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Abstract. Let spt(n) denote the total number of appearances of the smallest parts
in all the partitions of n. Recently, we found new combinatorial interpretations of
congruences for the spt-function modulo 5 and 7. These interpretations were in
terms of a restricted set of weighted vector partitions which we call S-partitions.
We prove that the number of self-conjugate S-partitions, counted with a certain
weight, is related to the coefficients of a certain mock theta function studied by the
first author, Dyson and Hickerson. As a result we obtain an elementary q-series
proof of Ono and Folsom’s results for the parity of spt(n). A number of related
generating function identities are also obtained.

1. Introduction

Let spt(n) denote the total number of appearances of the smallest parts in the
partitions of n. The spt-function satisfies three simple congruences

spt(5n+ 4) ≡ 0 (mod 5),(1.1)

spt(7n+ 5) ≡ 0 (mod 7),(1.2)

spt(13n+ 6) ≡ 0 (mod 13).(1.3)

These congruences were discovered and proved by the first author [5]. In a recent
paper [8], we found new combinatorial interpretations of the congruences mod 5 and
7 in terms of what we called the spt-crank. In this paper we study how the spt-crank
is related to the parity of the spt-function.
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Let P denote the set of partitions and D denote the set of partitions into distinct
parts. Following [12], the set of vector partitions V is defined by the cartesian product

V = D × P × P.

We call the elements of V vector partitions. In [12], new combinatorial interpretations
of Ramanujan’s partition congruences mod 5, 7 and 11 were given in terms of these
vector partitions. The combinatorial interpretation of the congruences (1.1)–(1.2) is
similar. It is in terms of a subset of V

S := {π⃗ = (π1, π2, π3) ∈ V : 1 ≤ s(π1) <∞ and s(π1) ≤ min(s(π2), s(π3))}.
Here s(π) as the smallest part in the partition with the convention that s(−) = ∞
for the empty partition. We call the vector partitions in S simply S-partitions. For
π⃗ = (π1, π2, π3) ∈ S, we define the weight ω1(π⃗) = (−1)#(π1)−1, the crank(π⃗) =
#(π2) −#(π3), and |π⃗| = |π1| + |π2| + |π3|, where |πj| is the sum of the parts of πj,
and #(πj) denotes the number of parts of πj. The number of S-partitions of n in S
with crank m counted according to the weight ω1 is denoted by NS(m,n), so that

(1.4) NS(m,n) =
∑

π⃗∈S, |π⃗|=n
crank(π⃗)=m

ω1(π⃗).

We see that

S(z, q) :=
∞∑
n=1

∑
m

NS(m,n)z
mqn(1.5)

=
∞∑
n=1

qn(qn+1; q)∞
(zqn; q)∞(z−1qn; q)∞

.

Letting z = 1 gives

(1.6)
∑

π⃗∈S,|π⃗|=n

ω1(π⃗) =
∑
m

NS(m,n) = spt(n).

The number of S-partitions of n with crank congruent to m modulo t counted ac-
cording to the weight ω1 is denoted by NS(m, t, n), so that

(1.7) NS(m, t, n) =
∞∑

k=−∞

NS(kt+m,n) =
∑

π⃗∈S,|π⃗|=n

crank(π⃗)≡m (mod t)

ω1(π⃗).

The following theorem was our main result in [8], and contains the combinatorial
interpretations of (1.1)–(1.2).

Theorem 1.1.

NS(k, 5, 5n+ 4) =
spt(5n+ 4)

5
for 0 ≤ k ≤ 4,(1.8)
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NS(k, 7, 7n+ 5) =
spt(7n+ 5)

7
for 0 ≤ k ≤ 6.(1.9)

The map ι : S −→ S given by

ι(π⃗) = ι(π1, π2, π3) = ι(π1, π3, π2),

is a natural involution. An S-partition π⃗ = (π1, π2, π3) is a fixed-point of ι if and
only if π2 = π3. We call these fixed-points self-conjugate S-partitions. The number of
self-conjugate S-partitions counted according to the weight ω1 is denoted by NSC(n),
so that

(1.10) NSC(n) =
∑

π⃗∈S,|π⃗|=n
ι(π⃗)=π⃗

ω1(π⃗).

Since ι is an an involution that preserves the weight ω1, we have

(1.11) NSC(n) ≡ spt(n) (mod 2),

for all n, by (1.6). A standard argument and some calculation gives

(1.12) SC(q) :=
∞∑
n=1

NSC(n)q
n =

∞∑
n=1

qn
(qn+1; q)∞
(q2n; q2)∞

=
1

(−q; q)∞

∞∑
n=1

qn(−q; q)n−1

(1− qn)
.

In Section 2 we prove the following theorem.

Theorem 1.2.

