppe, 1973]. How
ever, in all the cases of practical interest to this review, e will 
be assumed to contain a single-component term for the error 
between the observed (y) and estimated ((y) ) output response 
variables. Strictly speaking, for an estimator to be defined as 
an LS estimator, this error would have to be specified as the 
deterministic model response error 

(23) 

In other words, ( y(tklt0 ) ) is based upon ( x(tklt0 ) ), an estimate 
of the state of the system conditioned upon observations of 
the output response up to and including that available at the 
beginning of the experimental record, time t0 • 

5.1.2. W eighted least squares (WLS) estimator. A weight
ed least squares estimator yields estimates ( x.) that minimize 
the modified squared-error sum J* given by 

N 

J* =I er{(x.) }w- 1e{ ( x.)} (24) 

where W, the additional prerequisite, is a weighting matrix 
chosen (in Schweppe's [1973] terms) according to "engineering 
judgement." A special case of (24) is that where the variance
covariance matrices of, most commonly, the output measure
ment error sequence tt (and, more rarely, the sequence of un
known input disturbances I; and initial condition errors as
sociated with ( x.(t0) ) as an estimate of x

0
(t0)) are assumed to 

be known. In the special case where W = R is chosen as a 
weighting matrix (R being the variance-covariance matrix of 
the output response measurement errors), the resulting esti
mator would be called by Eykhoff [1974] a Markov estimator. 
Note that if the error e were to be specified as a function of 
the other sources of uncertainty, the variance-covariance 
matrices Qs and P5(t 0 ) would need to be used as similar 
weighting matrices for their corresponding constituent 
squared-error terms. Here Q5 reflects the errors in the state 
vector equations (the input disturbance uncertainty) and Ps(t 0 ) 

the variance-covariance matrix of errors in the estimates of the 
initial state. Clearly, the underlying assumption is that the 
sources of uncertainty can be characterized simply by their 
mean and variance-covariance statistics, and almost without 
exception the means are assumed to be zero. 

5.1.3. Maximum likelihood (ML) estimator. The a priori 
knowledge required for a maximum likelihood estimator is a 
specification of the probability density function p{y ; cc} for the 
population of observations y as a function of the unknown 
(and constant) parameter vector cc, to which may occasionally 
be adjoined elements of the unknown initial state of the 
system x(t0 ) [see Maciejowski, 1980]. This prior knowledge 
implies knowledge of the probability density functions of the 
random variable tt and, less frequently, of i;. Here cc is not 
treated as a random variable ; hence p{y; cc} is not a joint 
probability density function for y and cc, nor is it a conditional 
probability density function. The point is a subtle but impor
tant one, for it distinguishes an ML estimator from a Bayesian 
estimator in that the former does not require an assumption 
about the prior probability density function of the parameter 
vector cc. Given a sample set of field observations, say yi, the 
likelihood function is specified (a posteriori) as L(yi ; ( cc ) ), 
where the functional relationship between ( cc) and yi in L{yi; 
( cc )} is the same as that between cc and y in p{y; cc}. The 
maximum likelihood estimates ( cc ) are those values of cc that 
maximize the value of L , these being the most likely values of 
the parameters given y;. 

5.1.4. Bayesian estimator. As its name suggests, this esti
mator is based upon the following form of Bayes' rule, 

{ I } 
_ p{ylcc}p{cc} 

p ccy - p{y} (25) 

and it requires knowledge a priori of all the probability den
sity functions on the right-hand side of (25). (For simplicity the 
Bayesian (and ML) estimators have been specified in terms of 
the parameter vector ix only (and not in terms of x.).) In 
particular, cc is now considered to be a random variable, and 
over and above the ML estimator, the Bayesian estimator 
requires assumptions about its prior probability density func
tion p{cc}. In turn, given a sample set of observations yi the 
Bayesian estimator yields a complete description of the poste
rior distribution of the parameter values, from which, how
ever, it will usually be necessary to make some choice of the 
best set of estimates ( ix ) of cc. The making of this choice may 
require further prior assumptions for implementing the 
various decision rules discussed, for instance, by Schweppe 
[1973] and Eykhoff [1974]. 

To take stock of this brief treatment of a difficult subject, it 
may be helpful to make the following qualitative juxtaposition 
of the two extreme cases of estimators. The simple LS esti
mator makes no assumptions about ix. It merely computes 
those values of ix that minimize an objective (fitting) function. 
The Bayesian estimator requires complete knowledge of the 
prior probability density function of ix based on knowledge of 
y as a random variable and some assumed relationship, i.e., 
the model, between y and ix. It mechanizes the translation of 
information about the external description of the system (y) 
into information about the internal description of the system 
(cc) through the particular rule of (25). It can, of course, process 
the observations y in a sequential fashion, and in this sense, 
any recursive estimation algorithm can clearly be viewed as a 
Bayesianlike estimator. 

But here we risk confusion, and there is sufficient cause for 
confusion in understanding the above classification that is 
brought about by the following. 

It is generally assumed that Gaussian probability density 
functions hold for all of the relevant random variables and 
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stochastic processes, and under this assumption the probabil
ity density function p{ exly} in (25) is specified simply by its 
mean and variance-covariance matrix. The form of the Bayes
ian estimator that chooses the best set of estimates ( ex) as that 
for which p{ exly} attains its maximum values becomes then 
equivalent to a Markov estimator as defined above [e.g., Sch

weppe, 1973, pp. 394-395]. Likewise the ML estimator be
comes equivalent to a Markov estimator [e.g., Astrom, 1980]. 

5.2. Algorithms for the Implementation 

of Batch Estimation Schemes 

It is rarely possible to implement exactly the functional re
lationships of (25). It is at best possible to treat y and ex as 
discrete random variables, not to mention the considerable 
debate that hinges upon the question of whence derive the 
necessary prior probability density functions (in this latter re
spect, Tiwari's [1979] discussion of the maximum-entropy 
principle for the specification of the prior functions probably 
reflects the majority of current thinking). In the following 
review of the literature there is only one example of an ap
proximate implementation of (25) [Moore and Jones, 1978] 
and no example of an ML estimator applied without the as
sumption of Gaussian probability density functions. 

Nearly all the case study problems amount therefore to the 
implementation of algorithms for locating the minimum of a 
loss function such as, in general, J* of (24). In general too, 
unless e{ x

0
} is a linear function of x

0
, such that 

oJ* {xa} fo xa = 0 (26) 

yields a set of algebraic equations linear in x
0

, the estimation 
problem is said to be nonlinear. The important role played by 
the discrete-time input/output models of the form of (20), say, 
where the output response variables are linear functions of the 
model parameters, should become now much more apparent; 
they yield solutions to (26) that are linear in x

0 
(or simply ex) 

and hence easy mechanizations of the solution to the esti
mation problem. 

To this general nonlinear estimation problem there are 
three aspects: choice of the definition of the error e, the 
scheme for locating the minimum of J* , and computation of 
estimates of the a posteriori parameter estimation error co
variance matrix. 

Clearly, it is the scheme of locating the minimum of J* that 
is usually regarded as being central to the practical numerical 
aspects of solving the estimation problem, and both Schweppe 

[1973] and Eykhoff [1974] discuss the details of several such 
optimum-seeking methods. The subject of optimization is, of 
course, an entire discipline in its own right, and we shall here 
merely outline certain features of these methods that have 
special relevance to other topics of concern to this review. 

5.2.1. Specification of the form of error. As already noted, 
our discussion is restricted to the case of a single constituent 
error term (e), i.e., that between estimated and observed 
output response variables, defined either as the deterministic 
model response error of (23) or as the one-step-ahead predic
tion errors (or innovations process errors) introduced in sec
tion 4 as 

where 

for comparison with (13). 

The choice of e(tx) as a deterministic model response error 
leads to a much simpler computational effort, both for the 
errors themselves and, should it be necessary, for estimating 
W as the covariance matrix of e(tk) [e.g., van Straten, 1983]. 
Fewer assumptions are needed than for the choice of e(tk) = 
v(tkltk_ 1) in (28), which in fact requires the use of a Kalman 
filtering algorithm in order to compute v(tkltk - 1 ) and its co
variance matrix and thus implies as prerequisites all the pa
noply of assumptions and limitations listed earlier in section 4 
(see also Astrom [1980]). 

5.2.2. Locating the minimum of the loss function. The im
plications of the choice of error definition are best clarified by 
now considering in more detail the scheme for locating the 
minimum of J* . Among several possible forms of algorithm 
for a batch estimation scheme, the following gradient algo
rithm is widely used (see also Eykhoff [1974]) : 

( ex; + 1 ) =(ex;) - i/t;[oJ*/oex],.= <"'> (29) 

where, as in Figure 4a, ( ex; ) is the constant vector of parame
ter estimates for the ith iteration through the data from t0 --> 

tN ; [oJ*/oex],. =< .. '> is a vector of gradients for the loss function 
hypersurface with respect to the parameters ex, and evaluated 
at ex = ( ex' ) ; and i/t; is a gain matrix (to be determined in a 
variety of ways). For simplicity it has been assumed that the 
estimation problem is one of parameter estimation alone. If 
the prediction error form e(tk) = v(tkltk- 1) is chosen, ex = (ex;) 
is substituted into the Kalman filtering algorithms, which are 
then used to compute (x(tkltk_ 1)), (y(tkltk_ 1)), and hence 
v(tkltk _ 1) in a recursive fashion for t 0 :$ tk :$ tN. The filter in 
this instance is being used solely for the purposes of state 
estimation, and this use is subordinate to the evaluation of J* 
at the end of each iteration through the block of data. It is via 
the minimization of J* according to (29) that parameter esti
mation takes place, not directly through the filter. 

There are two matters arising from this discussion that may 
cause confusion. First, there is the method of quasi
linearization [Bellman and Kalaba, 1965], which has both at
tracted considerable interest in the analysis of water quali
ty/ecological systems [Bellman et al., 1966; Lee and Hwang, 

1971; Stehfest, 1977; Roberts and DiCesare, 1982] and has also 
(mistakenly) attracted the interpretation of being a fifth type of 
estimator uniquely different from the four types already identi
fied. The basis of the method is to linearize the nonlinear 
system equations, such as those of our class II model (equa
tion (6)) so that e{xJ becomes a linear function of x0 • Then, as 
stated earlier, (26) leads to a set of (n + p) linear algebraic 
equations in the (n + p) unknowns, i.e., the elements of the 
augmented state-parameter vector x

0
• Here n is the order of 

the state vector and p the order of the parameter vector. Be
cause therefore quasi-linearization is one particular (iterative) 
numerical method for locating the minimum of J*, it is not, 
despite the impression frequently given, yet another type of 
estimator. A lucid, concise, and instructive discussion of the 
method can be found in the work by Detchmendy and Sridhar 

[1965]. 
Second, there is the question of how the recursive esti

mation algorithms of section 4 can be related to the notion of 
minimizing a squared-error loss function such as J* . In the 
simplest of cases the recursive (linear) least squares algorithm 
can be seen as a (recursive) formulation for the changes to the 
solution of (26), i.e., the estimates (x

0
) that would be made if 

the number of observation sets available for analysis were to 
change from, say, (k - 1) to k. (Recall that the loss function J* 
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in (24) is specified in terms of the number of observations 
available and that for convenient forms of J* the solutions 
from (26) can be specified in closed form.) In the most complex 
of cases, we may note that the Kalman filter (and hence the 
EKF) can be interpreted as a Bayesian-type estimator furnish
ing a posterior probability density function p{o:ly(tk), y(tk_ 1), 
· · ·, y(t0 )}, after the receipt of the new observation y(tk), as a 
function of the prior probability density function p{o:ly(tk_ 1), 
y(tk _ 2 ), · ·-, y(t0 )}. For the assumption of Gaussian distri
butions the mean (x.) and variance-covariance matrix P

0 
are 

sufficient to characterize these probability density functions . 
5.2.3. The posterior parameter estimation error covariance 

matrix. Computation of the a posteriori uncertainties of the 
estimated model parameter values is a matter that has been 
widely ignored. The required mathematical derivation is un
fortunately difficult to summarize, and what follows may 
therefore seem somewhat opaque. The essential point to bear 
in mind is that the concept of identifiability, first introduced in 
section 1, can be related to the sensitivity coefficients of the 
model parameters (see also section 2). These coefficients 
appear explicitly in the quantification of the model parameter 
uncertainties after identification of the model; and it is this 
"residual model uncertainty" that links the problem of identifi
ability with the subsequent analysis of prediction error propa
gation (to be discussed in section 7). 

Briefly, if the errors ii in the parameter estimates are defined 
as 

(30) 

the objective is to derive an expression for the variance
covariance matri~ of these errors, i.e., pP = E{iiiir}, where 
E{ · } is the expectation operator and where pP can be com
puted from a knowledge of the observations and, as necessary, 
the values of the parameter estimates themselves. Given the 
general nonlinear relationship between J* of (24) and the pa
rameters, a single key assumption is necessary: 

That at the minimum value of the loss function J*, as located by 
the estimation algorithm, the corresponding (best) estimates of 
the parameters ((a)) are close the "true" values of the parameters 
(a), so that by linearization of the output response variables (y), 
whereby y is made a linear function of the parameters, the errors 
e of (23) or (27) are likewise made approximately linearly depen
dent upon a (or ii through (30)). 

Clearly, the results of the analysis facilitated by this assump
tion are strictly applicable only to small estimation errors ii. 
The linearization is a first-order approximation and, as such, 
parallels a first-order error analysis in the context of predic
tion. Here the errors of identification are made a linear func
tion of the parameter errors, so that the latter can be com
puted given the former. Later (in section 7) it will be apparent 
that the errors of prediction are assumed to be a linear func
tion of the parameter errors, so that (there) given the latter, 
the former can be computed. 

Let us denote the approximate form of the loss function 
that results from the above assumption by ]*. Differentiation 
of]* with respect to ( o: ) and setting these derivatives to zero, 
in line with (26), yields now a set of algebraic equations linear 
in ( a ) . From this set of equations an approximate expression 
for ii follows straightforwardly. It contains a matrix of sensi· 
tivity coefficients [ay ;Jaixi] evaluated for ix = ( ix) and is a 
function of the sources of uncertainty assumed to have been 
relevant to the estimation problem. From the expression for 

( ix ) a means of approximating the variance-covariance matrix 
of these parameter estimation errors can be formulated as 
follows 

pP(tN) = E{iiiir} = £{[ ktl er (o:) w-1c(o:) JI 
. Lt, er ( o: ) w- ' <TJ*(tk)) J [ J, er ( o: ) w- '(TJ*(tk)) r 

(31) 

where, more precisely, C(o:) is the(/ x p)-dimensional matrix 
of sensitivity coefficients [ ayi(tk)/aixJ for the ith output vari
able with respect to the jth parameter at time tk and evaluated 
for o: = ( o: ) (the output vector being of the order of /). The 
error sequence (q*(tk)) is, strictly speaking, an estimate of the 
mismatch between the observed and hypothetical error-free 
output variables. In practice, ( TJ*(tk)) can be suitably approxi
mated as the error e(tk) between observed y(tk) and estimated 
output variables ( y(rk; ( o: ) )). 

For special cases of the errors TJ*(tk), namely, that they are 
white noise sequences, the expectation operator in (30) can be 
taken to apply merely as E{TJ*(tk)'l*r(tk)}, and thus pP(tN) can 
be seen to be directly related to the variance-covariance 
matrix of the errors of mismatch. For the case of a model that 
is linear in the parameters, (31) will obviously be much sim
plified. In a qualitative sense one can infer from this equation 
that the more sensitive the output response variables are to 
the parameters (the elements of C are relatively large), the 
smaller are the associated estimation error variances. The pa
rameters would be said to be "better estimated" (less uncer
tain) in this event, although the ability of the parameters to be 
"well identified" is dependent upon the temporal pattern of the 
sensitivity coefficients over the whole period of the field obser
vations (as already indicated in the discussion of Figure 2 in 
section 2). 

5.3. Case Studies 

The earliest contributions to parameter estimation in water 
quality/ecological systems, as would be expected, dealt with 
the theoretical promise of particular algorithms for the mini
mization of an ordinary least squares loss function (J). They 
addressed simple process models for prey-predator dynamics 
[Bellman et al., 1966] or for the steady state relationship be
tween DO and BOD concentrations along a reach of river 
[Lee and Hwang , 1971; Koivo and Phillips, 1971]. Parker 
[ 1972], with a seven-state variable model representing 
nutrient-phytoplankton-zooplankton dynamics in Kootenay 
Lake, British Columbia, Canada, and Shastry et al. [1973], in 
a study of DO-BOD interaction in the Sacramento River, 
California, were among the first to tackle the analysis of in 
situ field data. In fact, Shastry et al. regarded theirs as a 
problem of discriminating among alternative model structures. 

