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Introduction

Cameras, images, and pixels

Traditional camera

Pinhole model

o Geometry
@ Image formation
o Pixelated images

o Discretization

o | nterpolann http://chestofbooks.com/arts/photography/ Telephotographic-
Lens/images/ The-Formation-Of-Images-By-The-Pinhole-
Camera-And-4.jpg
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Introduction

Cameras, images, and pixels

Single pixel camera

Experimental setting OMDSALS Bowrd

@ Random sampling
@ Reconstruction

o 7 of samples
o Reconstruction algorithm

@ http://dsp.rice.edu/cscamera

Photodiode clrcult
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Introduction

Cameras, images, and pixels

How does it work?

Principles

@ Random basis
(vi = sum(R;(:). * u(:)))

@ .x is a componentwise o\
multiplication

o Linear operation y = Ru
e Each row of R is random 1

DSP

o if u = Dx for some D

@ Reconstruct x from y = RDx
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Introduction

Cameras, images, and pixels

Food for thought

Optical illusion

@ Error in reconstruction

o Can it be used for explaining
illusion?

o Does the explanation fit into
human model?

@ Implication to visual
neuroscience?

o X. Tang and Y. Li, ICIP 2012
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Prerequisites

Important concepts

@ Linear equations
@ Rank, trace, and norms

o Eigenvalues/Eigenvectors and Singular Value Decomposition
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Prerequisites

Linear algebra

0,

%% solve y=Ax

A = rand(3); %% creating a random matrix.
r = rank (A); %% full rank?

y = rand(3,1);

x = A\y; %% one way of solving this: least square
x = inv (A)x*y; %% unique solution if A is full rank
y — Ax %% verify the correctness
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Prerequisites

Linear algebra

Underdetermined and overdetermined

%% solve y=Ax %% solve y=Ax
A = rand (3, 4); A = rand (4, 3);
r = rank(Aj- ' r = rank (A);
y = rand(3,1); y = rand(4,1);
x = Aly;
x = A ; "
x = iﬁz(A)*y. o 727 | X T inv(A)xy; %% 77
YA y—Axx
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Prerequisites

Linear algebra

Rank: the concept

o Matrix Amxn
@ Column rank

@ the maximum number of linearly independent column vectors of A

@ Row rank

@ the maximum number of linearly independent row vectors of A

@ Column rank == row rank

e <min(m,n)
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Prerequisites

Linear algebra

Properties

Two matrices A and B

o rank(AB)<min(rank(A),rank(B))
o rank(A+B)<rank(A)+rank(B)
o rank(AT A)=rank(AAT)=rank(A)=rank(AT)
@ row-echelon forms
o Ae = rref(A) in matlab

Yi Li Computer Vision



Prerequisites

Linear algebra

Questions

Implication in computer vision
@ Background pixels over time
o Multiple part tracking
@ Image matching

@ Your nomination?
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Prerequisites

Linear algebra

Eigenvalue and Eigenvector

o Matrix Apxn
e Av =)v
e Same eigenvalue may have multiple eigen vectors
e zero eigenvalue?
o Matlab
o eig(A)
@ Each column in A can be represented by a linear combination of

eigenvectors
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Prerequisites

Linear algebra

PCA in computer vision

o Eigenvector = basis
@ http://www.umiacs.umd.edu/~knkim/
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Prerequisites

Linear algebra

Singular vector decomposition

o Matrix Amxn
o Factorize Ato A= U>_ VT, where

e U is m x m unitary matrix
e Y is a m x n diagonal matrix
e V is n X n unitary matrix

e Matlab
e [udv] =svd(A)

@ Why we need Singular Value, if we already have Eigenvalue?
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Prerequisites

Linear algebra

@ SVD works for arbitrary matrix Apxn
o A=U> VT means:
e U and V are orthonormal basis
e > is the singular value of A
o Can be used for pseudo-inverse: proof A~! = VZ_l ur
o Proof columns of V are the eigen vector of AT A (homework)

o Consequently, >~ is the eigenvalue of AT A
e How about U ?