1

(−q; q)∞

∞∑
n=1

qn(−q; q)n−1

(1− qn)
=

∞∑
n=0

1

(q2; q2)n
((q)2n − (q)∞)(1.13)

=
∞∑
n=1

(−1)n−1qn
2

(q; q2)n
.(1.14)

The function on the right side of (1.14) is a mock theta function studied by the
first author, Dyson and Hickerson [6]. In [6], the arithmetic of the coefficients of the
two mock theta functions

σ(q) =
∞∑
n=0

S(n)qn =
∞∑
n=0

qn(n+1)/2

(−q; q)n
,(1.15)

σ∗(q) =
∞∑
n=1

S∗(n)qn =
∞∑
n=1

(−1)nqn
2

(q; q2)n
,(1.16)

was studied. The coefficients S(n) and S∗(n) are determined by the prime factoriza-
tion of 24n + 1 and 1 − 24n respectively, and are connected with the arithmetic of
the field Q(

√
6). By (1.11)–(1.14) and (1.16) we have

NSC(n) = −S∗(n),(1.17)
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spt(n) ≡ S∗(n) (mod 2).(1.18)

By combining this with results of [6] we obtain our main result on self-conjugate
S-partitions and the parity of the spt-function.

Theorem 1.3. We have the following.

(i) NSC(n) = 0 if and only if

pe || 24n− 1

for some prime p ̸≡ ±1 (mod 24) and some odd integer e.
(ii) spt(n) is odd if and only if 24n−1 = p4a+1m2 for some prime p ≡ 23 (mod 24)

and some integers a, m, where (p,m) = 1.

Remark 1.4. In (ii) above, we have corrected a statement given by Folsom and Ono
[11, Theorem 1.2] on the parity of spt(n).

The details of the proof and discussion of Folsom and Ono’s results will be given in
Section 2. We note that the proofs of Theorems 3 and 5 in [6] involve only elementary
results of arithmetic on Q(

√
6) together with the method of Bailey chains. This

together with the proof of Theorem 1.2 constitute an elementary q-series proof of
the spt-parity result Theorem 1.3(ii). Folsom and Ono’s spt-parity result depends on
the theory of weak Maas forms and some heavy calculation with modular forms. In
Section 2 we will also connect the value of spt(n) mod 4 with another mock theta
function.

Theorem 1.5. Let

Ψ(q) =
∞∑
n=1

qn
2

(q; q2)n
=

∞∑
n=1

ψ(n)qn.

Then

(1.19) spt(n) ≡ (−1)n−1ψ(n) (mod 4).

In Section 3 we obtain some results that we discovered in the process of trying to
prove Theorem 1.2. These results include a number of sums of tails identities and
generating function identities for the spt-crank and self-conjugate S-partitions.

2. Self-conjugate S-partitions, the parity of the spt-function and
mock theta functions

2.1. Proof of Theorem 1.2.

1

(q2; q2)∞

∞∑
n=1

qn(−q; q)n−1

(1− qn)
=

1

(q2; q2)∞

∞∑
n=1

qn(q2; q2)n−1

(q)n

=
∞∑
n=1

qn

(q)n(q2n; q2)∞
=

∞∑
n=1

qn

(q)n

∞∑
k=0

q2nk

(q2; q2)k
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(by [4, p.19,(2.2.5)])

=
∞∑
k=0

1

(q2; q2)k

∞∑
n=1

qn(2k+1)

(q)n

=
∞∑
k=0

1

(q2; q2)k

(
1

(q2k+1; q)∞
− 1

)
,

again by [4, p.19,(2.2.5)]. By multiplying by (q)∞ we have

(q)∞
(q2; q2)∞

∞∑
n=1

qn(−q; q)n−1

(1− qn)
=

∞∑
k=0

1

(q2; q2)k
((q)2k − (q)∞) ,

which simplifies to (1.13).
To prove (1.14), we need some results from [9]. By Theorem 1 of [9] with q → q2,

a→ 0, t = q, we see that

(2.1)
∞∑
n=0

(
(q; q2)∞ − (q; q2)n

)
=

∞∑
n=1

(−1)nqn
2

(q; q2)n
+ (q; q2)∞

∞∑
n=1

q2n

1− q2n
.

By Theorem 2 of [9] with q → q2, a = b = c = 0

(2.2)
∞∑
n=0

(
1

(q2; q2)∞
− 1

(q2; q2)n

)
=

1

(q2; q2)∞

∞∑
n=1

q2n

1− q2n
.

Hence

∞∑
n=0

1

(q2; q2)n
((q; q)2n − (q; q)∞)

=
∞∑
n=0

(
(q; q2)n − (q; q2)∞ + (q; q2)∞ − (q; q)∞

(q2; q2)n

)

=
∞∑
n=0

(
(q; q2)n − (q; q2)∞

)
+ (q; q)∞

∞∑
n=0

(
1

(q2; q2)∞
− 1

(q2; q2)n

)

= −
∞∑
n=1

(−1)nqn
2

(q; q2)n
− (q; q2)∞

∞∑
n=1

q2n

1− q2n
+

(q; q)∞
(q2; q2)∞

∞∑
n=1

q2n

1− q2n

(by (2.1) and (2.2))

=
∞∑
n=1

(−1)n−1qn
2

(q; q2)n
.
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2.2. Combinatorial interpretation of Theorem 1.2. We give a combinatorial
interpretation of part of Theorem 1.2.