The overwhelming majority of subsequent case studies have 
used, as did Shastry et al. [1973], either a weighted least 
squares or Markov estimator for which the error term has 
been defined as a deterministic model response error accord
ing to (23). (The use of the term Markov estimator signifies 
here a maximum likelihood estimator with the customary 
Gaussian assumptions.) Many of these applications have fo
cussed, with varying degrees of complexity (from one to 17 
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state variables), on the development of models for phytoplank
ton dynamics in lake ecosystems [e.g., Di Cola et al., 1976; 
Lewis and Nir, 1978; Benson, 1979; Canada Centrefor Inland 
Waters, 1979; Di Toro and van Straten, 1979; J@rgensen et al., 
1981; van Straten, 1983; Mejer and J@rgensen, 1983]. Stehfest's 
[1977] analysis of a six-state variable model for the steady 
state distribution of degradable and nondegradable organic 
pollutants along a 450-km stretch of the Rhine River, Federal 
Republic of Germany, is a notable exception to this general 
pattern (see also Rinaldi et al. [1979a]). Should such statistics 
be of interest, we may observe that Di Toro and van Straten 
[1979] and van Straten [1983] can claim to have addressed 
one of the largest scale problems of estimation. They have 
used a 12-state variable model with in all, 20 parameters to be 
estimated, in analyses of the International Field Year for the 
Great Lakes (IFYGL) 1972-1973 data and an aggregated 10-
year data set (1967-1976) for Lake Ontario. 

The considerably more onerous estimation problem associ
ated with the (one-step-ahead prediction) error definition of 
(27) has understandably been less extensively addressed. Part 
of the analysis of model structure identification for the study 
of DO-BOD-algae interaction in the River Cam [Beck, 1975, 
1978] involved an ML (Markov) estimation problem using the 
algorithm of Astrom [1980]. Results from an identical ap
proach to the estimation of 33 parameters (including five
system noise 1; and measurement noise 1J covariance elements) 
in a six-state variable hydrothermal model for the inlet water 
temperature of an electricity-generating station have been re
ported by Schrader and Moore [1977] and Moore [1978]. 
Jolankai and Szollosi-Nagy [1978] have formulated an algo
rithm for a similar estimation problem associated with a 
model of phosphorus-cycle dynamics in the Bay of Keszthely, 
Lake Balaton. However, they acknowledge the difficulties of 
implementing such an algorithm and have proposed, but not 
applied, alternative simpler batch and recursive estimation 
schemes that exploit ideas along the lines of a quasi
linearization approach. McLaughlin [1978a, 1979] has also 
been a strong advocate of ML (Markov) estimators for criteria 
(J*) based on one-step-ahead prediction errors. His compara
tive account of the performance of the two forms of estimation 
schemes implied by the two different error specifications is 
especially instructive, though sadly never published in the 
open literature [McLaughlin, 1979]. 

Without doubt the most sophisticated type of estimator ap
plied hitherto is an approximate version of the Bayesian esti
mator proposed by Moore and Jones [1978]. In their algo
rithm, which they call a coupled Bayesian/Kalman filter esti
mator, they have approximated the continuous ranges of the 
parameters IX by a finite set of discrete values. For a model 
with p parameters to be estimated, each of whose range of 
possible values is represented by M discrete values, there are 
thus MP possible realizations of the model corresponding to 
all the possible combinations of the parameter values. The 
prior and posterior probability density functions p{1Xly(tk_ 1)} 
and p{1Xly(tk)} (before and after processing the observation 
y(tk)) are likewise represented by MP discrete probabilities. 
Such a formulation of the estimation pr-0blem would indeed 
be attractive if it were not for the very high computational 
cost of implementing the approach. MP Kalman filters are 
required to compute the errors v(tkltk _ 1)1 and their associated 
variance-covariance matrices for each of the MP possible reali
zations of the model. Knowledge of the~e Gaussian error dis-

tributions is necessary for the computation of p{y(tk)llX} ap
pearing in the right-hand side expression of the appropriate 
form of Bayes' rule as stated in (25). Intuitively, if the errors 
from a particular model are high, it is improbable that the 
actual observation y(tk) has been generated from the particular 
combination of parameter values that constitute that model. It 
is apparent too that a set of recursive estimates can be com
puted from the sequence of "most probable" parameter value 
combinations at each instant tk over the period t0 ~ tN. Some 
of Moore and Jones's [1978] results for the River Cam data of 
Beck and Young [1976] are shown in Figure 12. They are 
indicative of the problems of parameter identifiability dis
cussed in section 2. The flat marginal distribution of a poste
riori probabilities (at tN) for the reaeration rate constant a2 in 
Figure 12c is little different from the prior probabilities (at t 0) 

of 1/9 for each of the nine possible discrete values for this 
parameter. The corresponding posterior estimation error vari
ance in PP(tN) would be relatively high for a 2 . The conclusion 
is that there is little information in the field observations with 
which to identify a value for the reaeration rate constant. And 
this is not surprising, for in the Cam study and in the Bedford 
Ouse the effects of stream reaeration mechanisms on the ob
served DO variations are negligibly small in comparison with 
the dominant effects of algal photosynthesis and respiration 
[Beck, 1983]. 

5.4. Commentary: The Problem of Identifiability 

This by no means exhausts the coverage of all the case 
studies relevant to parameter estimation. However, the al
ready evident problems of parameter identifiability are so 
commonplace, and have so frequently been responsible for the 
disappointing performance of the various estimation algo
rithms, that they must now be given special consideration. 

To summarize, there are many difficulties in working with 
in situ data from environmental systems: there are too few 
data and/or they are highly uncertain, the parameter space 
has too high a dimension and/or the optimal estimates of the 
parameter assume "unrealistic" _values, there is a Jack of con
vegence to optima on the error-loss function hypersurface be
cause of its flatness and/or unless reasonably good prior pa
rameter estimates can be specified, and the necessary prior 
knowledge of the various error statistics is itself uncertain. 

The nub of the problem of identifiability is (as we have said 
in the introduction to this review) that what we would like to 
know about the internal description of the system { x, IX} is of 
a substantially higher order than what can be observed about 
the external description of the system { u, y}. 

Three groups of factors affect the shape of the estimation 
loss-function surface: (1) the field observations, (2) the model 
structure (and its parameters), and (3) the type of estimator, 
i.e., the prior assumptions about the statistics of the sources of 
uncertainty affecting the estimation problem. We shall cat
egorize the various responses to the problem of identifiability 
according to these three points. 

5.4.1. Manipulating the data. A predictable response to 
the difficulties of identifiability is to transform the given data 
set before any analysis-by interpolation ("increasing" the 
number of data) and/or by smoothing ("removing"part of the 
random uncertainty). Mejer and Jorgensen's [1983] use of 
cubic-splines fitting is a typical example of this response. In 
fact transformation of the sampled data by interpolation 



BECK : UNCERTAINTY IN WATER QUALITY MODELS 1417 

0.3 

0.1 

0.0 
0.0 0.1 0.2 0.3 0.4 0.45 

a, (day- 1
) 

(bl 0.5 0.5 

0.4 0.4 

p{a2IY(IN)) 
0.3 0.3 

0.2 0.2 

0.1 

I I 
0.1 

0.0 0.1 0.2 0.3 0.4 
-1 

a, (day l 

""'1'::~1 :'.j I I I I t: '. o.o~_..__.___.__~~~-~_.._-~_.._~o .o 

0.0 0.1 0.2 0.3 0.4 

a 2 (day- 1
) 

Fig. 12. Parameter estimation in a case study of the River Cam 
[after Moore and Jones, 1978]. (a) A posteriori joint probability den
sity fonction at rN (N = 80 sampled observations) for the BOD decay 
rate constant <X 1 and reaeration rate constant a2 • (b) A posteriori 
marginal probability density function p{a 1 ly(tN)} for the BOD decay 
rate constant a 1. (c) A posteriori marginal probability density function 
p{ <X 2 ly(t N)} for the reaeration rate constant a,. 

and/or smoothing (filtering) raises a more general issue, since 
arguably it transforms the estimation problem in a fundamen
tal way (see also Young and Jakeman [1980] and Vajda et al. 
[1985]). 

Consider once again the ordinary differential-equation rep
resentation of the class II model structure, i.e., 

dx(t)/dt = f{ x, u, a; t} + ~(t) 

y(tk) = h{ x, O!; tk} + IJ(tk) 

(32a) 

(32b) 

Hitherto it has been assumed that in order to solve the prob
lem of deriving values for a the differential equation (32a) 
must first be solved and then some function of the errors e(tk) 
minimized, taking into account sampled observations given at 
times tk, k = I, · · · , N. If we permit a manipulation of the data 
{ u(tk), y(tk)} by interpolation and smoothing, it is possible to 
formulate a modified estimation problem constructed around 

an equation of the form 

(33) 

Here ( dx(t)/dt ) is an estimate of the derivative of the state 
vector evaluated at sampling instants ti,j = I, · · ·, M, and Eis 
a lumped-error term accounting for the sources of uncertainty 
originally associated with ~ and tt in (32) but transformed 
through whatever procedure is used to obtain (dx(ti)/dt) and 
<x(tN. 

The key is that the estimation problem now refers to the 
evaluation of a, being the only unknown in the algebraic (or 
regressionlike) relationship of (33), given "observations" at 
times ti where, by interpolation, the number of samples (M) 
can be made substantially larger than for the original problem 
(i.e., N). The algebraic form of (33) is structurally equivalent to 
that of the input/output class III model (equation (3)), and as 
such, the transformed problem has access to all the corre
sponding types of estimation algorithm (including the IV esti
mator) that experience shows have performed well on the diffi
cult problems of environmental time-series analysis. 

The price to be paid for this transformation is the need to 
generate estimates of the state ((x)) and, more important, 
estimates of the state derivative ((dx/dt)). The simplest such 
substitution, for the case where all the states are linearly ob
served as the outputs (y) (as is usually assumed) is to put 
( x) = y in (33) and to difference the data (y) in order to 
obtain approximate estimates of dx/dt. If further it is assumed 
that E = 0 in (33) , then estimates of a can be derived as the 
solutions to a set of deterministic nonlinear algrebraic equa
tions, a form of solution well known as the solution to the 
inverse problem of groundwater models (McLaughlin [1978a] ; 
see also Jorgensen et al. [1981] for the case of lake eutrophica
tion modds). The differencing of error-corrupted data is never 
a good idea, however, since in general it amplifies the effects of 
the errors. The use of cubic splines should yield more stable 
approximations of the derivatives (together with their interpo
lated values), but they are essentially the same form of substi
tution given that they require (x) = y at the sampling in
stants of the original data, i.e., at tk [Vajda et al., 1985]. Other 
means of deriving stable estimates of (x) and (dx/dt) nat
urally suggest themselves, of which an instrumental variable 
form is one (as discussed by Young and Jakeman [1980] and 
Vajda et al. [1985]) and an estimate from a Kalman filter is 
another. 

Above all, the transformed estimation problem for the re
lationships of (33) opens up new horizons for the estimation of 
parameters in ordinary differential-equation models by meth
ods developed originally for discrete-time, difference-equation 
representations. The one qualification of this potential is that 
it must first be possible to obtain good approximations of the 
values of the state derivatives. 

5.4.2. Manipulating the parameter space. Imposing a re
striction on the number of model parameters to be estimated, 
i.e., reducing the dimension of the parameter space, is comple
mentary to increasing the number of data. The question then 
is, on what basis should one distinguish between those param
eters that are to be estimated and those that are to be either 
assigned values a priori (from a search of the literature) or 
removed altogether from the given model structure? 

In fact the question is tantamount to asking how one identi
fies the model structure, except that here it is being ap
proached from a direction opposite to that already discussed 
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in section 4. The problem is one of establishing which constit
uent model hypotheses are, in effect, either redundant or not 
falsifiable (surplus content). It follows from the discussion of 
identifiability at the end of section 2 that some form of sensi
tivity analysis would be a suitable vehicle for determining the 
insensitive or redundant parameters, and there are several case 
studies that illustrate this approach [Whitehead and Hornber
ger, 1984; Jaffe and Ferrara, 1984 ; Hornberger and Cosby, 
1985a, b ; Gentil and Perrier, 1985]. 

There are other strategies, and indeed other questions, of a 
more subtle and philosophical nature about the justification 
for restricting the dimension of the parameter space. Besides 
eliminating, or "fixing" those parameters to which the outputs 
of the model (y) are insensitive, it has been argued that the 
most "uncertain" parameters are equally so candidates for 
elimination [van Straten, 1983]. In other words, the estimation 
problem is first solved for the model given all the parameters 
as unknown constants ; the error variance-covariance matrix 
of the parameter estimates is then computed according to (31), 
and on this basis a revised estimation problem is devised with 
the most uncertain parameters having been eliminated. How
ever, this is in effect the same strategy as elimination of the 
least sensitive parameters (especially as (31) explicitly incor
porates the sensitivity coefficients), except that the procedure 
is carried out by reference to the experimental observations (as 
in the works by Whitehead and Hornberger [1984] and Horn
berger and Cosby [1985a, b]) and not solely on the basis of the 
intrinsic properties of the given model structure [Jaffe and 
Ferrara, 1984; Gentil and Perrier, 1985]. 

The fixing of certain parameter values is equivalent to as
suming a priori that these parts of the model structure are 
known with certainty, and such an assumption must necessari
ly distort the posterior estimate of the variance-covariance 
structure of the parameter estimation errors, as van Straten 
[1983] has illustrated in his analysis of a model for Lake 
Ontario. It is clear that this is a rather contentious issue, not 
only from the point of view of parameter estimation, but also 
because it brings into question the role of surplus content in 
the context of prediction and prediction error propagation. As 
yet these questions have barely been addressed, let alone re
solved, and we shall therefore postpone further discussion of 
them until section 8, where they are treated in an agenda of 
problems for the future. 

One point is apparent, nevertheless, and it is that to fix the 
most uncertain parameters seems a logical contradiction. It 
implies perfect knowledge of the least certain parameters. To 
allow such parameters to assume random values (within a 
prespecified range) is preferable and is an approach that has 
been discussed extensively by Hornberger and Cosby [1985b] 
and Hornberger et al. [1985] in a case study of surface water 
acidification. 

Probably the most exhaustive treatment of parameter-space 
delimitation thus far is presented in a recent paper by van 
Straten [1985] with reference to a case study of eutrophication 
in Lake Balaton, Hungary. He has introduced quite novel 
ways of exploiting the observed dynamic characteristics of the 
system (for instance, peak response, period average, and 
steady state responses) in order to impose constraints on the 
feasible regions of those parameters to be estimated. But what 
precisely determines a priori a "feasible" range of parameter 
values is quite another philosophical issue. Sorooshian et al. 
[1983] , in an analysis of the identifiability of hydrological 

models, have observed tha t should unrealistic values be esti
mated for the parameters, their preference is not to impose 
such constraints on the estimator, but to challenge the ade
quacy of the estimation criterion, i.e., the type of estimator, or 
the form of the prior statistical assumptions. The position of 
the present reveiw would be different still, seeing it as evidence 
of the failure of a constituent model hypothesis, and thus part 
of the natural duality of failure and inference that is the essen
tial character of model structure identification. 

5.4.3. Manipulating the form of estimator. There is sub
stantial evidence in the parallel literature on hydrological 
modeling of these same problems of parameter identifiability 
[Johnston and Pilgrim, 1976; Pickup, 1977; Sorooshian et al., 
1983], and much the same conclusions have been drawn, 
namely, that the key problems may ultimately be ones of 
model structure identification and the temporal variability of 
parameters [Sorooshian et al., 1983] (see also section 4 of this 
paper). 

In particular, considerable attention has been given by Sor
ooshian and Gupta [1983] and Gupta and Sorooshian [1983] to 
examination of the loss-function surface. Few, if any, of the 
studies in water quality modeling have been as exhaustive an 
the analysis of these authors, although it is clearly well known 
that the loss-function surface can degenerate to a very awk
ward, almost flat shape. For example, in a study of a 
phosphorus- and carbon-cycle model of Lake Ontario, Ha/fan 
[1979] has noted that an order-of-magnitude variation in 
some parameter values might be associated with a change of 
no more than 6% in the loss function about its minimum 
value. So changing the form of the estimator, i.e., changing the 
assumptions about the properties of the sources of uncer
tainty, in response to a lack of model identifiability is a third 
course of action, and one advocated by Sorooshian et al. 
[1983]. In fact they discuss the autocorrelation and heterosce
dastic properties of the output response observation errors, 
and their results with the revised estimators were favorable. 

The results of other studies have not been so successful 
[Hornberger et al. 1985], and it remains an open question as 
to how suitable this type of transformation would be in identi
fying models of water quality. For one thing it is not obvious 
that the relative lack of water quality data would support the 
more sophisticated statistical assumptions. 