Definition 2.1. Let Be(n) (resp. Bo(n)) denote the number of partitions of n with
an odd number of smallest parts, and a total number of even (resp. odd) parts.

Definition 2.2. Consider partitions into odd parts without gaps, i.e. if k occurs as
a part, all the positive odd numbers less than k also occur. For j = 1 or 3, let Cj(n)
denote the number of such partitions of n in which the largest part is congruent to j
mod 4.

Corollary 2.3.
Be(n)− Bo(n) = C3(n)− C1(n).

Proof.
∞∑
n=1

(Be(n)− Bo(n)) q
n =

∞∑
n=1

(
−qn − q3n − q5n − · · ·

) 1

(−qn+1; q)∞

= −
∞∑
n=1

qn

1− q2n
1

(−qn+1; q)∞
=

−1

(−q; q)∞

∞∑
n=1

qn(−q; q)n−1

(1− qn)

=
∞∑
n=1

(−1)nqn
2

(q; q2)n
(by Theorem 1.2)

=
∞∑
n=1

(C3(n)− C1(n)) q
n,

as observed on [6, p.404]. □
Example 2.4. n = 7. Below we list the partitions of 7 with an odd number of
smallest parts.

π #(π)
7 1
6+1 2
5+2 2
4+3 2
4+2+1 3
4+1+1+1 4
3+3+1 3
2+2+2+1 4
2+2+1+1+1 5
2+1+1+1+1+1 6
1+1+1+1+1+1+1 7
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We see that Be(7) = 6, and Bo(7) = 5. There are three partitions of 7 in odd parts
with no gaps:

π largest part
3+3+1 3
3+1+1+1+1 3
1+1+1+1+1+1+1 1

Hence C3(7) = 2, and C1(7) = 1. Thus

Be(7)− Bo(7) = 6− 5 = 1 = 2− 1 = C3(7)− C1(7).

2.3. Proof of Theorem 1.3. First we need some results from [6]. For m ≡ 1
(mod 24) let T (m) denote the number of inequivalent solutions of

u2 − 6v2 = m,

with u+ 3v ≡ ±1 (mod 12) minus the number with u+ 3v ≡ ±5 (mod 12).

Theorem 2.5 ([6]).

S(n) = T (24n+ 1), for n ≥ 0, and(2.3)

2S∗(n) = T (1− 24n), for n ≥ 1.(2.4)

For any integer m (positive or negative) satisfying m ≡ 1 (mod 6) and m ̸= 1, let

m = pe11 p
e2
2 · · · perr ,

be the prime factorisation where each pi ≡ 1 (mod 6) or pi is the negative of a prime
≡ 5 (mod 6). Then we have

Theorem 2.6 ([6]).

(2.5) T (m) = T (pe11 )T (pe22 ) · · ·T (perr ) ,

where

(2.6) T (pe) =



0 if p ̸≡ 1 (mod 24) and e is odd,

1 if p ≡ 13, 19 (mod 24) and e is even,

(−1)e/2 if p ≡ 7 (mod 24) and e is even,

e+ 1 if p ≡ 1 (mod 24) and T (p) = 2,

(−1)e(e+ 1) if p ≡ 1 (mod 24) and T (p) = −2.

We are now ready to complete the proof of Theorem 1.3. First we write the prime
factorisation

(2.7) 24n− 1 = pa11 p
a2
2 · · · parr q

b1
1 q

b2
2 · · · qbss ,

where each pj ≡ 5 (mod 6) and qj ≡ 1 (mod 6) so that

1− 24n = (−p1)a1(−p2)a2 · · · (−pr)arqb11 qb22 · · · qbss ,
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and

(2.8) a1 + a2 + · · ·+ ar ≡ 1 (mod 2).

From (2.5) we have

(2.9) T (1−24n) = T ((−p1)a1)T ((−p2)a2) · · ·T ((−pr)ar)T
(
qb11
)
T
(
qb22
)
· · ·T

(
qbss
)
.

By (1.12), Theorem 1.2, (1.16) and (2.4) we have

(2.10) NSC(n) = −S∗(n) = −1

2
T (1− 24n).

Part (i) of Theorem 1.3 now follows immediately from Theorem 2.6 and (2.9).
We prove part (ii). We observe from (1.18), (2.4) and (2.10) that T (1 − 24n) is

even and

(2.11) spt(n) ≡ 1

2
T (1− 24n) (mod 2).

Now suppose spt(n) is odd so that T (1 − 24n) ̸= 0. From (2.8) we see that at least
one of the aj is odd, say a1. Since T (1− 24n) ̸= 0 we deduce that p1 ≡ 23 (mod 24),
and the factor T ((−p1)a1) = ±(a1 + 1) is even. If j ̸= 1, aj is odd and pj ≡ 23
(mod 24) then the factor T ((−pj)aj) would also be even and (2.9), (2.6) and (2.11)
would imply that spt(n) is even, which is a contradiction. Therefore each aj is even
for j ̸= 1. Similarly each bj is even. Hence each exponent in the factorisation (2.7) is
even except a1. So

1

2
T ((−p1)a1) = ±1

2
(a1 + 1) ≡ 1 (mod 2),

a1 ≡ 1 (mod 4) and

24n− 1 = p4a+1m2,

where p ≡ 23 (mod 24) is prime and (m, p) = 1. Conversely, if

24n− 1 = p4a+1m2,

where p ≡ 23 (mod 24) is prime and (m, p) = 1 then it easily follows that 1
2
T (1−24n)

is odd, and spt(n) is odd. This completes the proof of Theorem 1.3.