This is not to suggest, however, that the importance of 
making good assumptions about error and noise statistics (as 
required for the Markov, ML, and Bayesian estimators) has 
not been acknowledged in estimating the parameters of water 
quality models. It is obviously apparent in the preceding dis
cussion of section 4 in respect of recursive estimation algo
rithms, though not in as refined a fashion and not in quite the 
same context as Sorooshian's work. Moore [1978] too, for 
instance, has given some discussion of adaptive (Kalman) fil
tering techniques, "adaptive" in the sense that the unknown 
elements of the variance-covariance matrices for the different 
sources of uncertainty are treated as parameters (themselves to 
be estimated from analysis of the field data). But again, adapt
ive filtering is really quite a sophisticated notion, and its ro
bustness under the difficult conditions of interest here must be 
questionable. 

Last, an alternative position on the problem of identifiabil
ity is to accept the multiple optima as given and, instead of 
attempting to manipulate the estimator, to develop procedures 
for identifying from the multiple optimal solutions some 
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"uniquely best" combination of parameter estimates. Such 
procedures have been discussed at length by Lewis and Nir 
[1978] and Paldor el al. [1978] , although they recognize the 
objections that might be raised, and have been raised by Fedra 
[1983], over the arguably illusory assumption of uniqueness 
(see also section 3). 

5.5. Prudent Transformations of Ill-Posed Problems 

Our conclusion must be the same as that to the discussion 
of model structure identification in section 4. If the most natu
ral and straightforward formulation of the estimation problem 
continues to defy useful solution, then it is prudent to change 
the formulation of the problem. 

There are two pairs of case studies that can be reviewed in 
this spirit. The first such pair refers to the work of van Stralen 
and Herodek [1982], on a problem of estimating algal growth 
parameters from primary production profile observations in 
Lake Balaton, and to the analysis of Rinaldi et al. [1979b] of 
steady state DO-BOD interaction in the Bormida River, Italy. 
Both studies transform and simplify the natural statement of 
their respective estimation problems. This is followed by ex
ploiting the partly linear properties of the minimization of a 
weighted squared-error loss function (J* in (24)), which sub
stantially reduces the subsequent computational effort of an 
iterative scheme for locating the minimum of J* . The final sets 
of parameter estimates obtained from several independent sets 
of observations are then examined for the identification of 
possible functional relationships between the parameters and 
(observations ot) the other independent variables (see also 
Cosby [1984]). This last step is clearly an expression of the 
idea of model structure identification as associated with the 
discussion of(l4) in section 4. 

A second, but rather different, pair of case studies can be 
found in Halfon's [1976] analysis of the dynamics of selenium 
in an aquatic microcosm and Roberts and DiCesare's [1982] 
work with a simple model for nutrient dynamics in Lake 
George, New York. The common theme of these studies is the 
transformation of the basic system description of a class II 
model, i.e., (32), into the discrete-time form of the multiple
input/multiple-output class III model of (3). The importance of 
the concept of linearity in the parameters, irrespective of 
whether the system dynamics are a nonlinear function of the 
states, inputs, or outputs, is particularly well demonstrated by 
Roberts and DiCesare's analysis. Most probably it is this lin
earity that makes their estimation problem so much better 
posed and the results of their analysis more penetrating. 

5.5.1. Dislributed-parameler (class I) models. The arche
typal problem of identifiability, as we have already indicated 
in the introduction (section 1), is that of estimating the param
eters in the distributed-parameter (partial-differential equa
tion) representation of a class I model. And since all the sys
tems considered in water quality modeling are intrinsically 
distributed, all the case studies discussed thus far have as
sumed implicitly the prior transformation of the natural for
mulation of the problem (identification of the distributed
parameter model) into a "more tractable" lumped-parameter 
approximation. 

The question remains therefore whether this transformation 
is necessary and/or prudent, and the answer to this question 
must largely be positive (on both accounts). Distributed
parameter systems are by definition of infinite dimension (in 
terms of the orders of their state x and parameter 9 vectors), 

and some form of Jumping approximation is inevitable, usu
ally over small volumes for the state vector and over much 
larger volumes for the parameter vector. Most of the results 
have been restricted to the essentially hydraulic problems of 
the advection and dispersion of conservative pollutants in 
rivers [Yih and Davidson, 1975 ; The, 1978 ; van S1ra1en et al., 
1985 ; Bud gel/, 1982] and in groundwater systems, including 
the upper unsaturated zones [McLaughlin, 1978a, b, 1979, 
1985 ; Wheater et al., 1986; Neuman and Carrera, 1985]. The 
exceptions to this rule are the results of Koivo and Phillips 
[1976] and Koivo and Koivo [1978] for the theoretical devel
opment of recursive least squares estimators for a first-order 
partial-differential equation representation of stream 
DO-BOD interaction. It would not be fair to observe that the 
problems of identifiability have dominated these studies, for 
there have barely been any exhaustive analyses of even rea
sonably extensive field data sets. What meager evidence there 
is derives from a case study of conductivity time series from 
the upstream and downstream boundaries of an 84-km section 
of the River Rhine in Holland [The, 1978; Bagchi et al., 1980; 
van Straten et al., 1985] and focuses on the poor identifiability 
of the dispersion coefficient ; a consequence partly of insuffi
cient high-frequency input excitation of the system's dynamics, 
and partly of the nonstationarity of the mean stream velocity. 
However desirable it may be to maintain that faithful repre
sentation of the distributed nature of the system should be 
compromised as little as possible, the fact is that there are few 
practical case study results that would dissuade one from in
voking a priori a Jumping transformation of the estimation 
problem. 

Rather the real question is therefore whether class I model 
representations can be useful as vehicles for the rigorous inter
pretation of field data . And if they cannot, it they must be 
viewed merely as archives of hypotheses, can these hypotheses 
be translated more effectively into the more easily identifiable 
class II and III model structures (other than via finite-element 
and finite-difference approximations)? Indeed, can the results 
of identifying the latter be translated back into the context of 
the partial-differential equation model? These are, in the first 
instance, extremely difficult questions to answer on a technical 
basis. For example, the overall problem could be transformed 
into the dual (but not independent) subproblems of identifying 
purely temporal or purely spatial variability of behavior, with 
estimates of the spatial and temporal derivatives, respectively, 
being accommodated in much the same manner as discussed 
above for (33) in section 5.4.1 (see also section 8 and Beck 
[I 985b ]). But perhaps of greater and more fundamental diffi
culty are the philosophical issues raised by these questions. 
For it may be that here we are witnessing a small dislocation 
of paradigms (in the sense of Kuhn [1970]) in the repre
sentation of the dispersive processes affecting the distribution 
of a solute in a flowing medium. It is now amply established 
that a class III model structure is able to match accurately, 
with generality, and with parsimony of parameters the trans
port of tracer substances in streams and channels under a 
wide variety of conditions fYoung, 1983 ; Beer and Young, 
1983; Young and Wal/is, 1986]. The difficult philosophical 
issue is that the understanding gained from interpretation of 
the field data in the terms of such (class III) models is funda
mentally not reconcilable with the interpretation of the cus
tomary class I model formalism. The two are based on differ
ent premises, and it may not therefore be meaningful to seek 
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the failure of the one set of hypotheses by their translation 
into the other form of representation. 

5.5.2. In conclusion: A "forensic" science. What should 
have been a straightforward problem with a straightforward 
solution has in the event turned out to be remarkably intract
able. Indeed, the skeptic faced with such a Jong list of difficul
ties as those enumerated in section 5.4 above might well argue 
that any form of parameter estimation is a pointless exercise. 
He would be quite wrong, and emphatically so. For at this 
point in the review it must hardly be necessary to reiterate the 
basic philosophical position of seeing the failure of an ap
proach as the stimulus to insight and progress. This has been 
true in the development of methods for the generation of pre
liminary hypotheses (section 3), and it promises also to be the 
case in generating novel algorithms for model structure identi
fication (section 4). The only difference between these and the 
present discussion is that perhaps perversely it is all the more 
difficult to acknowlege the failure of a body of methods (i.e., 
constrained optimization methods) that are ostensibly so read
ily applicable to the problem at hand. But like the preceding 
topics, the most fruitful development should err on the side of 
simplicity and independence of insight, not (as with the en
croaching complication of the HSY approach, or the inordi
nate superstructure built on to the use of recursive estimation 
algorithms) in the ad hoc tinkering with and sophistication of 
existing methods. 

If today the subject of parameter estimation were to be 
presented with an outstandingly best algorithm for con
strained optimization, would all its problems be solved? It is 
doubtful, although there are those who would claim to have 
such a global optimization procedure [Pinter et al., 1987]. 
This review has indicated that the application of standard 
procedures for the minimization of a fitting-error function is 
fraught with difficulties. Moreover, it has been argued else
where that the expense of computational time should be re
garded as a progressively receding resource constraint on nu
merical analysis. Why then should one use efficient algorithms 
for locating the minimum of the fitting-error function when 
inexpensive computing resources can be mobilized in order to 
evaluate the entire hypersurface of this function over given 
ranges of the parameter values ? The thinking behind the nega
tive response that this question prompts is already apparent in 
the studies reported by Halfon [1979], Fedra [1983], Hornber
ger and Cosby [1985b], and Hornberger et al. [1985]. Ironi
cally too, it is this approach of complete function evaluation 
that is used for the very purpose of diagnosing the failure of 
an optimization procedure to perform adequately [e.g., Sor
ooshian and Gupta, 1983]. Presumably the difficulty of analysis 
might shift its focus away from locating the optima to inter
pretation of their meaning, and it is unlikely therefore that 
further sophistication of the methods of optimization will be 
especially rewarding. To summarize, either the problem must 
be changed to allow existing methods to perform better (as we 
discuss below), or some quite radical change of method will be 
required in order to open up novel ways of approaching the 
problem. 

The difficulties of parameter estimation are not primarily 
ones of inadequate method, but of a latent ill posedness of the 
problem arising from a lack of identifiability. It would thus be 
inappropriate to conclude by discriminating among good and 
bad techniques. The issue is one of developing preferred ap
proaches to problem solving. The essential problem is that of 
identifiability, and the essence of identifiability is ambiguity in 

the interpretation of past observed behavior. The case in favor 
of a variety of perspective and approach, first put forward in 
section 4 on the discussion of model structure identification, is 
now even more compelling. The problems of estimation are 
unlikely to be solved at a single attempt from one direction. 
Formulating the model structure (without identifying it), de
fining a least squares loss function, and putting the problem 
into a constrained optimization package does not automati
cally produce a useful solution. It may produce part of the 
solution, but a greater ingenuity is called for. The problem 
must be approached from several different angles, and the 
diagnostic evidence from each partial, albeit ambiguous, solu
tion then assembled to make a cogent argument for choosing 
one solution (among several) to the whole. The interpretation 
of field data should be, as it were, a kind of forensic science. 
And if there were to be a single most important guiding prin
ciple of this approach-of continual transformation and re
casting of the estimation problem- it would be defined as 
follows. 

The judicious use of assumptions designed to produce a model 
specified in terms that approximate the algebraic or discrete-time 
difference form of a class III representation that is linear in the 
parameters to be estimated. 

In the end, however, it may be that the ambiguity of inter
preting past behavior, though undesirable, is not fatal to the 
purpose of predicting the future, and this would certainly 
challenge the accepted attitudes to the problem of identifiabil
ity set out above. 

6. CHECKS AND BALANCES 

There is no automatic or entirely objective routine for the 
development of a model, not even in the restricted area of 
model-order estimation for the input/output class III repre
sentations [Soderstrom, 1977]. The procedure is natually cyc
lical, iterative, and "open ended" (see also Cale et al. [1983a], 
Loehle [1983], and Reckhow and Chapra [1983a]. As de
scribed here, it alternates between the speculative generation 
of hypotheses (section 3)1 exposure of their failure, then further 
speculation (in section 4, model structure identification), and 
so on. The procedure is incremental, whether one begins with 
an overly simple or an overly complex model structure. To 
paraphrase the discussion of section 4, additional or more 
complex hypotheses are only incorporated into the simple 
prior model structure when they are demonstrably necessary. 
And to paraphrase what has been said in section 5, having 
included a priori in the model all the hypotheses of con
ceivable relevance, the alternative approach is then to seek to 
eliminate those hypotheses that are clearly inadequate or re
dundant (an approach likely to be heavily circumscribed by 
the difficulties of identifiability). 

The question that we must now answer is at what point 
should the analysis terminate? How can it be established that 
we have developed a good, useful, valid, credible, realistic, or 
desirable model? The answer depends to a large extent on the 
purpose for which the model has been developed, and equally 
so on a large measure of common sense ; it is also subjective 
[Young, 1983]. The question can be made retrospective: does 
the model adequately match observed past behavior? Or it 
can be made prospective : is the risk acceptable that the model 
can be used to guide decisions that will influence future behav
ior ? A satisfactory answer to the former, though perhaps 



BECK: UNCERTAINTY IN WATER QUALITY MODELS 1421 

easier to obtain, clearly does not imply a satisfactory answer 
to the latter. Neither is it apparent that one could examine the 
objectives of decision making, specify an acceptable tolerance 
on the requisite prediction accuracy, and hence specify as a 
terminating point for identification some acceptable level of 
identified model uncertainty. 

So we are obliged to accept some Jess crisply defined dis
trinction between an acceptable and an unacceptable model, 
some less precise notion of the end point of system identifi
cation. And we shall consider in this section the simpler, strict
ly "retrospective" aspects of this problem. 

The purpose of the whole of the review thus far has been the 
use of models for the development of scientific theories about 
the behavior of complex environmental systems. Given this 
purpose, a pragmatic prescription for the end point of the 
analysis would require the following. 

1. The parameters of the identified model structure should 
be demonstrably invariant with time (from section 4). 

2. The estimation error variances and covariances of these 
parameters should be low, as evidence of good identifiability 
(from section 5). 

3. The residual errors of mismatch between the per
formance of the model and observed behavior should be small 
in magnitude and not attributable to any causal mechanisms 
of a significantly nonrandom character. 

Items 1 and 2 have already been discussed earlier. In this 
section the primary concerns will be analysis of the residual 
errors of mismatch and, because it is frequently based on such 
an analysis, model discrimination. 

6.1. Analysis of the Residual Errors of Mismatch 

In line with (23) and (27) in section 5 the residual errors of 
mismatch can be generated as either the deterministic model 
response errors or the one-step-ahead prediction errors, re
spectively (the posterior parameter estimates being substituted 
for the parameter values). The former are usually a more strin
gent test of model adequacy; the latter can only be generated 
via some form of filtering or recursive estimation algorithm. 

Analysis of the statistical properties of the residual errors 
can take several forms, from more to less aggregated. Tho
mann [1982], for example, has proposed a number of "ver
ification measures" covering regression coefficients (derived 
from regressing the observed response (y) on the estimated 
output y) and aggregate statistics such as a relative error and 
a root-mean-square error (see also Thomann and Winfield 
[1976] and Thomann et al. [1979]). These are aggregated in 
the sense that such statistics refer neither to the temporal 
sequence of the errors nor to the adequacy of the constituent 
model hypotheses (a pitfall that Thomann also notes when he 
cautions that " ... model error statistics may be excellent but 
the wrong mechanisms are included in the model" [Thomann, 
1982]). Reckhow and Chapra [1983a] have suggested a some
what broader range of "confirmation measures" and have 
given particular attention to the role of temporal correlation 
among the residual errors in distorting the evaluation of some 
of these aggregate statistics. 

The analysis can, of course, be more detailed, especially 
when adequate time-series data are available and when ex
plicit assumptions have been made about the statistical 
properties of the various sources of uncertainty assumed to 
influence the identification process (as discussed in section 4). 
For example, if we suppose that the one-step-ahead prediction 
errors (or innovations process errors) v(tkltk _ 1) can be gener-

ated from a filtering algorithm, in which the posterior model 
structure is embedded, then to be consistent with all the prior 
assumptions that implementation of the filter necessitates, the 
following conditions would be required of v(tk/lk _ 1) : (1) their 
mean values are zero (for each element of the vector sequence), 
(2) they are not significantly correlated with themselves in 
time, (3) they are not significantly correlated with any of the 
observed input sequences u, and (4) their actual sample (poste
rior) variance-covariance properties are consistent with those 
expected (prior) estimates implied by the prior assumptions 
about the sources of uncertainty affecting the identification 
process (see, for example, Cosby and Hornberger [1984]). 

If the posterior model satisfies these conditions, it is at least 
self-consistent, i.e., not in disagreement with those assump
tions required for its identification. If it does not satisfy these 
conditions, especially in respect of conditions 2 and 3 above, 
then such results can be used to good effect for the purposes of 
model structure identification (as in the work by Beck [1978]). 

6.2. Mode/ Discrimination 

The burden of the preceding discussion of residual error 
analysis essentially reduces to a problem of hypothesis testing, 
of accepting or rejecting the hypothesis that the actual statis
tical properties of the residuals are consistent with certain 
expected statistical properties. Hence a single posterior model 
structure resulting from the process of model structure identi
fication and parameter estimation may be accepted or rejected 
as adequate. The same basic idea can be extended and reori
ented for consideration of the problem of model discrimi
nation, i.e., to compute summary statistics of the residual 
errors from several candidate model structures, then to rank 
these statistics and hence discriminate the best among several 
competing prior hypotheses about the behavior of the system. 
This latter is understood here as model discrimination. It has 
not been widely reported in the literature on water quality 
modeling, although it was in fact the objective of one of the 
first practical studies in parameter estimation to discriminate 
among various structures of steady state DO-BOD interaction 
models of the Sacramento River, California [Shastry et al., 
1973]. A more recent, and much more comprehensive, analysis 
of model discrimination has been discussed by Cosby and 
Hornberger [1984], Cosby et al. [1984], and Cosby [1984]. 
They examine the problem of discriminating among eight (or 
five) possible expressions for the relationship between photo
synthetic oxygen production and light intensity in the Gryde 
River, a macrophyte-dominated stream in Denmark. In a 
sense their results are not all that successful, because the com
peting model structures (except one, which incorporates an 
intuitively improbable linear expression) are capable of repli
cating more or less the same photosynthesis-light behavior by 
an appropriate adjustment of parameter estimates [Cosby et 
al. , 1984]. It is difficult to discriminate among minor vari
ations on the same theme. In another sense, better expressed 
as model structure identification, their results are highly pro
ductive. They observed that " ... the proper structure must 
allow for temporary changes in the parameter values . .. " 
[Cosby et al., 1984] and were subsequently able to identify 
both a long-term and a short-term adaptivity of macrophyte 
photosynthetic behavior [Cosby, 1984]. 

6.3. Commentary 

Interpretation of the past observed behavior of a system is 
never constant, and no analysis of field data is ever complete. 
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There is an evolutionary nature to both. In the end it may not 
be the satisfaction of certain statistical measures that deter
mines termination of the process of identification. Decisions 
are not delayed indefinitely; it is more than likely that the 
analysis will have to be terminated prematurely. Ideally then it 
ought to be the case that all the residual inadequacies of 
model structure, or lack of identifiable parameters, are proper
ly accounted for in the application of the model for predictive 
purposes. 

7. PREDICTION ERROR PROPAGATION 

The objectives for the analysis of uncertainty must now be 
considered in a broader context, that is, in light of what has 
been defined in the introduction as problem (P3): uncertainty 
associated with predictions of the future behavior of the 
system. 

The emphasis here will be different from that of sections 
3-6, where the focus was exclusively on the use of models for 
the development of scientific theories about the behavior of 
complex environmental systems. Our discussion must now be 
increasingly concerned with the role of uncertainty in applying 
a model for the purposes of management, although this will 
not divorce it from the scientific issues already raised. 

The essential questions for the analysis of prediction error 
propagation are those of (1) looking prospectively to the ap
plication of the model to management: how significant the 
prediction and its associated error are to the decisions that 
have to be made and if the options (for decision) can be mean
ingfully ranked against a background of inescapable uncer
tainty, and (2) looking in retrospect at the development of the 
model by reference to the historical observations : what the 
consequences are for prediction of a model that suffers from a 
lack of identifiability and, conversely, what can be concluded 
from the propagation of prediction errors about the different 
strategies of model development? 

These, however, are general, perhaps philosophical, 
questions. The specific issues of concern are not as obvious as 
they might seem. 

To begin with, inspection of the literature would suggest a 
great variety of methods for the quantitative analysis of pre
diction uncertainty. This is unnecessarily confusing. Insofar as 
can be established, there are just two basic methods, although 
one could argue about points of detail (see section 7.3). 
Second, the potential confusion may have been fueled by the 
broad and overlapping usage of terms such as sensitivity 
analysis, error analysis, and validation. Indeed, some of these 
difficulties, especially with the term validation, have already 
surfaced in the preceding section (section 6). Our working 
definitions of the relevant terms are therefore as follows. 

Validation: given the model structure and parameter esti
mates, determine behavior under different observed input con
ditions for comparison of the output response with different 
observed behavior. 

Conventional sensitivity analysis: given the model structure 
and parameter estimates, determine changes in the output 
model response that would result from changes in the esti
mated values of the parameters. 

Prediction error propagation : given the model structure 
and parameter estimates, subject to uncertainty, determine 
future behavior under different (assumed) uncertain input con
ditions. 

Reducing uncertainty : determine which sources of error 
(uncertainty) contribute most to the uncertainty of the predic
ted response and design experiments in order to reduce this 
uncertainty. 

All of these issues are apparent in the early original contri
butions of the 1970's [Goodall, 1972; O'Neill, 1973; Miller, 
1974; Burges and Lettenmaier, 1975; Miller et al., 1976; Argen
tesi and Olivi, 1976]. 

There is much that could be said on each issue. However, 
on validation we shall be brief. It can be regarded in the 
narrow formal sense defined above, as a quantitative method 
of evaluating an identified model. There have been few such 
analyses [Thomann et al., 1974; Jorgensen et al., 1978; Collins, 
1980; Najarian et al., 1984], and they can largely be subsumed 
under what has been discussed here as the checks and bal
ances of section 6. Validation might otherwise be regarded in 
a much broader philosophical vein, almost as a vague concept 
(albeit intuitively understandable) that in practice is most 
useful in specifying procedures and protocols for model build
ing [Cale et al., 1983a; Caswell, 1976; Holling, 1978; Mankin 
et al., 1977; Lewandowski, 1982; Loehle, 1983]. In this case it is 
conceivable that the whole of this review is about validation. 

On conventional sensitivity analysis we shall be equally 
brief, narrowing its definition still further to analyses depen
dent only on the solution of what will be denoted in section 
7.3 as the sensitivity equations (see, for example, the case stud
ies of Halfon [1977], Rinaldi and Soncini-Sessa [1978], van 
Straten and de Boer [1979], and Najarian and Taft [1981]; see 
also the substantial literature of chemical engineering 
[McCrae, 1987]). In this restricted sense the difference be
tween conventional sensitivity analysis and a first-order error 
analysis (see section 7.3) is that the former makes no reference 
to the sources of uncertainty that might affect the outcome of 
the predicted state of the system; it involves no concept of the 
uncertainty of a prediction. 

It is thus specifically the questions of, How confident is the 
prediction?, What are the principal sources of the uncertainty 
of the prediction?, and How can these uncertainties be re
duced?, that are of greatest interest. 

7 .1. Prediction After Identification 

Irrespective of the strategy adopted in developing a model, 
it is essentially the knowledge and uncertainty of the internal 
description of the system's behavior that is changed by the 
process of identification. In other words, referring to Figure 1, 
the knowledge of the states (x) and parameters (or:), the struc
ture of their interrelationships, estimates of their values, and 
estimates of their uncertainty (error variance-covariance 
properties) have been modified. The (prior) assumptions about 
the uncertainty in the external description of the system, 
namely, the uncertainty associated with the measured and un
measured input disturbances (I;) and the output response ob
servations (11), do not necessarily have to be changed in so 
significant a manner. The same assumptions about these latter 
might also be made for the purpose of prediction, although it 
is quite possible that the process of identification may es
tablish their inadequacy and prompt improved (posterior) as
sumptions. 

In this review, the a posteriori residual errors of mismatch 
between the observed and estimated output responses, i.e., 
(y - (y)) (sometimes referred to as the "model errors") are not 
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considered to be carried forward from identification to the 
analysis of prediction error propagation. They are regarded as 
a by-product of identification, as Figure 1 suggests. It is quite 
possible, of course, that prediction errors can be quantified in 
like terms, but this is achieved simply by transforming the 
future state (x), parameter (ex), and other errors (~, and where 
appropriate TJ) into an error in the output response variable 
(y). There are clearly cases in which it might be appropriate to 
quantify the error of predicted future behavior directly as a 
function of these residual errors of mismatch, one example 
being the application of Vollenweider's phosphorus-loading 
models reported by Reckhow and Chapra [1983b]. However, 
interpretation of the residual errors in this manner leads to 
certain conceptual difficulties, for they are an amalgam of 
both the various (prior) assumptions about the sources of un
certainty and the consequences of the process of identification. 
For the purpose of analyzing prediction error propagation our 
preference here is to maintain a procedure of accounting 
strictly for the individual sources of uncertainty, for assessing 
the effects of identification on these uncertainties, and ulti
mately assessing the effects of the individual uncertainties on 
predictions of the future. So it is the a posteriori parameter 
(and state) estimation errors that provide the crucial logical 
link that we wish to establish between identification and pre
diction. 

In simple terms the results of the whole process of identifi
cation and the consequences of a lack of identifiability are 
crystallized in the a posteriori parameter estimation error 
variance-covariance matrix, PP(tN). Qualitatively, well (or 
poorly) estimated parameters will have relatively low (or high) 
error variances ; parameters associated with redundant hy
potheses should be highly uncertain; and parameters associ
ated with multiple hypotheses, the collective effects of which 
cannot be disentangled, should yield significant off-diagonal 
covariances in the matrix PP(tN) [e.g., Di Toro and van Straten, 
1979 ; van Straten, 1983; Young et al., 1980]. It is intuitively 
obvious in this last case that many combinations of parameter 
values will give equally good matches between the model and 
past field observations ; there is ambiguity in the identified 
model. Questions must then be resolved as to which combi
nations of parameter values should be used for prediction and 
whether, in the face of prediction uncertainty, there is any 
significant difference between alternative statements about 
future behavior. The argument has its parallel in the context 
of the HSY algorithm discussed in section 3 [Fedra et al., 
1981]. The ensemble of behavior-generating parameter values 
cx*(B) represents an ensemble of equally probable models for 
the description of past behavior. In turn therefore each such 
set of values for the parameter vector is an equally likely 
candidate for making a prediction of future behavior and, 
providing there is a sufficiently large sample for cx*(B), corre
sponding distributions of the predictions can be generated and 
analyzed. 

7.2. Alternative Conceptual Frameworks 

The conceptual framework of control theory, upon which 
the preceding arguments have been constructed, does not nec
essarily accommodate most readers' views of the analysis of 
prediction error propagation. It is not altogether in accord 
with the statistical view of uncertainty, identification, and pre
diction, as illustrated, for example, by Reckhow and Chapra 

[1983a, b] and Reckhow [1983]. And it is different again from 
the perspective of systems ecology that underpins the work of 
O'Neill and Gardner and their colleagues. The two frame
works (of control theory and systems ecology) are not incom
patible, but some translation is necessary. 

O'Neil/'s [1973] original paper on the subject of error 
analysis noted that the error in the predictions from a model 
should decrease with a decreasing degree of model aggrega
tion (in an ecological, as opposed to spatial or temporal, sense 
in this particular case). However, he noted also that precisely 
this increasing refinement of detail-more complex kinetic ex
pressions, more state variables-would tend to increase the 
prediction errors resulting from the necessarily increasing 
number of model parameters with uncertain values. For in
stance, errors of 10% (expressed as a coefficient of variation) 
in the parameter values were found to yield errors of predic
tion of greater than 100%. The exploration of such problems 
naturally bears upon the theoretical foundations of the analy
sis of uncertainty, and this form of enquiry has been a distinc
tive feature of the work of O'Neill and Gardner and their 
associates. Many of their results are reviewed in the work by 
O'Neill and Gardner [1979], where they classify the sources of 
uncertainty into the following categories (for comparison with 
Figure 1). 

1. Uncertainty resulting from model construction, com
posed of model aggregation (see also O'Neill and Rust [1979], 
Cale and Odell [ 1979], Gardner et al. [ 1982], Cale . et al. 
[1983b], and Ha/fan and Maguire [1983]), alternative models, 
and model structure, all of which would be covered by the 
definition of the errors of the a priori assumptions about the 
internal description of the system in Figure 1. 

2. Uncertainty resulting from parameter estimation errors 
(see also O 'Neill et al. [1980], Gardner et al. [1980a, b, 1981a], 
and Gardner and O'Neill [1983]). 

3. Uncertainty resulting from natural variability, com
prising (1) environmental variability, which can be equated 
with uncertainty in the system input disturbances (see also 
Somlyody [1983]), (2) spatial heterogeneity (see also O 'Neill et 
al. [1979] and Gardner et al. [1981b]), which according to 
Figure 1 would be defined under aggregation or lumping 
errors, and (3) genetic variability (see also O'Neill [1979]), 
which in practice would be indistinguishable from the errors 
of parameter estimation (see also, for further discussion, Gard
ner and O'Neill [1983]). 

The group's principal analytical results refer to the analysis 
of (spatial and ecological) aggregation error and to the errors 
deriving from genetic variability as it affects simple kinetic 
expressions for growth rate and other functional aspects of 
ecological systems. These, however, since they require a de
tailed knowledge of ecological interactions, will be considered 
to be outside the scope of the review. Nevertheless, many of 
the group's conclusions are of central importance to the subse
quent discussion, especially those relating to the effects of pa
rameter uncertainty on prediction error propagation and to 
the comparative advantages and disadvantages of Monte 
Carlo simulation and first-order error analysis. One observa
tion, in particular, will set the scene for what follows. 

Although interesting analytical results have been achieved with 
linear and simple nonlinear models, the real challenge lies with 
complex ecosystem models that have been developed over the 
past decade .... Investigation of error propagation in these large 
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nonlinear models will have to be inductive, with numerous indi
vidual applications required before general patterns begin to 
emerge. 

[O 'Neill and Gardner, 1979]. 

7.3. Approaches and Methods 

In its most complete form, an analysis of the propagation of 
state and parameter prediction uncertainty (or error) would 
require computation of the evolution with time of the entire 
probability density function of <x.(tlt 1)) for t ~ t 1 , where t 1 is 
the time at the beginning of the prediction period. Here the 
notation <x.(tlt 1) ) indicates that in principle the predictions 
are conditional upon field observations available up to time 
t 1 , although from here on this conditional nature of the pre
diction will be taken as implicit to simplify notation, i.e., 
(x.(t)) = <x.(tlt 1)) . To be complete in the computation of 
error propagation would require solution of a Fokker-Plank 
or Kolmogorov forward equation [e.g., Jazwinski, 1970]. Oc
casional reference to this requirement has been made in stud
ies of the application of stochastic differential equations in 
stream water quality modeling [Finney et al., 1982] and 
wastewater treatment plant modeling [Harris, 1977]. But just 
as with the Bayesian estimation problem of section 5, for 
which the same kinds of detailed knowledge are also required, 
the computational effort and complication of deriving such 
solutions for the general nonlinear (class II) model of (32) are 
formidable. Again therefore the specific assumption of Gaus
sian probability density functions, or simply the pragmatic 
restriction of interest to the first and second moments of any 
more general probability density function (i.e., the mean and 
variance-covariance statistics, respectively) can lead to more 
tractable solutions. 

Of the two dominant approaches to the analysis of predic
tion error propagation, the above restrictions refer primarily 
to what is known as a first-order (or, more rarely, second
order) error/sensitivity analysis. They may, of course, be perti
nent to the other principal approach, that of the ubiquitous 
Monte Carlo simulation, but in this second case they ate not 
crucial to its application. We may note in passing that Benja
min and Cornell [1970] have discussed Monte Carlo simula
tion as an approximate numerical technique for solving the 
problem of derived distributions, which is essentially the same 
problem as that introduced here, i.e., deriving (analytically) the 
entire probability density function of the predicted variables. 

A definition of the approach of Monte Carlo simulation 
follows from (32a), i.e., 

dx(t)/dt = f{ x, u, ex; t} + !;(t) (34) 

The procedure is simply to generate a sample set of realiza
tions xi(t) over the prediction period t 1 ::;; t ::;; tP, where each 
such realization, denoted by superscript i, is computed from 
(34) with the specific choices of values for the initial state xi(t 1 ), 

the parameters exi(t), the measured input disturbances ui(t), and 
the sequence of errors !;i(t) drawn at random from (estimates 
of) their respective parent probability density functions. The 
specific procedure of drawing samples from the population 
can be implemented in a number of ways. There are nonran
dom procedures, classified under the title of stratified end pat
tern search methods [McCrae, 1986], and the Latin Hyper
cube sampling strategy, in particular, has already been illus
trated by Jaffe and Ferrara [1984] and Jaffe and Parker 
[1984]. Though the vast literature on experimental design to 
which this alludes must clearly be acknowledged, in this paper 

no such distinctions will be made in referring generally to the 
approach of Monte Carlo simulation. The number of sample 
realizations (i) required to approximate the population statis
tics to a sufficient degree of accuracy can either be determined 
by using the Kolmogorov-Smirnov and Renyi statistics 
[Spear, 1970; Spear and Hornberger, 1980] or, more arbi
trarily, by experience (Gardner et al. [1980a] quote a figure of 
500 samples as being usually adequate). The evolution of the 
entire distribution for the state vector x(t) is thus computed, 
and in this sense, Monte Carlo simulation is, as Dettinger and 
Wilson [1981] have referred to it, a full distribution technique. 