2.4. Examples and Folsom and Ono’s results. We illustrate Part (i) of Theorem
1.3 with an example. Below is a table of the 6 self-conjugate S-partitions of 5.

weight
π⃗1 = (1, 1 + 1, 1 + 1) +1
π⃗2 = (1, 2, 2) +1
π⃗3 = (2 + 1, 1, 1) −1
π⃗4 = (3 + 2,−,−) −1
π⃗5 = (4 + 1,−,−) −1
π⃗6 = (5,−,−) +1
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Thus

NSC(5) =
6∑

j=1

ω1(π⃗j) = 1 + 1− 1− 1− 1 + 1 = 0,

as predicted by the Theorem since

24 · 5− 1 = 119 = 7 · 17.
In [11], Folsom and Ono incorrectly stated that “spt(n) is odd if and only if 24n−

1 = pm2 where p ≡ 23 (mod 24) is prime and m is an integer.” We give some
examples, illustrating the difference between their statement and ours. We also make
some comments on their proof.

Example 2.7. n = 507. Then 24n− 1 = 233. Calculation gives

spt(507) = 60470327737556285225064

= 23 · 3 · 251 · 236699 · 1703123 · 24900893,
which is clearly even as predicted by our theorem. In fact, if p ≡ 23 (mod 24) is
prime and

n =
1

24
(p3 ·m2 + 1),

where (m, 6p) = 1, then 24n− 1 = p3 ·m2 and

spt(n) ≡ 0 (mod 24).

This congruence is a special case of [13, Theorem 1.3(i)].

Example 2.8. n = 268181. Then 24n− 1 = 235, and

spt(268181) = 17367 · · · 2073 (a number with 574 decimal digits)

≡ 1 (mod 2),

as predicted by our theorem. Again, using [13, Theorem 1.3(i)] we have

spt

(
1

24
(234a+1 + 1)

)
≡ 1 (mod 8).

We clarify Folsom and Ono’s proof. We let L(z), S(z) be defined as in equations
(1.1) and (1.4) of [11]. We proceed as in Section 4 of [11] to obtain

L(z) ≡
∑
n≥1

∑
m≥0

(
q(12n−1)(12n+24m+1) + q(12n−5)(12n+24m+5)

)
+
∑
n≥1

∑
m≥0

(
q(12n+1)(12n+24m−1) + q(12n+5)(12n+24m−5)

)
(mod 2).

From [11, Lemma 4.1] we have

q−1S(24z) =
∑
n≥1

spt(n)q24n−1 ≡ L(24z) (mod 2),
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so that

spt(n) ≡
∑

1≤d1<d2
d1d2=24n−1

1 (mod 2),

and

(2.12) spt(n) ≡ 1

2
d(24n− 1) (mod 2),

where d(m) is the number of positive divisors of m. The spt-parity result Theorem
1.3(ii) follows in a straightforward manner.

2.5. Proof of Theorem 1.5. We begin with some preliminary facts.

1

(1− qn)2
=

1

(1 + qn)2
+ 4

qn

(1− q2n)2
.(2.13)

f(q) + 4Ψ(−q) = (q; q2)∞ϑ4(0, q), (by [19, p.63]),(2.14)

where f(q) is the third order mock theta function

f(q) =
∞∑
n=0

qn
2

(−q; q)2n
,

ϑ4(z, q) is the theta-function

ϑ4(z, q) =
∞∑

n=−∞

(−1)ne2πinz qn
2

= (e2πizq; q2)∞(e−2πizq; q2)∞(q2; q2)∞,

and

(2.15) f(q) =
1

(q; q)∞

(
1 + 4

∞∑
n=1

(−1)nqn(3n+1)/2

1 + qn

)
,

by [19, p.64]. We restate Theorem 4 from [5]

(2.16)
∞∑
n=1

spt(n)qn =
1

(q; q)∞

∞∑
n=1

nqn

1− qn
+

1

(q; q)∞

∞∑
n=1

(−1)nqn(3n+1)/2(1 + qn)

(1− qn)2
.

It is well known that

(2.17) ϑ4(0, q)
2 = 1 + 4

∞∑
m=0

(−1)m+1q2m+1

1 + q2m+1
.

See for example [3, Eqn. (3.33), p.462]. By (2.15), we have

1

(q; q)∞

∞∑
n=1

(−1)nqn(3n+1)/2

1 + qn
=

1

4(q; q)∞
((q; q)∞f(q)− 1)

(2.18)
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= −Ψ(−q) + 1

4
(q; q2)∞ϑ4(0, q)−

1

4(q; q)∞
(by (2.14))

= −Ψ(−q) + 1

4(q; q)∞

(
ϑ4(0, q)

2 − 1
)

(by [4, p.23,(2.2.12)])

= −Ψ(−q) + 1

(q; q)∞

∞∑
m=0

(−1)m+1q2m+1

1 + q2m+1
,

by (2.17). Therefore, by (2.14) and (2.16) we have

∞∑
n=1

spt(n)qn ≡ 1

(q; q)∞

∞∑
n=1

nqn

1− qn
+

1

(q; q)∞

∞∑
n=1

(−1)nqn(3n+1)/2

1 + qn
(mod 4)

(2.19)

≡ 1

(q; q)∞

∞∑
n=1

nqn

1− qn
+−Ψ(−q) + 1

(q; q)∞

∞∑
m=0

(−1)m+1q2m+1

1 + q2m+1
(by (2.18))

≡ 1

(q; q)∞

(
∞∑
n=0

q4n+1

1− q4n+1
−

∞∑
n=1

q4n−1

1− q4n−1
+ 2

∞∑
n=0

q4n+2

1− q4n+2

)

−Ψ(−q) + 1

(q; q)∞

(
−

∞∑
m=0

q4m+1

1 + q4m+1
+

∞∑
m=1

q4m−1

1 + q4m−1

)

=
1

(q; q)∞

(
2

∞∑
n=0

q8n+2

1− q8n+2
− 2

∞∑
n=1

q8n−2

1− q8n−2
+ 2

∞∑
n=0

q4n+2

1− q4n+2

)
−Ψ(−q)

=
4

(q; q)∞

∞∑
n=0

q8n+2

1− q8n+2
−Ψ(−q)

≡ −Ψ(−q) (mod 4).

Consequently,

spt(n) ≡ (−1)n−1ψ(n) (mod 4),

as desired.

3. Other Results

In this section, we give some results that we discovered along the way in our quest
to prove Theorem 1.2 and the following

Theorem 3.1 ([8]).

(3.1) NS(m,n) ≥ 0,
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for all m, n.

For example, before considering the result (3.1) for general m, one might first
consider the special case m = 0. In Theorem 3.4, we express the generating function
of NS(0, n) in terms of a series involving tails of infinite products. The theorem also
contains some natural variations. We first need to extend a result from [9].

Proposition 3.2 (Prop.2.1, p.403, [9]). Suppose that fα(z) =
∑∞

n=0 αnz
n is analytic

for |z| < 1. If α is a complex number such that

(i)
∞∑
n=0

(α− αn) < +∞, and

(ii) lim
n→+∞

n(α− αn) = 0,

then

lim
z→1−

d

dz
(1− z)fα(z) =

∞∑
n=0

(α− αn).

The extension we need is

Lemma 3.3. Suppose fα(z) =
∑∞

n=0 αnz
n, fβ(z) =

∑∞
n=0 βnz

n, and fαβ(z) =
∑∞

n=0 αnβnz
n

are analytic for |z| < 1. And suppose that (i), (ii) hold for the each of the three se-
quences αn, βn, αnβn (with corresponding limits α, β and αβ). Then

∞∑
n=0

βn(αn − α) = lim
z→1−

d

dz
(1− z) (αfβ(z)− fαβ(z)) .

Proof.
∞∑
n=0

βn(αn − α) =
∞∑
n=0

(αβ − αβn + αnβn − αβ)

= α
∞∑
n=0

(β − βn)−
∞∑
n=0

(αβ − αnβn).

The result follows easily from Proposition 3.2. □
Theorem 3.4. We have

∞∑
n=0

1

(q)2n
((q)2n − (q)∞) =

∞∑
n=1

NS(0, n)q
n,(3.2)

∞∑
n=0

1

(q)2n
((q)n − (q)∞) =

∞∑
n=1

nqn
2

(q)2n
,(3.3)

∞∑
n=0

1

(q2; q2)n
((q)2n − (q)∞) =

∞∑
n=1

(−1)n−1qn
2

(q; q2)n
,(3.4)
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∞∑
n=0

1

(q)n
((q)n − (q)∞) =

∞∑
n=1

qn
2 (1 + qn)

(1− qn)
=

∞∑
n=1

qn

1− qn
.(3.5)

Proof. From (1.5) we have

∞∑
n=1

∑
m

NS(m,n)z
mqn =

∞∑
n=1

qn(qn+1; q)∞
(zqn; q)∞(z−1qn; q)∞

= (q)∞

∞∑
n=1

qn

(q)n

1

(zqn; q)∞(z−1qn; q)∞

= (q)∞

∞∑
n=1

qn

(q)n

∞∑
k=0

(zqn)k

(q)k

∞∑
m=0

(z−1qn)m

(q)m
,

by [4, p.19,(2.2.5)]. Picking out the coefficient of z0 we have

∞∑
n=1

NS(0, n)q
n = (q)∞

∞∑
n=1

qn

(q)n

∞∑
k=0

q2nk

(q)2k

= (q)∞

∞∑
k=0

1

(q)2k

∞∑
n=1

qn(2k+1)

(q)n

= (q)∞

∞∑
k=0

1

(q)2k

(
−1 +

1

(q2k+1; q)∞

)
(by [4, p.19,(2.2.5)]),

=
∞∑
k=0

1

(q)2k
((q)2k − (q)∞) ,

which gives (3.2).
To prove (3.3) we apply Lemma 3.3 with

αn = (q; q)n,

βn =
1

(q; q)2n
,

α = (q; q)∞,

β =
1

(q; q)2∞
.