First- and higher-order error (sensitivity) analyses of the 
predictions generated by the model of (34) depend essentially 
on the conceptual separation of the problem into the two 
subproblems of computing a nominal (mean) reference trajec
tory for the future state of the system and of assessing the 
effects of the various small-amplitude sources of uncertainty 
on the uncertainty of that trajectory. If we restrict attention to 
a first-order error analysis, which reflects almost entirely the 
attention of the associated literature, the nominal reference 
prediction (x(t)) of the future state x(t) is then given by (from 
34)) 

d( x(t) )/dt = f{ ( x), (u), (ex); t} + ( !;(t)) (35) 

Here ( x(t) ) can be considered to be the estimated mean (first 
moment) of the distribution of x(t), and likewise ( u(t)), (ex(t)), 
and (!;(t)) can be regarded as the estimated or assumed means 
of their respective distributions. Equation (35) is directly anal
ogous to the reference model of (7a) discussed in respect of the 
problem of model structure identification in section 4. 

There are two approaches to the linearization procedure 
inherent in a first-order error analysis, and these lead to differ
ent formulations for computing the propagation of P'(t), the 
variability, or uncertainty, or error variance-covariance 
(second moment) of the predicted state (x(t)). In one of these 
the connection with conventional sensitivity analysis is clearly 
apparent ; the other owes its allegiance much more to the 
notions of an error propagation model and recursive esti
mation as already discussed in section 4. In either case it is not 
necessary to compute the propagation of the prediction errors 
themselves but merely to quantify the propagation of their 
variance-covariance properties as a function of the variance
covariance properties of the contributing sources of uncer
tainty, namely, the following. 

1. E{i(t 1)e(t 1)} = P'(t 1), representing the uncertainty in 
the initial state of the system. 

2. E{ii(t)iiT(t)} = S(t), representing uncertainty in the mea
sured inputs, a source of uncertainty previously subsumed 
under the definition of source 4, below. 

3. E{ti(tpT(t)} = pP(t), representing parameter uncertainty, 
and perhaps most conveniently assumed to be equal to 
pP(tNltN) at the end of some prior identification process. 

4. Q'(t) as the variance-covariance matrix of the (fictional) 
continuous-time white noise process !;(t) representing uncer
tainty associated with unmeasured input disturbances and all 
other undifferentiated sources of uncertainty. 

Here x, ii, and ti are the errors (or small perturbations) 
previously defined in section 4 by (8). They would normally be 
assumed to have zero mean values, as would (!;(t)) = 0, and 
the parameters would normally be further assumed to be time 
invariant. 

The first approach to the computation of P'(t), which is 
the more commonly encountered, derives much more directly 
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from sensitivity analysis. It expresses the instantaneous value 
of P'(t) at future time t as a function of the variance
covariance matrices P5(t f), S(t), PP(t), and Q5(t) and of the sen
sitivity coefficient matrices with respect to x(t) evaluated at 
time t and as a function of (x(t)) . Here the sensitivity coef
ficients derive from a linearization about the nominal refer
ence prediction ( x(t) ), and in order to obtain the values of 
these sensitivity coefficients at time t it is necessary to inte
grate an additional set of ordinary differential equations for 
the evolution of the sensitivity coefficients with time. Accord
ingly, P5(t) is given by (see also Burns [1975] and Argentesi 
and Olivi [1976]) 

ps(t) = B0(t)P5(t f)[B 0(t)]r + BP(t)PP(t)[BP(t}F 

+ B"(t)S(t)[B"(t}F + B~(t)Q5(t)[B~(tw (36a) 

where the sensitivity coefficient matrices B0(t), BP(t), B"(t), and 
B~(t) , having elements [ox;(t)/oxit f)], [ox;(t)/occj], [ox,{t)/vu j], 
and [ox;(t)/o~J, respectively, are obtained from the following 
differential equations: 

dB0 (t)/dt = F 11 (t)B
0(t) B0(tf) =I (36b) 

dBP(t)/dt = F 11 (t)BP(t) + F 12(t) BP(tf) = 0 (36c) 

dB"(t)/dt = F 11 (t)B"(t) + G(t) B"(tf) = 0 (36d) 

dB~(t)/dt = F 11 (t)B~(t) +I B~(tf) = 0 (36e) 

Here the matrices F 11 , F 12, and G contain elements [i, j] 
defined by the derivatives [of;{ · }/oxJ , [of;{ · }/occJ, and [of; 
{ · }/ouj], respectively, where these derivatives are evaluated 
using the nominal reference values (x(t)), (ex(t)), and (u(t)). 

The sensitivity equations (36b)--(36e) are, strictly speaking, 
exact only for the case where the variations of ex, u, and !; with 
time are zero [Eykhoff, 1974], a point to which we shall return 
below. They are the equations of conventional sensitivity 
analysis, and it is from the solution of (36c) in particular that 
the results of Figure 2 have been generated for an assessment 
of model identifiability (see section 2). A related matrix of 
sensitivity coefficients has also appeared earlier in the determi
nation of the posterior parameter estimation error variances 
given by (31) of section 5. 

The second approach to the computation of P5(t) follows 
directly from the discussion of the linear model of error propa
gation discussed in section 4, and it may be helpful to note 
that Malone et al. (1984] have referred to this approach as a 
"generation of moment equations" method. In fact, given our 
preceding discussion of recursive estimation, the algorithm (in
cluding (35) above) is equivalent to a partitioned extended 
Kalman filter from which the correction step has been re
moved (or alternatively, the filter can be imagined to be pro
cessing data expected to arrive at an infinite time horizon). In 
this case the linearization is made about the derivative of the 
augmented state vector, i.e., the function f

0
{ • }, which equals 

dx
0
(t)/dt. An expression for the propagation of P'(t) can then 

be derived directly from the (integrated) discrete-time 
difference-equation form of the error propagation model, i.e., 
(10a). This is achieved simply by setting up the relevant ex
pression for x

0
(tj + 1)x

0 
r(tj+ 1) and then applying the operation 

of mathematical expectation [Beck et al., 1979; Schweppe, 
1973]. In partitioned form, that is, distinguishing between x 
and ~ within the augmented state vector errors x0 , the follow
ing recursive algorithm results: 

P'(tj+ 1) = <l>11(t j+ 1' t)P'(t)<l>11 T(tj+" t) 

+ <l>11(tj+" t)P'(t)<l>12T(tj+1 ' tj) 

+ <l>12(tj+" t)[P"(t)F<l>11 T(tj+ ,, t) 

+ <l>12(tj + l> t)Pp(t)<l>12 T(tj+ ,, t) 

+ r(tj+" t)S(tj+" t)rr(tj+ 1, t) + Q5(t) (37a) 

where P"(t) is the matrix of state-parameter error covariances 
and is propagated according to 

P'(tj + 1) = <l> 11 (tj + 1, t)P'(t) + <l> 12(tj + " t)PP(t) (37b) 

and 

(37c) 

Here the integration interval is from tj to tj+ 1 , and the 
matrices <1> 11 , <1> 12 , and r, where <1> 11 and <1> 12 are submatrices 
of <I>, refer to the discrete-time error model of (lOa). These 
matrices in turn depend upon the matrices F 11 , F 12 , and G as 
defined above for the companion algorithm of (36), which 
themselves refer to the continuous-time error propagatioh 
model of (9a). The matrix QP in (37c) has also been defined 
earlier in section 4 as the variance of the random pertur
bations affecting the temporal evolution (if any) of the model 
parameters (a matter of seemingly little importance, although 
possibly of vital significance to the discussion in section 7.4). 
An analogous derivation of the algori thm for the case of a 
partial-differential equation (class I) model has been presented 
by McLaughlin [1983]. 

The complete algorithm for the mean and error variance
covariance matrix of the prediction using a first-order error 
analysis is therefore given by (35) and either (36) or (37). The 
astute reader will have noticed that there are discrepancies 
between the two alternatives, with (37) appearing to be the less 
restrictive in its assumptions, and the more complete by its 
inclusion of pc and QP. 

This is indeed probably more apparent than real. Were the 
relationships of (36) to be derived from an augmented system 
of dynamical equations for {x, ex, u, and!;}, subsequently parti
tioned, and then suitable assumptions made about certain un
likely error covariances, e.g., between x(t) and ii(t), it would be 
reasonable to conjecture that the two alternatives would be 
identical (subject to identical intervals of integration). Presen
tation of the algorithms for P5(t) in the given forms is a thor
oughly pragmatic reflection of their most usual forms of appli
cation. 

We shall likewise pass over the rarely used second-order 
error analysis without further comment, except for the follow
ing point [see, for example, Dettinger and Wilson, 1981]. In 
the second-order approximation the mean value of the state 
prediction, for the scalar case of errors in a single parameter cc 
only, is given by 

d(x< 2>(t))/dt = f { (x< 2», (u), (cc); t} + <Wl> 
+ (l/2)j<2l(t)pp(t) (38) 

where J< 2>(t) is the second derivative off { · } with respect to cc, 
pP(t) is the variance of the estimation errors of (cc), and 
( x< 2 >(t)) is the mean predicted value of x(t) in the second-order 
approximation. By comparison with (35) it is clear that the 
first-order approximation of the mean is exact whenj< 2 >(r) = 0, 
i.e.,f { · } is linear in the parameter cc. It is also apparent that 
when p2 >(t) -=fa O, significant errors in the parameters will cause 
the first-order mean to L biased, and that the degree of non
linearity of cc inf { · } is reflected in the magnitude of j<2 >(t). 
Inherent in these observations on (38) are thus some of the 
limitations that have been the principal subject of discussion 
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in the comparative studies of first-order analysis and Monte 
Carlo simulation. 

So to summarize, a first-order error analysis involves com
putation of two statistics of the distribution of the errors (x) in 
the predicted state (about a nominal, deterministic reference 
prediction, ( x ) ). Monte Carlo simulation permits analysis (by 
whatever appropriate statistics) of a sample approximation of 
the distribution of possible future realizations of the state x. 

7.4. Case Studies 

7.4.L Prediction error magnitudes. The extension of con
ventional sensitivity analysis to the first-order analysis of pre
diction error propagation appears to have been first proposed 
for water quality/ecological models by Burges and Lettenmaier 
[1975] and Argentesi and Olivi [1976]. It has since been ap
plied by many authors, both in the form of (36) [Lettenmaier 
and Richey, 1979, Reckhow, 1979a ; Di Toro and van Straten, 
1979; van Straten, 1983; Chadderton et al., 1982; Walker, 
1982] and in the form of (37) [Scavia, 1980 ; Scavia et al., 
1981a, b; Beck, 198la, 1983]. Nearly all these studies have 
focused on the problem of lake eutrophication, with the 
models analyzed ranging from the single response-variable 
model of Vollenweider [Reckhow, l979a, b; Walker, 1982] to 
a 16-state variable model for the carbon-, nitrogen-, and 
phosphorus-cycle dynamics in Lake Ontario [Di Toro and van 
Straten, 1979 ; van Straten, 1983]. 

It is unlikely that these were studies motivated by a desire 
to demonstrate just how uncertain a prediction can be, but it 
is instructive to review the figures quoted for the levels of this 
uncertainty. Argentesi and Olivi's analysis of a three-state 
variable phytoplankton model for Lake Endine, Italy, showed 
that a 10% error on the model parameters, initial states, and 
(input) solar radiation pattern could lead to prediction errors 
well above 100-200% during certain periods of the annual 
cycle. Van Straten's [1983] results for the model of Lake On
tario likewise underline the considerable magnitude of the 
errors in predictions that might be obtained : of up to 2050%, 
for example, although the parameter errors relevant to this 
analysis are correspondingly of a high order, with individual 
values exceeding 1000%. The results of the analysis of Scavia 
et al. [198la] of a version of the same Lake Ontario model 
adapted for the inner portion of Saginaw Bay, Lake Huron, 
are similar to those of van Straten. For instance, for parame
ter, initial state, and input disturbance error levels ranging 
between 24% and 202%, maximum prediction errors of be
tween 148% and 772% were obtained. Very much the same 
sort of results have also been obtained by M. B. Beck and E. 
Halfon (manuscript in preparation, 1986) in their analysis of 
(yet another) model for Lake Ontario. In the analyses of both 
van Straten and Scavia et al. the highest prediction error levels 
were associated with state variables representing zooplankton 
concentrations. 

The general pattern of the results emerging from the use of 
Monte Carlo simulation, at least simply in terms of the mag
nitudes of the prediction errors propagated, is not substan
tially different from that of the first-order error analyses [e.g., 
Burges and Lettenmaier, 1975; Hornberger, 1980; O'Neill et al., 
1980; Gardner et al., 1980a, 1981a ; Gardner and O'Neill, 1983; 
Scavia et al., l98lb; Fedra et al. , 1981 ; Walker, 1982; Somly
ody, 1983]. 

Thus if the point has to be made, there is ample evidence to 
suggest that the currently available models of water quality, 
and in particular the larger models, give predictions that are 

highly uncertain (with coefficients of vanatJon upward of 
700%, if such a statistic then has any real meaning). To be 
able to predict only that all things are more or less equally 
probable is not a useful basis for decision making. But there 
are certain factors, relating specifically to the possible conse
quences of identifiability, that will tend to counterbalance the 
generation of such enormous prediction error levels : these are 
the effects of covariance (correlation) among the estimation 
errors of the model parameter values. For instance, in van 
Straten's case study of Lake Ontario, it was possible to reduce 
the prediction errors by over an order of magnitude when 
correlations among the parameter estimation errors (with cor
relation coefficients of up to 0.8--0.9) were taken into account. 
Other examples are less dramatic [O 'Neill et al., 1982a; Beck, 
1983] but strongly supportive of van Straten's results. In fact 
it is worth noting in passing that the approach of O'Neill et al. 
is in this case closely similar to some of the ideas introduced 
by the HSY approach in section 3. 

7.4.2. Comparative studies. If the errors in the model pa
rameters, initial states, and input disturbances are large (as 
indeed they are in some of the above studies), then this is a 
blatant violation of the key assumption in a first-order error 
analysis that all these errors should be small. There has there
fore been widespread concern with the question of how the 
performances of Monte Carlo simulation and a first-order 
error analysis compare [Burges and Lettenmaier, 1975 ; Gar
dner et al., 1981a; Gardner and O'Neill, 1983; Scavia et al., 
1981b; Walker, 1982; Malone et al., 1984]. Thus Burges and 
Lettenmaier conclude from an analysis of a stream DO-BOD 
model, with the three model parameters having coefficients of 
variation of 25%, 29%, and 32%, that the predicted means 
from the two methods are "not appreciably different" and the 
variances of the prediction errors from the first-order analysis 
are "quite satisfactory." Walker [1982] concludes likewise that 
the two methods "compare reasonably," and Malone et al. 
[1984] observe that "for all practical purposes the .. . tech
niques produced identical results" for their case study of a 
simple phosphorus model for Lake Washington. 

The conclusions drawn from the comparative analyses of 
Scavia et al. [l981a], Gardner et al. [198la], and Gardner and 
O'Neill [1983] are, however, otherwise. They suggest both sig
nificant and subtle differences of outcome from the two ap
proaches. Although Scavia et al. [198ib] note that the two 
estimates of prediction error variance propagation are in gen
eral "qualitatively similar," there are (from time to time) quite 
specific differences due, in their opinion, to the following three 
causes. 

L The mean values, ( x(t)), derived from the sample set of 
realizations of (34), i.e., the mean of the Monte Carlo simula
tions, are not identical with the ("deterministic") mean values 
derived from (35) (see also the discussion of (38)). 

2. The first-order approximation deriving from the lin
earization procedure in a first-order analysis is a poor ap
proximation in the presence of strong nonlinearities and large 
errors (see again the discussion of (38)). 

3. The error variance estimate from the Monte Carlo sim
ulations is difficult to interpret, or ambiguous, if the sample 
frequency distributions exhibit significant skewness or are bi
modal, i.e., the first and second moments poorly characterize 
the full distribution. 

The effects of these three items in the study of Scavia et al. 
[198lb] are clearly not negligible. For example, Figure 13 
shows the significant differences between the estimated predic-
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Fig. 13. Comparative study of the use of first-order error analysis 
(dashed lines) and Monte Carlo simulation (solid lines) with a model 
for Saginaw Bay, Lake Huron [after Scavia et al. , 198lb]. The mag
nitudes of the errors of prediction are expressed as coefficients of 
variation (in percent). 

tion error variances expressed as coefficients of variation, al
though elsewhere, Scavia has given results supporting the 
strong similarity of first-order and second-order approxi
mations, which would tend to lessen the significance of point 2 
above [Scavia, 1980]. In short, Scavia et al. are unable of 
resolve entirely the differences between the results from Monte 
Carlo simulation and first-order error analysis and conclude 
that the interpretation of the error variances from the two 
approaches should be considered fundamentally different. 
They argue, in support, that the first-order analysis refers to 
predictions about the future behavior of a typical repre
sentative (species) of a (biological) population, whereas Monte 
Carlo simulation refers to the population as an ensemble. 

Gardner and 0 'N ei//'s [ 1983] conclusions are yet again 
somewhat different. They state that while " .. . the assumptions 
of sensitivity [first-order error] analysis do not appear to 
cause serious problems . . . " there is a danger that such analysis 
may prompt significantly misleading inferences about solu
tions to the problem of reducing prediction uncertainty. 

7.4.3. Kremers results. The overall impression now 
emerging is that prediction error variances can be very large 
and that the approach of Monte Carlo simulation, with its 
lack of restrictive assumptions, would in general be preferred. 
Kremer's [1983] results run against the trend of both these 
provisional observations and in an especially provocative 
manner. 

The basis of Kremer's study is that the model parameters 
(a) can be assumed to vary with time in a random fashion. 
This is entirely consistent with the model assumed for the 
parametric variations in the discussion of recursive estimation 
(specifically (6a) of section 4). But it is clearly different from 
the normal assumption of Monte Carlo simulation. Kremer 
argues that his assumption has a certain biological validity (in 
relation to the natural genetic variability in a population of 
organisms). Hence a random choice of parameter values at 
each point in time, i.e., ( a(t)t 1)) "# ( a(t 1 1t 1)) in general, leads 
to state variable predictions with a relatively small variance 
and with future possible trajectories clustered relatively closely 
around the nominal reference trajectory (i.e., of (35) in a first
order error analysis). For his simple model of competitive 
algal growth, this contrasts with the results from a sample of 
random choices of the initial values of the parameters only, 
i.e., ( a(t)t 1)) = ( a(t 11t 1)) in any single-prediction trajectory, 
which are distinctly bimodal and thus suggestive of a high 
prediction error variance. The underlying mechanism of the 
difference is that (chance) extreme values of the parameters do 
not persist for all time when ( a ) is allowed to vary randomly 
with time. 

This undoubtedly has important implications, not only for 
the way in which the results from the majority of studies using 
Monte Carlo simulation should be interpreted, but also for 
the use of first-order error analysis. In the algorithm of (37), 
the case of temporally varying parameters can be accommoda
ted via the variance matrix QP, representing the expected value 
of the variance of the integral of the stochastic disturbance 
rate process ~(1) over the interval tit= tj + 1 - tj. Were the 
parameters to vary rapidly with time, never being persistently 
biased for any significant period of time, then one might 
expect QP ~ 0 (perhaps counterintuitively, but the net effect of 
their fluctuations would be zero). Should they, on the other 
hand, vary slowly (with respect to the interval tit), they might 
assume persistently extreme values over some period, and con
versely, QP should be relatively large. Such an argument is 
purely speculative, but it is the only interpretation in agree
ment with Kremer's findings that the "faster" the variation in 
the parameter values, the smaller the variance of the predic
tion errors. And this, too, is a conclusion of possibly still 
greater significance, as we shall observe later. 

7.4.4. Ranking the sources of uncertainty. Let us turn first, 
however, to the question of establishing the relative impor
tance of the various sources of uncertainty to the propagation 
of prediction errors [Miller et al., 1976; Argentesi and Olivi, 
1976; Kohberger et al., 1978; O'Neill et al. , 1980; Gardner et 
al. , 1980a, 1981a; Scavia et al., 1981a; Ha/fan , 1984; Gentil and 
Perrier, 1985]. In the context of Figure 1, the objective is to 
rank the contributions to the error of a prediction from four 
sources : the initial state of the system, the parameter estimates 
of the model, the measurements of the input (and output) 
variables, and the unknown input disturbances of the system, 
or the model structure, or whatever other factors are con
sidered to be defined conceptually in the term I; in the basic 
model of (34). 

Having satisfied this more strategic objective, it will prob
ably then be desirable, as a secondary objective, to rank the 
contributions of the individual parameters or variables to each 
of the four primary sources of uncertainty. 

From a first-order error analysis and for the special case 
where all the parameters, say, have identical error levels (coef
ficients of variation) and there is no correlation among these 
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parameter errors, the relative significance of each individual 
error can be ranked straightforwardly as a function of the 
relative sensitivity coefficient defined as 

b;/(t) = [ox;(t)/oait)] / [ ( x ,{t) ) / ( cxif))] (39) 

at time t. In order to obtain an aggregate ranking for the 
entire prediction period t1 -> tP it would be necessary to inte
grate b;/(t) accordingly and to rank the resulting integrals. 
For the rather more general case where the parameter errors 
do not have identical levels, yet are not correlated, the per
centage contributions (c;;) of the error on parameter j(pi/) to 
the error variance of state i(p/ ) can be computed from [Ar
gentesi and Olivi, 1976] 

(40) 

Both (39) and (40) are based on (36) as the approach to the 
variance-covariance computation of a first-order error analy
sis. 

The ranking of the relative significance of the individual 
sources of error can also be posed as a question of the degree 
of correlation between the predicted state errors and the pa
rameter errors. It is in fact this interpretation, and the direct 
use of the state-parameter covariance matrix pc from (37b), 
when normalized in the form of correlation coefficients, that 
Scavia et al. [1981a] adopt for their analysis of a model for 
Saginaw Bay, Lake Huron. The same conceptual approach to 
the ranking problem is taken by those studies using Monte 
Carlo simulation for the analysis of prediction error propaga
tion. For instance, O'N eill et al. [1980] and Gardner et al. 
[1980a] generate correlation coefficients between variations in 
the sample set of predictions x;(t) and variations in the 
random realizations of the sample set of parameter values i:i(t) 
(see also Gardner et al. [1981a] and Jaffe and Ferrara [1984]). 
The approach of Kohberger et al. [1978] is Jess straightfor
ward. They define an aggregate weighted measure of the vari
ations about a nominal reference state trajectory that would 
result from variations in the model parameter values; a 
sample set of realizations of the variance measure can then be 
generated, and finally this sample (as the dependent variable 
set) can be regressed on a second-order function of the sample 
parameter values. Further analysis of the properties of the 
resulting regression relationship yields the required ranking of 
the contributions of the individual parameters to the variance 
measure. 

It cannot, of course, be expected that any general pattern of 
conclusions on the significance of the different sources of un
certainty should have emerged. Case study results tend in
evitably to be problem and model specific. For example, pa
rameter uncertainty was found to be much more significant 
than initial state or input disturbance uncertainty in the study 
of Scavia et al. [1981a]. Yet in contrast, Somlyody's [1983] 
analysis of a one-dimensional model for the seiche behavior of 
Lake Balaton indicated that uncertainty in the wind direction 
(a measured input disturbance) would_ be considerably more 
important than uncertainty in the model parameters such as 
the bottom friction coefficient. Notable too is the observation 
from the analysis of Gardner et al. [1980a] of the predator
prey models of O'Neill et al. [1980] that the effects of parame
ter uncertainty dominate over the effects of "modeling error," 

assumed in this case to be due to an erroneous model struc
ture. This observation does, however, require clarification, for 
the results refer to errors arising from alternative model struc
tures relative to the predictions from a reference, and assumed 
"true," model structure. Within the scheme of Figure 1 the (a 
posteriori) residual errors and identified model structure 
would be inextricably reflected in the a posteriori parameter 
estimation error variance matrix (PP), and also possibly P' . It 
is therefore perhaps a weakness of this scheme that such dis
tinctions cannot be made, although the need for, and capacity 
to calculate, them is not immediately obvious. 

Of much more immediate concern is the result that the two 
different methods of ranking the sources of uncertainty, ac
cording to relative sensitivity coefficients (first-order error 
analysis) or according to correlation coefficients (from Monte 
Carlo simulation), give significantly different conclusions [Gar
dner et al., 1980a; Ha/fan, 1984]. And the important impli
cation of a wrong ranking of the significance of the various 
sources of uncertainty is that the wrong experiment will be 
designed to reduce the uncertainty in any subsequent predic
tions. 

7.4.5. Experimental design and the reduction of uncer
tainty. From the (original) experimental data, identification 
has yielded knowledge of the (internal) description of the 
system's past behavior and knowledge of the uncertainty that 
circumscribes the interpretation of this behavior. We have 
examined the propagation of that uncertainty forward into the 
prediction of future behavior, distinguished the most impor
tant sources of uncertainty giving rise to poor predictions, and 
hence can now ask the question of what new experiments can 
be designed in order to reduce the most critical uncertainties. 
Thus the review has turned a full circle. This is, once again, 
and as already discussed in section 2, problem (P4). But given 
now the greater body of prior knowledge of the system's be
havior and uncertainties, the problem of experimental design 
can be considered in less primitive terms than before. In par
ticular, if the relationship between the state variables and the 
measured output response variables is assumed to be of the 
form of (32b) (for the class II model structure), i.e., 

(41) 

the problem of experimental design can be formulated within 
the conceptual framework of control theory (more precisely, as 
a filtering problem ; Moore [1973], Moore et al. [1976], Letten
maier and Burges [1977], and Canale et al. [1980]). A more 
sophisticated experimental design problem can therefore be 
postulated, i.e., one that is conditioned upon a knowledge of 
uncertainty : 

Given a model, knowledge of the internal description of the 
system's behavior {x, or}, and its associated uncertainty, how will 
information about the external description of the system {u, y} 
and its associated uncertainty, alter the knowledge of x and or ? 

In simple terms, several authors have remarked that a 
higher frequency of sampling (of u and y) should be allocated 
to (predicted) periods of rapid change in the state variables (or 
equivalently of maximum biological activity) because these are 
periods of maximum prediction error variances [Gardner et 
al. , 1980a ; Scavia et al., 1981a; Lettenmaier and Richey, 1979; 
Jorgensen et al., 1981]. This is clearly similar to the comments 
on sensitivity coefficients, identifiability, and experimental 
design in section 2, in particular, the discussion of Figure 2, 
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but it differs in respect of the reference to prediction uncer
tainty. 

In more advanced terms, the above problem of experi
mental design can be cast as a problem of constrained opti
mization, of minimizing the cost of the measurement strategy 
subject to constraints on the leading diagonal of the state 
estimation error covariance matrix, i.e., P'(t) in (37a) [Canale 
et al., 1980]. For example, Figure 14 shows the propagation of 
error variance about nominal (predicted) state (x) and pa
rameter (a) trajectories for phosphate concentration and a 
phytoplankton growth rate constant in one of the spatial seg
ments of a model for Saginaw Bay, Lake Huron [Canale et al., 
1980]. In the event that no further observations are made of 
the system, the uncertainty in the state prediction propagates 
with increasing magnitude, while the parameter uncertainty 
remains unchanged. In other words, this is simply the solution 
of (37), i.e., use of the prediction step alone of the filtering 
algorithm presented as (12) in section 4. However, were a new, 
"near-optimal" monitoring program to be implemented, both 
error variances would be progressively reduced. In this case, 
the assumption is that future observations of the output re
sponse (y) of the system would be available and that these 
observations would be uncertain, with an error variance of, 
say, R, associated with 11 in (41). Without necessarily speci
fying what the values of y would be, this enables use of both 
the prediction and correction steps of the filter of (12), the 
reduction in the error variance propagation being brought 
about specifically by (12d). 

7.5. Commentary 

Unlike the topic of identification, which suffers from a 
weakness in the availability of appropriate methods, the 
analysis of prediction error propagation needs perhaps not so 
much new methods and approaches as new questions about 
what the analyst wishes to achieve in making predictions. 
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Fig. 14. Analysis of error propagation in a case study of monitor
ing program design for Saginaw Bay, Lake Huron [after Canale et al., 
1980]. (a) Phosphate concentration. (b) A phytoplankton growth rate 
constant. Dots represent the predicted state x or parameter oc, and the 
first bar symbol of each such pair represents the one standard devi
ation bounds of the errors for a "zero" measurement strategy, while 
the second bar refers to a "full" measurement strategy. 

There are certainly good reasons for continuing to explore the 
limitations of first-order error analysis vis a vis the use of 
Monte Carlo simulation, for erroneous conclusions can be 
drawn, in particular, about how to set about reducing predic
tion uncertainty. But for most practical purposes these meth
ods are well tested and do, by and large, deliver the answers 
sought to the questions asked. Such satisfactory preformance 
cannot, for comparison, be attributed to the problems dis
cussed throughout sections 3-6. If anything, the straightfor
ward analysis of prediction error propagation has received less 
attention in the past 2 or 3 years, suggesting possibly a shift of 
interest toward issues of management and decision making 
under uncertainty (as discussed in section 8). 

Perhaps surprisingly the choice of types of probability den
sity function characterizing the sources of uncertainty has not 
been extensively discussed . One exception is the analysis of a 
stream ecosystem model by O'Neill et al. [1982a], who have 
concluded that their model yielded expected values and coef
ficients of variation that were insensitive to the choice among 
uniform, triangular, and Gaussian distributions (by far the 
most commonly used statistical assumptions). This implies 
neither a lack of statistical rigor nor a lack of curiosity about 
extreme-value events. Rather it reflects a lack of sufficient field 
data, especially for variables of a biological or biochemical 
character, by which to justify a more refined choice of density 
function. 

Most of the evidence suggests that the current models of 
water quality, in particular, the larger models, are easily capa
ble of generating predictions to which little confidence would 
be attached. Yet there have been few case studies of the truly 
larger scale models, and the challenge that they represent (as 
O'Neill and Gardner [1979] have described it) has not been 
adequately met. In this respect, much remains to be done. 

On balance, it has to be accepted that a first-order error 
analysis will always be suspect in its accuracy because of the 
inherent approximations of linearization. It is similarly not as 
complete in its analysis as Monte Carlo simulation, but it may 
well be less cumbersome in its mechanization of the effects of 
correlated errors and in being able to preserve the relation
ships between prediction error and the various sources of un
certainty (which are particularly evident from the structures of 
(36) and (37)). It must also be an advantage of first-order error 
analysis (as yet not fully exploited) that it can be interpreted in 
the context of filtering theory and hence viewed more nat
urally in the Bayesian terms of this review. This conceptual 
setting of first-order error analysis may indeed prove to be 
more fruitful in stimulating new questions for the analysis of 
prediction error propagation. It may then be that Monte 
Carlo simulation is the more appropriate method for address
ing the numerical solution of these new problems. 

However, before turning to a possible agenda of problems 
for the future, let us close this discussion of prediction error 
propagation- of predictability itself- with an apparent para
dox. In a stochastic model, whose parameters vary randomly 
with time, the faster the rate of random parametric variation, 
the less is the variability of the predicted state of the system 
[Kremer, 1983] (see also Tiwari [1979] and related discussion 
by Finney et al. [1982]). Consider now a deterministic nonlin
ear model, with no stochastic elements, that predicts essen
tially chaotic behavior [May, 1976]. Could it be, if we believe 
our common experience that reality is orderly and somehow 
predictable, that out of randomness comes forth order (see 
also O'Neill et al. [1982b])? 
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8. F URTHER STUDIES 

It is perhaps a foolhardy reviewer of the subject of uncer
tainty who would speculate about the directions of future re
search. But let us begin by reiterating the main trends of the 
discussion from both section 2 and sections 3- 7. 

The objective throughout the whole of this review has been 
to steer a middle course between opposing approaches to 
modeling that are either overly complicated or overly sim
plified, albeit with a distinct tendency to err on the side of 
simplicity. It would be naive to imagine that there is a best 
approach to the development of models for identifying and 
predicting the behavior of environmental systems, any more 
than there is a best model for a given problem. While it is 
always possible to construct a model that includes every detail 
of conceivable relevance, what we have loosely labeled a class 
I model, such a model is not an effective prescription for the 
exhaustive interpretation of field data. And while it is equally 
possible to interpret time-series field data via a simple input/ 
output model (a class III model), this is insufficient if it is not 
coupled with a procedure for the assessment and revision of 
prior theories about the phenomena governing process behav
ior. So there has been some movement toward a position in 
which these two polarized approaches can be seen as comple
mentary : the one representing more the assembling of an 
archive of hypotheses (class I), the other representing a vehicle 
for the interpretation of field data (class III). 

Any discussion of the (scientific) merits of a preferred ap
proach to modeling by reference to observed behavior tends 
ultimately to be deflected into a sterile discussion of goodness 
of fit to the data. It is thus difficult to expose the limitations of 
the various approaches unless, that is, the debate is cast in 
terms of the question of prediction. It is prediction too that is 
of direct relevance to management and decision making. In 
fact, there is a dilemma [Beck, 1981b, 1983]. Intuition would 
have led us to suppose that the comprehensive model would 
be superior in its "predictive power," such superiority resting 
upon the assertion that the simpler models (identified from an 
inevitably restricted sample of past observations) would be 
unable to predict the future under conditions substantially 
different from those of the past. But is this superiority justi
fied ? For we have now seen that this assertion is crucially 
suspect in overlooking the problem of identifiability, i.e., the 
ambiguities of representing past behavior, and the propaga
tion of (possibly gross) uncertainties in predicting future be
havior. The dilemma is that the simpler model, reflecting only 
the observed behavior of the past, and being presumably well 
identified, will predict an "incorrect" future and, worse still, 
suggest possibly substantial confidence in that prediction. The 
more complex model, although it may be capable of predict
ing a "correct" future, will be reliant upon apparently re
dundant or ambiguous hypotheses for that prediction, which 
should not therefore be accorded much confidence. Moreover, 
such models may be capable of generating equally probable, 
but quite contradictory predictions. 