∞∑
n=0

(−1)nqn(n+1)/2(z; q)n
(q; q)n

= lim
τ→0

2ϕ1

(
τ−1q, z; q, τ

0

)(3.6)

= lim
τ→0

(z; q)∞(q; q)∞
(t; q)∞

2ϕ1

(
0, τ ; q, z

q

)
(by [14, p.241,(III.1)])(3.7)

= (z; q)∞(q; q)∞

∞∑
n=0

zn

(q; q)2n
,(3.8)
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and we have the identity

(3.9)
∞∑
n=0

zn

(q; q)2n
=

1

(q; q)∞(z; q)∞

∞∑
n=0

(−1)nqn(n+1)/2(z; q)n
(q; q)n

.

Thus we have
∞∑
n=0

1

(q)2n
((q)n − (q)∞)

= (q; q)∞ lim
z→1−

d

dz
(1− z)

∞∑
n=0

zn

(q; q)2n
− lim

z→1−

d

dz
(1− z)

∞∑
n=0

zn

(q; q)n

= lim
z→1−

d

dz
(1− z)

(
1

(z; q)∞

∞∑
n=0

(−1)nqn(n+1)/2(z; q)n
(q; q)n

)
− lim

z→1−

d

dz

1

(zq; q)∞

(by (3.9) and [4, p.19,(2.2.5)])

= lim
z→1−

d

dz

(1− z)

(z; q)∞

∞∑
n=1

(−1)nqn(n+1)/2(z; q)n
(q; q)n

= − 1

(q; q)∞

∞∑
n=1

(−1)nqn(n+1)/2

1− qn
,

because

(3.10) lim
z→1−

d

dz
(1− z)F (z) = −F (1),

when F (z) is analytic at z = 1. On the other hand,

∞∑
n=1

nqn
2

(q; q)2n
=

(
d

dz

∞∑
n=0

znqn
2

(q; q)2n

)
z=1

=

(
d

dz
lim
τ→0

2ϕ1

(
τ−1, qτ−1; q, zτ 2

q

))
z=1

=

(
d

dz
lim
τ→0

(qτ ; q)∞(zτ ; q)∞
(q; q)∞(zτ 2; q)∞

2ϕ1

(
z, τ−1; q, qτ

zτ

))
z=1

(by [14, p.241,(III.2)]))

=

(
d

dz

1

(q; q)∞
+

1

(q; q)∞

∞∑
n=1

(−1)n(z; q)nq
n(n+1)/2

(q; q)n

)
z=1

= − 1

(q; q)∞

∞∑
n=1

(−1)nqn(n+1)/2

1− qn
,

again by (3.10). Thus both sides of equation (3.3) are equal to the same thing and
therefore equal to each other.
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Equation (3.4) is contained in Theorem 1.2 and is equation (1.14). The proof is
given in Section 2.1.

Finally we turn to (3.5). The identity

(3.11)
∞∑
n=0

1

(q)n
((q)n − (q)∞) =

∞∑
n=1

qn

1− qn

is well known. See for example [7, p.146,(13)].

∞∑
n=1

qn

1− qn
=

∞∑
n=1

∞∑
m=1

qmn =
∞∑
n=1

∞∑
m=n

qmn +
∞∑
n=1

n−1∑
m=1

qmn

=
∞∑
n=1

∞∑
m=0

qn(n+m) +
∞∑

m=1

∞∑
n=m+1

qmn =
∞∑
n=1

∞∑
m=0

qn(n+m) +
∞∑

m=1

∞∑
n=0

qm(m+n)

=
∞∑
n=1

qn
2 (1 + qn)

(1− qn)
,

which completes the proof of (3.5). □

Some Remarks on Theorem 3.4. As mentioned before we originally wanted to
obtain identities for NS(m,n) in order to approach the result (3.1). The first identity
we obtained was (3.2). The series on the left side of (3.3) is a natual tweak. To our
suprise this series seemed to also have nonnnegative coefficients and the identity (3.3)
was discovered emprically. A quick search in Neil Sloane’s On-line Encyclopedia of
Integer Sequences [16] reveals that

(3.12)
∞∑
n=0

1

(q)2n
((q)n − (q)∞) =

∞∑
n=1

nqn
2

(q)2n
= q +

∞∑
n=2

n∑
m=1

mM(m,n)qn,

where M(m,n) is the number of partitions of n with crank m. See sequence A115995
[18]. It is clear that the left sides of equations (3.2) amd (3.4) are congruent mod
2. The right hand side of (3.4) was found empirically. The coefficients of this series
appear to grow very slowly and many of the coefficients are zero. Such q-series are
quite rare. These properties led us to quickly identify this series with the special
mock theta function, σ∗(q), which was studied previously by the first author, Dyson
and Hickerson [6]. We note that these coefficients also appear in Sloane’s On-line En-
cylopedia. See sequence A003475 [17]. It was only later we discovered the connection
with self-conjugate S-partitions.