So again, the middle course may have something to contrib
ute, and it does seem to echo Botkin's [1977] conjecture that, 
"if small is beautiful, and big is ambiguous, then middle-sized 
is meaningful." It too, however, is by no means without limi
tations. Suppose we take the form of our intermediate class II 
model structure. It reflects a position on the identification of 
models that favors simplicity in the prior hypotheses, makes 
some relatively direct reference to the physical, chemical, and 

biological phenomena believed to govern observed behavior, 
and attempts to interpret the field data in like terms. Such a 
strategy will always pose the substantial difficulty (as dis
cussed in section 4) of having to choose or to generate ad
ditional hypotheses to be included in a demonstrably inad
equate model structure. This is arguably neither better nor 
worse than the problem of starting with a comprehensive 
model and then handling the difficulty of identifying those 
redundant hypotheses that are to be excluded from the model 
structure (assuming it were first possible to demonstrate the 
inadequacy of the structure, which is debatable). 

Not surprisingly, then, there are many unresolved issues for 
the further development of the subjects of uncertainty, identifi
cation, and prediction in water quality modeling. The key 
questions to be addressed in this section are as follows. 

l. Are the basic problems of model identification ones pri
marily of inadequate method or of inadequate forms of data? 

2. What opportunities are there for the development of 
improved, novel methods of model structure identification, in 
particular, with regard to exposing the failure of inadequate, 
constituent model hypotheses? 

3. How can an archive of prior hypotheses be appropri
ately engaged in inferring the form of an improved model 
structure from diagnosis of the failure of an inadequate struc
ture? Moreover, in what form should the knowledge of the 
archive be most usefully represented? 

4. What does a lack of identifiability imply for the distor
tion of a model structure, and what are the consequences of a 
distorted model structure in terms of generating predictions? 

5. Given uncertainty, how can one speculate about the 
prediction of a "radically different" future? 

6. What, in the end, does all this mean for decision making 
under uncertainty? 

8.1. The Nature of the Data 

When all the sophistication of the algorithms for identifi
cation is stripped away, the inescapable precondition for their 
successful application is that the dynamic changes in the input 
variables (u) are almost self-evidently related to corresponding 
changes in the output response variables (y). Consider, as an 
illustration of the ideal, the classic tracer experiment for deter
mining the advective transport and dispersion of a pollutant 
along a river. There can be little doubt that the typical pattern 
of the downstream output response concentration (of Figure 
15a) is unambiguously related (in some way) to the upstream 
input pulse of tracer. Now consider, by way of contrast, the 
fast (high frequency) output response of an algal bloom in a 
lake, to which no obviously impulselike change in input solar 
radiation or nutrient loading pattern corresponds (Figure 
15b). What we see in terms of the external description of the 
system { u, y} in this case is "apparently insignificant input 
perturbation: significant output perturbation." It might con
versely occur that the in situ field data exhibit "apparently 
significant input perturbation : insignificant output pertur
bation," a situation commonly found in the performance of 
biological wastewater treatment processes (Figure 15c; see 
also Beck [1986]). 

Either of the latter two cases is precisely what one would 
wish to avoid for the purposes of model identification; they 
reflect strongly nonlinear input/output relationships. Most 
methods of identification, suitable for the form of external 
description of Figure 15a, assume a priori a simple, linear 
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Fig. 15. Stylized examples of input and output field data patterns 
for (a) a dye tracer experiment in a river, (b) the occurrence of an algal 
bloom in a lake, and (c) a secondary biological wastewater treatment 
process. 

model structure, and from there can proceed to the identifi
cation of weak forms of nonlinearity (see section 4). Even to 
begin to interpret the external descriptions of Figures I Sb and 
!Sc, it is necessary a priori to postulate virtually the correct 
form of (strong) nonlinearity, and this is notoriously difficult 
for, say, the population dynamics of algae (M. B. Beck and B. 
A. Finney, Operational water quality management: A case 
study of the Bedford Ouse River system, submitted to Water 
Resources Research, 1986). 

The difficulties of identifying environmental systems are 
thus not merely that the data are uncertain, but that they are 
derived from poor approximations of the classical experiments 
of laboratory science. 

8.2. Failure 

In section 4 the idea of model structure was defined as a 
complex amalgam of constituent hypotheses. In order to un
derstand what was ineaht by the selection and evaluation of 
that structure we introduced a conceptual analogy between a 
inodel structure and a physical engineering.structure. The gen
eral problem of model structure identification, irrespective of 
the method used for its solution, is the need to expose unam
biguously the failure not of the model as a whole, but of the 
constituent model hypotheses. The failure of a hypothesis can 
be likened to the failure of a component member of a physical 
structure subjected to various loads, and in other ways this 

same notion can be equated with Popper's view of the scientif
ic method. 

The use of recursive estimation algorithms is one specific 
means of solving the problem of model structure identifi
cation, indeed one that has had much to do with the definition 
of the problem. In section 4, temporal variation of the esti
mated values of the model parameters was taken to be indica
tive of the failure of a constituent hypothesis. Thus in the 
model structure or "graph" of Figure Sb, the nodes represent 
the model's state variables (x) and the branches (structural 
members) the model parameters (a). The external loads placed 
on the (model/engineering) structure may be assumed to be 
equivalent to the errors of mismatch between observed and 
estimated behavior. The "distortion" necessary for the model 
structure to be matched with the structure of the dynamics 
underlying the observations is reflected in the deflections of 
the recursive parameter estimation trajectories (such as those 
of Figure Sc). The capacity of a structural member (hypoth
esis) to resist deformation, i.e., its mechanical properties, corre
sponds in some way to the confidence (uncertainty) attached 
to that constituent hypothesis (as parameterized through a). 
And last, the more rigidly (confidently) the model structure is 
stated, the more easily demonstrable ought to be its failure. 

The questions that one would like to have answered are the 
following: has a failure of a constituent hypothesis occurred, 
what are the relative weaknesses/strengths of the individual 
hypotheses, and what is the connection between the failed 
hypotheses and the mismatch between the model and the ob
servations? 

However, experience shows that clear answers to these 
questions are difficult to obtain because (1) the performance of 
the extended Kalman filter (EKF) is not as robust as would be 
desirable and, inter alia, is heavily compromised by the need 
to make more or less arbitrary assumptions about the sources 
of uncertainty affecting the identification problem, (2) the in
strumental variable algorithtn, while it overcomes these limi
tations of the EKF, does not (as usually implemented) make 
direct reference to the physical, chemical, and biological ori
gins of the constituent model hypotheses, and (3) it is difficult 
to absorb and interpret the wealth of diagnostic evidence de
riving from the test of the model structure. 

This third point will be dealt with in a later section. More 
immediate, and more compelling, is the idea that the advan
tages of the IV and EKF algorithms should be combined, and 
their disadvantages eliminated. 

It has to be significant then that with one and the same 
minor modification (use of an innovations process repre
sentation) both can be shown to solve the dual of the primal 
estimation problem for which each was originally intended, 
i.e., (1) accurate parameter estimation with the EKF [Ljung, 
1979], which as we have said in section 4, is an algorithm 
originally intended for the purposes of state estimation, and 
(2) state estimation with the IV [Young, 1979], an algorithm 
clearly developed initially for the purposes of parameter esti
mation. 

It is impossible to resist the temptation to observe that such 
simultaneity of publication date, similarity of authors' names, 
and symmetry of algorithmic structure must be auspicious! 
Indeed they are. The ramifications of these developments are 
several and go well beyond the scope even of this review. They 
are also complex, convoluted, and although directed ulti
mately at simplified algorithms for model structure identifi-
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cation, difficult to summarize in the straightforward, qualita
ti ve terms that follow (other preliminary comments are given 
elsewhere ; Beck [1985c, d]). 

First, and of most immediate significance, Ljung's modified 
form of EKF conducts the estimation of the modei parameters 
as though there were perfect knowledge (i.e., no uncertainty) of 
the state variables, which is notably what the IV does in any 
case. This obviates the need to make some of the notoriously 
arbitrary assumptions about the sources of uncertainty influ
encing the identification problem, which have so limited the 
ease of implementing the ordinary EKF. It ought also to lend 
robustness to the performance of EKF-like algorithms. 

Second, the mechanism by which the above is achieved in
volves estimation of the filter gain matrix elements (for which 
purposes the assumption of an innovations process repre
sentation is necessary). Adaptation of the model's state
parameter estimates as the data are processed sequentially, 
which lies at the heart of our interpretation of model structure 
identification, becomes thus less dependent on arbitrary prior 
assumptions and more dependent on the posterior properties 
of the actual errors of mismatch between the model and the 
data. 

Third, and rather more speculative, if the primal problem 
has been stated as estimation of the model parameters given 
perfect knowledge of the state, the dual problem would be that 
of estimation of the states given perfect knowledge of the pa
rameters. This pair of dual problems corresponds with the 
quality of mesh and nodal descriptions of networks such as 
that of Figure Sb . We know that graphs, networks, and con
nectivity are intimately related to the analysis of structural 
identifiability [e.g., Cobel/i et al., 1979]. We know too that 
structural mechanics is based upon graph theory and network 
representations [Spillers, 1972] and still further that dual 
mathematical programs play an important role in the plastic 
limit analysis of loaded engineering structures [Munro and 
Smith, 1972]. If therefore the problem of model structure 
identification has an analogy in the problem of plastic limit 
analysis, one must ask the potentially very fruitful question, 
Do the existing solutions to plastic limit analysis suggest 
future analog solutions to model structure identification? 

Last, and in a more philosophical vein, let us note that 
assuming perfect knowledge of the parameters is the limiting 
case of making those bold, confident hypotheses that Popper 
has argued are essential to the application of the scientific 
method [Popper, 1968]. In this respect, the trend of what has 
been said in this section would appear to be in the right 
direction and, moreover, meets many of the objections raised 
in the commentary to section 4 on model structure identifi
cation. But making bold, perfectly confident hypotheses (i.e., in 
our terms, deterministic, constant parameters) and then seek
ing to detect the failure of these hypotheses via the temporal 
variability of the estimated model parameter values is an ap
parent paradox. So how might such a test be implemented? 
This is extremely difficult to answer, but one attractive possi
bility would be to represent the "bold, confident hypotheses" 
as a deterministic, nonlinear, continuous-time reference trajec
tory model (such as (7) of section 4) and to interpret the failure 
of these hypotheses via the estimated parameters of a corre
sponding discrete-time small-perturbations model (such as (10) 
of section 4). The resulting estimation problem would also 
have the desirable properties of referring to algebraic equa
tions that are linear in the parameters and would therefore be 

an ideal response to the remarks made in the commentary of 
section 5 on estimation. 

All of these points, however, are highly speculative, not sub
stantiated, and like the bold, confident hypotheses, may them
selves turn out to be demonstrably wrong. But they are still 
worth mentioning because they offer the possibility of escape 
routes from the narrow methodological confines into which (in 
this reviewer's opinion) the subject of identification and pa
rameter estimation has fallen in recent years. 

8.3. Inference 

The essential purpose of modeling is the need to understand 
the behavior of a system either in order to give a satisfactory 
scientific explanation of that behavior or to give advice for the 
guidance of decision making. There are three broadly different 
types of knowledge that enter into the acquisition of this un
derstanding. 

l. Observed knowledge of the external description of the 
system, i.e., the experimental observations of the system's 
inputs and outputs {u, y}. 

2. Theoretical knowledge of the internal description of the 
system, i.e., the constituent hypotheses cast in terms of the 
model's states and parameters {x, ci} (and their relationships 
with the inputs and outputs). 

3. Knowledge of a diagnostic, interpretative character 
about the mismatch between the system and the model, e.g., 
the failure of constituent hypotheses and the identification of 
anomalous events. 

If we were content merely to order and classify the observed 
facts , without further interpretation, then we would need no 
more than the first type of knowledge, and almost all of this 
review would be irrelevant. However, this is not the case, and 
it has become the tradition (over many years) to seek to repre
sent knowledge in the abstract form of mathematical relation
ships and in as complete (and elegant) a form as possible, i.e. , 
the class I model as defined in the introduction to the review. 
With the advent of the digital computer this archiving of hy
potheses, of knowledge of a theoretical type, has been practi
cally removed from virtually all constraints other than the 
creativity of the mathematical analyst to express equations for 
those (observed) phenomena he believes he understands. This 
review has had little to do with that process. In fact where the 
review has discussed model development, in the context of 
identification, it has concerned itself with the development of 
theories strictly by reference to the in situ field data, and using 
the less complete (less elegant) class II and III models as ve
hicles for that process. As such, all of this review (of system 
identification) and now the comments of the preceding dis
cussion of failure have been about increasing knowledge of the 
third type, that is, knowledge of a diagnostic character about 
why a model fails to describe observed behavior. 

The problem of inference (as intended here) is therefore the 
problem of reasoning about the possible form of an improved 
posterior model structure given diagnostic knowledge of the 
failure of a prior model structure. This reasoning is one of 
synthesis because by a sifting and piecing together of the diag
nostic evidence (like the forensic science called for in section 
5), it must proceed to a "good hunch" as to why the model 
failed and how it might be improved. It is also inductive and, 
thus being akin to the creative process of scientific discovery, 
is not entirely capable of being reduced to some logical algo
rithmic form [Beck, 1985d] and should not be so reduced. 
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So what can be said of tentative solutions to this problem of 
inference? Our response involves examination of the nature of 
the inferential reasoning process, which brings into question 
the nature of knowledge representation, which in turn intro
duces both a challenge to conventional wisdom on model 
building, and a quite different view of the problems of uncer
tainty, identifiability, and predictability. 

8.4. Knowledge Representation 

Consider the case study of wind-induced resuspension of 
sediment material in a shallow lake that was discussed in 
section 4. On identification it was found that the prior model 
structure failed to characterize observed behavior over the last 
40 days or so of the experimental record, in that the model 
persistently overestimated the observed suspended solids con
centration (Figure 7). This anomaly requires explanation. Sev
eral hypotheses (at least three) could be plausible candidates, 
one of which concerns the possible effects of wind fetch length. 
The actual reasoning that then took place-insofar as it can 
be recalled-was of the following form: "if" wind fetch length 
increases (decreases), "then" water surface shear stresses in
crease (decrease), "and" sediment shear stresses increase (de
crease), "and" more (fewer) sediment particles are resuspended. 

There is nothing novel about this form of reasoning, as any 
developer of a model will know. Indeed, it is so commonplace 
that it is difficult to notice what might be its importance in the 
present discussion. 

First, the central problem of inference is the incompatibility 
of the various forms of knowledge used in its solution. For 
instance, taking another aspect of the Balaton example [Beck, 
l 985d]: how can diagnostic knowledge concerning correlated 
variations between observed temperature and an estimated 
parameter in an algebraic, input/output (class III) model be 
matched with theoretical knowledge of particle motion in a 
partial-differential equation representation (class I model) in 
order to change the structure of an ordinary-differential equa
tion (class II) model? What the above example of inferential 
reasoning suggests is that it is the imprecise, linguistic knowl
edge at the basis of our mental models of how systems behave 
that may be the most useful common denominator of the 
various types of knowledge and knowledge representation. 

Second, if this is the case, then it is not the precise partial
differential equation representation of particle motion that is 
crucial to this kind of inferential process, but rather the more 
primitive chains of less precise, more macroscopic logical 
reasoning. 

Third, there would be little point in concernin~ ourselves 
with this qualitative form of reasoning if no additional assist
ance could be given to what we already practice with great 
facility. And this is where the much talked-of recent devel
opments in the expert systems of artificial intelligence may 
have a significant role to play [Duda and Shortliffe, 1983 ; 
Forsyth, 1984]. 

Fourth, since we can therefore represent and manipulate 
knowledge in the qualitative, imprecise, linguistic terms of, for 
example, fuzzy logic [Tong, 1978 ; Bosserman and Ragade, 
1982; Jowitt, 1984; Camara et al., 1985], what are the impli
cations of this for the "classical" approach to uncertainty, 
identification, and prediction upon which the whole of this 
review has been built? 

The implications, if not profound, are undoubtedly pro
vocative. Consider the following conjecture. If the systems 

whose behaviour we attempt to describe are inherently impre
cise, and if the observations that can be made of such systems 
are also imprecise, it is illogical to entertain algebraic or differ
ential forms of equations as candidate descriptions of the 
system. This conjecture has merit, and a very preliminary 
reaction to expert systems would be that they seem to work 
best when the system's dynamics are highly nonlinear, as ob
served for instance, in the earlier discussion of Figures I Sb and 
I Sc ; a theory is in its initial phases of development, e.g., as a 
verbal, conceptual model ; crude order must be imposed on a 
confused and conflicting welter of experimental observations; 
and decision making must be conducted in a setting where a 
pragmatic, universal shortcut to interdisciplinary communi
cation is a priority (a matter to which we shall return below). 

But will our observations always remain imprecise, and will 
our theories never develop beyond their initial stages? 

Consider further the following. Suppose the opinion of an 
expert biologist or geochemist is sought for the description of 
the behavior of a given lake system. In effect, what is being 
asked for (and what will be given) is an interpretation of exist
ing theories and casual experimental observation. The logical 
rule that results- most naturally in the form of a cause-effect 
statement- is an amalgam of theoretical and observed knowl
edge. This process is now explicitly subjective but then so too, 
implicitly (upon careful reflection), is the classical approach to 
model building. The distinctive roles of theory and observa
tion have become blurred. It is not clear what has happened 
to the role of identification and diagnosis. Nor is it clear 
whether any principles of scientific method do or should 
govern this process (perhaps it has become "anarchistic" in 
Feyerabend's [1975] terms). 

The instinctive, long-term inclination of the scientist is to 
give his theories as much precision, rigidity, and independence 
as possible. Insofar as it is possible, we wish to set out theories 
apart from subjective interpretation. Or do we? Can we, ulti
mately, accept imprecision (as opposed to uncertainty) as fun
damental to nature? 

8.5. Questions for Prediction 

It has been said that the variance (uncertainty) properties of 
the posterior parameter estimation errors can be thought of as 
a synopsis of the results of forcing a model structure to fit the 
data. In terms of the analogy of a physical engineering struc
ture, such "forcing" may cause a distortion of the model struc
ture. And in much the same way as we have already discussed 
the possibility of a model structure in speculating about the 
interpretation of past behavior, so this metaphor can be ex
ploited in order to study the implications of distorted struc
tures molded by the fitting process to possibly quite different 
shapes. 

Suppose that the model under study has been fitted to a set 
of data, that the model structure suffers from problems of 
identifiability, and that many combinations of the parameter 
estimates give "acceptably good" fits to the data, two of which 
might correspond with the oair of distorted structures in 
Figure 16. Unwittingly either version of the fitted model struc
ture might be used for the purposes of predicting the long
term future behavior of the system. For instance, Figure 17a 
shows two sets of predictions that could have been generated 
by the two equally possible structures of Figure 16. In fact 
these results refer to the behavior of a phytoplankton popu
lation in a model of Lake Ontario [Ha/fan, 1979], the differ-
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(a) (b) 

Fig. 16. Conceptual analogs of two equally possible versions of a 
model structure resulting from the problem of model identifiability. 

ence in initial values deriving from the different "equilibrium" 
annual cycles established after a transient from the present 
state (M. B. Beck and E. Halfon, manuscript in preparation, 
1986). 

What would one conclude from such predictions? Whatever 
the temptation, no conclusions should be drawn except, of 
course, to qoubt the value of purely deterministic predictions 
and to raise again a question mark over the predictive powers 
of comprehensive models. One might have expected the con
clusion that there may be so much uncertainty attached to 
these predictions that literally anything could happen in the 
future. This too would be inappropriate. In Figure l 7b the 
bounds for the alternative predictions lying within one stan
dard deviation of their respective mean (i .e., deterministic) tra
jectories are indicated. All errors have been assumed to be 
normally distributed, only errors arising from the model pa
rameter estimates have been accounted for, and in fact the 
results shown have been computed from the algorithm of (37) 
in section 7. There are times when the predictions do not differ 
significantly, i.e., they are "indistinct," times when their means 
are seemingly different but there is sufficient uncertainty to 
render these predictions "ambiguous," and many times when 
the nominal trajectories are substantially different and with 
sufficiently little error that they are confidently "contradic
tory." 

Such reasoning may be spurious, and certainly these results 
are based on the strong assumption, among others, that iden
tical variance-covariance structures hold for different nominal 
sets of parameter estimates. Consider, however, that for the 
problems of surface water acidification there is every possi
bility of needing to make decisions in the face of competing 
(and conflicting) hydrological and hydrochemical theories. 
Given all the existing uncertainties, the questions that we 
would like to see opened up by this type of analysis are (1) is it 
possible to distinguish any significant difference between the 
consequences of competing theories that give equally plausible 
explanations of past behavior, (2) is it possible to design a 
crucial experiment that will distinguish among competing 
theories, (3) how confident do we have to be of our models in 
order to distinguish significant differences among the re
sponses of the system to alternative input scenarios, (4) if the 
system's predicted behavior is not sensitive to the unidentified 
constituent hypotheses of a part of the model and is only 
sensitive to their collective effects, is it really necessary to 
concern ourselves with a lack of model identifiability [see also 
McLaughlin, 1985], and (5) how would it be apparent that the 
postulate of this question (question 4) is valid? 

The problem of identifiability, which throughout this review 
has been treated as highly undesirable, may not therefore have 
material consequences for the problem of prediction (subject 
to the technicality of question 5). In fact a Jack of identiflabil
ity, instead of being undesirable, may even be of benefit m 
trying to answer certain questions, as we now discuss. 

8.6. The Future Under Substantially Changed Conditions 

Hitherto, the questions of prediction examined here have all 
been based on a conventional problem statement. 

Question 1 ( Ql ) . Given the model structure, its parameter 
estimates, the future input qisturbances (and, of course, specifi
cations of the relevant sources of uncertainty), what future 
behavior is generated? 

Suppose, however, that this question is turned on its head, 
so that (incorporating some of the ideas discussed in section 3) 
we have the following. 

Question 2 (Q2) . Given definitions of acceptable (B) and 
unacq!ptable (B) future behaviors, to what constituents of the 
model structure and assumed future inputs are these behaviors 
most/ least sensitive? 

Or the question can be put in a much more interesting 
fashion. 

Question 3 ( Q3). Given definitions of essentially similar 
(S) and radically different (S) future behaviors, determine an
swers similar to those of (Q2). 
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Fig. 17. Predictions derived from two equally possible combi
nations of model parameter values : (a) deterministic predictions and 
(b) deterministic predjctions and plus or minus one standard devi
ation bounds (dashed lines) on the errors associated with each state
prediction x. A, ambiguous; C, contradictory ; and I, indistinct. 
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Provided therefore that the analyst can define what he un
derstands by the future "under substantially changed con
ditions" (and it is no bad thing that he should be forced to do 
this), he has thus a means of locating its causal mechanisms. 
And if there are constituent hypotheses in the model that 
support this radically different future behavior, then in prin
ciple they ought not to be identifiable against the record of 
past behavior. In other words, we have a reversed form of 
logic in which the implications of a statement about the future 
can be tested against the record of the past. 

8.7. Decision Making Under Uncertainty 

There has always been decision making under uncertainty, 
and there has been quantitative analysis ostensibly in support 
of it for at least 20 years [Loucks and Lynn, 1966]. Present 
trends suggest that in the area of water quality management 
there is a growing momentum of interest in a variety of meth
odological alternatives for incorporating uncertainty into the 
analysis of decision making. This interest can be separated 
broadly into five classes. 

1. The use of Monte Carlo simulation, either simply to 
calculate the distributions (variability) of water quality charac
teristics that would result from alternative management sce
narios [Whitehead and Young, 1979; O'Neill et al., 1982c, 
1983] or to assess the risk of violating a prescribed standard 
[Fontaine, 1984 ; Chapra and Reckhow, 1983]. 

2. The solution of problems of constrained optimization 
under uncertainty [Lohani and Thanh, 1979; Lohani and Sa
leemi, 1982; Fisher, 1983 ; Herbay et al., 1983 ; Somlyody and 
Wets, 1985 ; Fontaine and Lesht, 1986]. 

3. Extension of problem 2 to the notion of fuzzy program
ming in order to derive "satisficing," as opposed to optimizing, 
solutions [Chuang and Munro, 1983]. 

4. The more general application of fuzzy logic (and expert 
systems), either as an operational means of gauging the per
formance of a pollution control authority [Jowitt and Lum
bers, 1982] or as a means of system simulation and prediction 
in an interdisciplinary, decision-making environment [Camara 
et al., 1985; Fedra, 1985]. 

5. Use of the ideas of decision analysis along the lines 
suggested by Chapra and Reckhow [1983] for the control of 
polychlorinated biphenyls (PCB) discharges to the Great 
Lakes. 

This looks promising, but the real question is whether any 
quantitative analysis of uncertainty has been, or is being, used 
to assist decision making in practice. 

As a matter of actual policy, current practice in the United 
Kingdom with regard to the control of river pollution is to 
analyze the impact of polluting discharges in probabilistic 
terms in order to set probabilistic standards to be satisfied by 
those discharges [Warn and Brew, 1980]. Considerations of 
uncertainty are therefore integral to the monitoring of com
pliance with the given standards [Warn and Matthews, 1984]. 
As a matter of proposed policy, the U.S. Water Pollution 
Control Federation recommended in 1981 that the following 
would be desirable. 

Analyzing the wasteloads for water quality-limited streams 
using verified mathematical models that are calibrated with loci:! 
information. 

Consider setting aside some of the stream's capacity as a re
serve for future discharges and as a hedge against errors or inac
curacies in the predictions made with the model. 

[ W acer Pollution Control Federation, 1981]. 

As a matter of independent comment on this review, many 
of its elements are referenced elsewhere in a document com
missioned by the Dutch government on "Handling uncer
tainty in environmental impact assessment," where they 
appear (quite appropriately) as an appendix of brief details 
[Ministry of Public Housing, Physical Planning, and Environ
mental Protection, 1985]. 

And last, as a matter for the reader to consider for himself, 
Somlyody and van Straten [1986] have described recently a 
uniquely comprehensive study of managing eutrophication in 
Lake Balaton, Hungary, in which the issue of uncertainty per
meated essentially every aspect of the supporting mathemat
ical analysis. In their book, the political "background to a 
decision" is discussed at length [Lang, 1986]. Given this evi
dence, the questions are, Did the analysis influence the de
cision; if so, in what way; and more generally, is it really 
necessary to spend a lot of time to establish the relevance of 
scientific analysis to management ? 

9. CONCLUSIONS 

The purpose of this review has been to assess the role of 
uncertainty in the development of mathematical models for 
the interpretation and explanation of past observed behavior 
and for the prediction of future behavior. It has not been the 
intention to review the relevance of these subjects to problems 
of decision making under uncertainty. 

The contributions of over a decade of research into the 
analysis of uncertainty in water quality modeling have been 
many and varied. Perhaps the most innovative has been the 
HSY algorithm of section 3, a conceptually simple means of 
generating preliminary hypotheses about the behavior of a 
system under conditions of sparse field data and gross uncer
tainty in the prior theoretical knowledge of the system's be
havior. As such, this problem has been long standing, and it is 
surprising that it was not properly recognized and addressed 
until relatively recently. 

If adequate numbers of (time series) field data are available 
and the prior theoretical knowledge is less uncertain, there 
emerges a more refined problem of model structure identifi
cation (section 4). The primary advance of the past decade has 
been one of improved problem definition. In other words, it is 
now more clear what sort of questions should be asked of this 
type of analysis and on what basis they might be answered, 
i.e., by seeking to expose the failure of constituent model hy
potheses and then attempting to infer the form of an improved 
model structure from diagnosis of the failed prior structure. 
This advance has been gained largely through the application 
of recursive methods of estimation, even though these methods 
may not eventually be the best means of solving the problems 
of model structure identification, and can certainly be shown 
to have several limitations. 

Given the identified model structure, model calibration or 
parameter estimation would have seemed a straightforward 
problem to solve with no shortage of available methods of 
solution. On the whole, this has not proved to be the case. 
Most attempts at solving this problem have not been entirely 
successful because of a '..lck of model identifiability. In addi
tion, little attention has been paid to evaluation of the residual 
uncertainty associated with the estimated model parameter 
values (section 5). The conclusion of this review is that a lack 
of model identifiability is unlikely to be overcome in the near 
future by improvements in the associated methods of numeri-
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cal optimization. The profit to be derived from this failure is 
that model identification (of which parameter estimation is 
merely a part) should be more usefully viewed as a kind of 
forensic science, a painstaking piecing together and sifting of 
all the evidence obtained from a variety of lines of investi
gation, with the objective of providing a plausible and rigor
ous explanation of why the system behaved as observed. 

The case of prediction under (explicit) uncertainty is rather 
different from that of identification under uncertainty. The 
initial set of questions has been well defined and adequately 
answered (section 7). We now know that the larger models of 
water quality may give highly uncertain predictions of future 
behavior, and that caution should be exercised in the use of a 
first-order error analysis (as could be expected), especially with 
regard to ranking the importance of the various contributing 
sources of uncertainty. For prediction, it is not so much new 
methods of analysis that are required in the future, but rather 
a more wide-ranging set of questions to be answered. 

In the long term, however, whence has the subject of uncer
tainty in water quality modeling come, and whither is it des
tined? We might speculate that just prior to the seminal stud
ies of Streeter and Phelps [1925] there would presumably have 
existed some simple, imprecise, verbal models of the behavior 
of water quality in river systems. There were no electronic 
computers. By the end of the 1970's, under the liberating influ
ence of powerful mainframe computers, there were immensely 
complex, seemingly arbitrarily precise, and predominantly de
terministic models of water quality [Chen and Smith, 1979]. 
There was too a nascent awareness of uncertainty [O 'Neill and 
Gardner, 1979]. This review speaks for the present importance, 
if not dominance, of indeterminism, and against this back
ground there is the unmistakable possibility of a reversion in 
the future to forms of imprecise, linguistic models of behavior 
[Camara et al., 1985]. This is being done under the objective 
of improving communication and because now (this time 
around) the manipulation and exploitation of such models can 
be expected to be profoundly changed by recent developments 
in the methods and programming languages of artificial intel
ligence [Duda and Shortliffe, 1983]. 

If this is so, it will change many of the conventions either 
assumed or set up in this review. The original motivation for 
the review, it has to be said, was a concern with the correct
ness of the convention that the more detailed and "compre
hensive" the model, the more "scientific" would be the expla
nation of past behavior and the more accurate the prediction 
of future behavior. In the end, the conventional assumptions 
made here about the application of the scientific method may 
themselves have to be overturned, either as a consequence of 
philosophical inquiry [Chalmers, 1982] or as a result of the 
challenge of modern computer technology and artificial intelli
gence. What is it, we will have to ask ourselves, that lies 
behind the impressive color graphics that tell us that water 
quality will be "disgusting" as a result of some contemplated 
action? 

NOTATION 

a (subscript) augmented (state-parameter) system properties. 
B matrices of sensitivity coefficients [8x ;/8xit 1)], 

[8x;/8cxi] , [8x J duJ, [8x; /8U . 
C matrix of sensitivity coefficients [8yJ8cxi]. 
e error of mismatch between model response and observed 

response. 
F system matrix for a linear system. 

G input matrix for a linear system. 
H observations matrix for a linear system. 
J squared-error criterion for parameter estimation. 
K Kalman gain matrix. 
P. variance-covariance matrix of (state-parameter) 

estimation errors. 
p c covariance matrix of state and parameter estimation 

errors. 
pP variance-covariance matrix of parameter estimation 

errors. 
p• variance-covariance matrix of state estimation errors. 
Q. variance-covariance matrix of augmented (state

parameter) system disturbances. 
QP variance-covariance matrix of parameter disturbances. 
Qs variance-covariance matrix of state disturbances. 

r three-dimensional, orthogonal spatial directions. 
R variance-covariance matrix of output measurement 

errors. 
S variance-covariance matrix of input measurement errors. 

time. 
t 1 beginning of prediction period. 
tk kth discrete instant in time. 
tN end of identification period. 
tP end of prediction period. 
t 0 beginning of identification period. 
u measured input disturbances of the system. 

W weighting matrix. 
x state variables. 

x. augmented state-parameter vector. 
x* instrumental variable vector. 

y measured output response variables. 
ex vector of model parameters (class II model). 
~ vector of model parameters (class III model). 
I; unmeasured input disturbances of the system. 
v innovations process errors, i.e., one-step-ahead 

prediction errors. 
ro lumped errors of a class III model representation. 
9 vector of model parameters (class I model). 
~ parametric disturbances. 

'I' gain matrix in batch estimation algorithm. 
<l> state transition matrix. 

Accents are used to denote the following : overbar, nominal, 
or reference, values of the states, parameters, inputs, or out
puts ; tilde, errors (or small perturbations) associated with the 
states, parameters, inputs, or outputs. Angle brackets denote 
estimated (or predicted) values of the states, parameters, 
inputs, or outputs. (In some figures, estimates are denoted by a 
circumflex.) 
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