The FFW-Function. The initial study of the spt-function [5] was inspired by a
result of Fokkink, Fokkink and Wang [10]. Recall that D denotes the set of partitions
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into distinct parts. Define

(3.13) FFW(n) :=
∑
π∈D
|π|=n

(−1)#(π)−1 s(π),

where as before s(π) denotes the smallest part in the partition π. Fokkink, Fokkink
and Wang [10] proved that

(3.14) FFW(n) = d(n),

the number of positive divisors of n. In [5] a q-series proof of this result was given,
using the identity

(3.15)
∞∑
n=1

FFW(n)qn =
∞∑
n=1

(−1)n−1qn(n+1)/2

(q)n(1− qn)
.

We extend the FFW-function and obtain similar expressions for the spt-function and
spt-crank generating functions. We define

(3.16) FFW(z, n) :=
∑
π∈D
|π|=n

(−1)#(π)−1 (1 + z + · · ·+ zs(π)−1),

so that
FFW(1, n) = FFW(n).

Theorem 3.5.
∞∑
n=1

FFW(z, n)qn =
∞∑
n=1

(−1)n−1qn(n+1)/2

(1− zqn)(q)n
(3.17)

=
1

1− z

(
1− (q)∞

(zq)∞

)
(3.18)

=
∞∑
k=0

zk

(q)k
((q)k − (q)∞) .(3.19)

Proof. Given a partition into n distinct parts and smallest part k we may subtract k
from the smallest part, k + 1 from the next smallest part, . . . , k + (n − 1) from the
largest part to obtain an unrestricted partition into at most n−1 parts. This process
can be reversed and we see that

qn(n−1)/2 · qnk · 1

(q)n−1

is the generating function for partitions into n distinct parts with smallest part k.
Thus

∞∑
n=1

FFW(z, n)qn
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=
∞∑
n=1

(
qn + (1 + z)q2n + · · ·+ (1 + z + · · ·+ zk−1)qkn + · · ·

) (−1)n−1qn(n−1)/2

(q)n−1

=
∞∑
n=1

(−1)n−1qn(n+1)/2

(1− zqn)(q)n
,

since
∞∑
k=1

(
zk − 1

z − 1

)
xk =

x

(1− zx)(1− x)
.

Now
∞∑
n=1

(−1)n−1qn(n+1)/2

(1− zqn)(q)n
=

1

1− z

(
1−

∞∑
n=0

(−1)nqn(n+1)/2(z)n
(q)n(zq)n

)

=
1

1− z

(
1− (q)∞

(zq)∞

)
,

arguing as on [5, p.134]. Lastly we show that

(3.20)
∞∑
n=1

FFW(z, n)qn =
∞∑
k=0

zk
(
1− (qk+1; q))∞

)
.

We see that the coefficient of zkqn in RHS(3.20) is∑
π∈D
|π|=n

k+1≤s(π)

(−1)#(π)−1 (1 + z + · · ·+ zs(π)−1),

which is also to coefficient of zkqn in LHS(3.20). We note that right side of (3.20)
coincides with the right side of (3.19). This completes the proof of (3.17)–(3.19). □
Corollary 3.6.

FFW(−1, n) =
∑
π∈D
|π|=n

s(π) odd

(−1)#(π)−1 =

{
0, if n ̸= j2,

(−1)j−1 if n = j2.
(3.21)

∞∑
k=0

(−1)k

(q)k
((q)k − (q))∞) =

∞∑
j=1

(−1)j−1qj
2

.(3.22)

Proof. Equations (3.21)–(3.22) follow from setting z = −1 in Theorem 3.5 and using
Gauss’s result [4, p.23] that

(q)∞
(−q)∞

= 1 + 2
∞∑
n=1

(−1)nqn
2

.
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□
Remark 3.7. The result (3.21) is due to Alladi [1, Thm.2]. Equation (3.22) appears
to be new. Alladi [2] has found an extension of (3.21) that is a combinatorial inter-
pretation of a partial theta-function identity [2, (1.1)] that appears in Ramanujan’s
Lost Notebook [15, p.38].

Theorem 3.8.

S(z, q) =
1

(zq)∞

∞∑
n=1

(−1)n−1qn(n+1)/2

(q)n(1− z−1qn)

(
zn − 1

z − 1

)
,(3.23)

∞∑
n=1

spt(n)qn =
1

(q)∞

∞∑
n=1

(−1)n−1 n qn(n+1)/2

(q)n(1− qn)
,(3.24)

∞∑
n=1

NSC(n)q
n =

1

(q)∞

∞∑
n=1

(−1)n−1 n qn(n+1)/2

(q)n(1 + qn)
.(3.25)

Proof. In [14, p.241,(III.2)] we replace z by q, and let a = z, b = z−1 and c → 0 to
obtain

(3.26)
∞∑
n=0

(z)n(z
−1)n

(q)n
qn =

(z−1q)∞
(q)∞

∞∑
n=0

(−1)nqn(n+1)/2(1− z−1)zn

(1− z−1qn)(q)n
.

From (1.5) we have

S(z, q) =
∞∑
n=1

qn(qn+1; q)∞
(zqn; q)∞(z−1qn; q)∞

=
(q)∞

(z)∞(z−1)∞

∞∑
n=0

(z)n(z
−1)n

(q)n
qn − (q)∞

(z)∞(z−1)∞

=
1

(1− z−1)(z)∞

(
1 +

∞∑
n=1

(−1)nqn(n+1)/2(1− z−1)zn

(1− z−1qn)(q)n
− (q)∞

(z−1q)∞

)
.

From (3.17)–(3.18) we have

(q)∞
(z−1q)∞

= 1 +
∞∑
n=1

(−1)nqn(n+1)/2(1− z−1)

(1− z−1qn)(q)n
.

Hence

S(z, q) =
1

(1− z−1)(z)∞

(
∞∑
n=1

(−1)nqn(n+1)/2(1− z−1)zn

(1− z−1qn)(q)n
−

∞∑
n=1

(−1)nqn(n+1)/2(1− z−1)

(1− z−1qn)(q)n

)

=
1

(zq)∞

∞∑
n=1

(−1)n−1qn(n+1)/2

(q)n(1− z−1qn)

(
zn − 1

z − 1

)
,
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which is (3.23).
Equation (3.24) follows from (1.6) by letting z → 1 in (3.23).
Before proving (3.25) we need to correct a result in [9]. By Theorem 2 in [9] with

a = q, b = 0 and c = −q we have

∞∑
n=0

(
1

(−q; q)∞
− 1

(−q; q)n

)(3.27)

=
−1

(−q; q)∞

∞∑
n=1

qn(n+1)/2

(q; q)n(1− qn)

=
−1

(−q; q)∞

∞∑
n=1

qn(n+1)/2(1 + (−1)n−1 − (−1)n−1)

(q; q)n(1− qn)

=
−2

(−q; q)∞

∞∑
n=0

q2n
2+3n+1

(q; q)2n+1(1− q2n+1)
+

1

(−q; q)∞

∞∑
n=1

qn

1− qn
(by (3.14)–(3.15))

=
−2q

(−q; q)∞(1− q)2
lim
τ→0

3ϕ2

(
τ−1q, q, τ−1q; q2, τ 2q3

q3, q3

)
+

1

(−q; q)∞

∞∑
n=1

qn

1− qn

= −2q
∞∑
n=0

(q2; q2)nq
n ++

1

(−q; q)∞

∞∑
n=1

qn

1− qn
(by [14, p.241,(III.10)])

= −2
∞∑
n=1

(−1)n−1qn
2

(q; q2)n
+

1

(−q; q)∞

∞∑
n=1

qn

1− qn

by [4, p.29,Ex.6] with x = −q2 and y = q. We have corrected the proof of Case 6 in
[9, pp.405-406]. From (3.27) we have

(3.28)
1

(−q; q)∞

∞∑
n=1

qn(n+1)/2

(q; q)n(1− qn)
= 2

∞∑
n=1

(−1)n−1qn
2

(q; q2)n
− 1

(−q; q)∞

∞∑
n=1

qn

1− qn
.

Now

∞∑
n=0

(−1)nznqn(n+1)/2

(q; q)n(1 + qn)

(3.29)

=
1

2
lim
τ→0

2ϕ1

(
−1, τ−1q; q, zτ

−q

)
=

1

2
lim
τ→0

(−τ ; q)∞(qz; q)∞
(−q; q)∞(zτ ; q)∞

2ϕ1

(
z, τ−1q; q, −τ

qz

)
(by [14, p.241,(III.2)])
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=
1

2

(
(qz; q)∞
(−q; q)∞

+
(qz; q)∞
(−q; q)∞

∞∑
n=1

(z; q)nq
n(n+1)/2

(q; q)n(qz; q)n

)
.

After dividing both sides of (3.29) by (q)∞, applying d
dz
, and letting z → 1 we find

that

1

(q)∞

∞∑
n=1

(−1)n−1 n qn(n+1)/2

(q)n(1 + qn)
=

1

2(−q)∞

∞∑
n=1

qn

1− qn
+

1

2(−q)∞

∞∑
n=1

qn(n+1)/2

(q)n(1− qn)

(3.30)

=
∞∑
n=1

(−1)n−1qn
2

(q; q2)n
,

by (3.28). The result (3.25) follows from (1.17) and (3.30). □
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