@ Low rank approximation
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Prerequisites

Linear algebra

Matrix A,xn

Simple definition
o tr(A)=an+..+ai+ ...+ am

Linkage to Eigenvalue
o tr(A) = sum(eig(A))

Invariant to the change of basis!
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Prerequisites

Linear algebra

Properties

tr(A+B)<tr(A)+tr(B)

tr(A) = tr(AT)

tr(ATB) = tr(BAT)

tr(AT B), “inner product” of A and B
tr(ABC) = tr(BCA)=tr(CBA)
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Prerequisites

Linear algebra

o Case 1: Line fitting

o a few pairs (x;, y;), or simply (x, y)
o B=(x"x)"IxTy

o Case 2: Signal-to-noise rate in signal processing
o decibel (dB)
e Matlab: norm(x,2)
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Prerequisites

Linear algebra

Sum of absolute values

@ In many cases: Dist = ) |x]

Feasible set
OL2 / OL1
A5

(a) (b)

P
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Prerequisites

Linear algebra

Sum of absolute values

@ In many cases: Dist = ) |x]

e Example: Dist = |x; — x2| + |y1 — y2| ("Manhattan Distance”)

Feasible set
OL2 / OL1
A5

(a) (b)

P
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Prerequisites

Linear algebra

Sum of absolute values

@ In many cases: Dist = ) |x]
e Example: Dist = |x; — x2| + |y1 — y2| ("Manhattan Distance”)
@ Why are the differences?:

Feasible set
OL2 / OL1
A5

Y (a) (b)
@ online figure
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Prerequisites

Linear algebra

"Count of non-zero values”

@ Ideal definition for measuring the sparseness of a vector

@ Problem:

o Very difficult optimization, NP complete

o Card(x) in constraints, or minimize the set size of the non-zero
variable

o Need approximation in many practical problems
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Prerequisites

Linear algebra

Matlab practice (and Q/A)

@ Generate two 2 x 2 random matrices A and B
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Prerequisites

Linear algebra

Matlab practice (and Q/A)

@ Generate two 2 x 2 random matrices A and B

@ Use bilinear interpolation to resize them to 10 x 10
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Prerequisites

Linear algebra

Matlab practice (and Q/A)

@ Generate two 2 X 2 random matrices A and B
@ Use bilinear interpolation to resize them to 10 x 10
e Calculate the rank(A)
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Prerequisites

Linear algebra

Matlab practice (and Q/A)

@ Generate two 2 X 2 random matrices A and B

@ Use bilinear interpolation to resize them to 10 x 10
e Calculate the rank(A)

o trace(AT B)=trace(BT A)=sum of A.*B
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Prerequisites

Linear algebra

Matlab practice (and Q/A)

@ Generate two 2 X 2 random matrices A and B

@ Use bilinear interpolation to resize them to 10 x 10

e Calculate the rank(A)

o trace(AT B)=trace(BT A)=sum of A.*B

@ show norm(A(:), 2), norm(A(:), 1), and norm(A(:), 0)
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Prerequisites

Linear algebra

Matlab practice (and Q/A)

@ Generate two 2 X 2 random matrices A and B

@ Use bilinear interpolation to resize them to 10 x 10

e Calculate the rank(A)

o trace(AT B)=trace(BT A)=sum of A.*B

@ show norm(A(:), 2), norm(A(:), 1), and norm(A(:), 0)
@ Generate a 10 x 10 random matrix C
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Prerequisites

Linear algebra

Matlab practice (and Q/A)

@ Generate two 2 X 2 random matrices A and B

@ Use bilinear interpolation to resize them to 10 x 10

e Calculate the rank(A)

trace(AT B)=trace(BT A)=sum of A.*B

show norm(A(:), 2), norm(A(:), 1), and norm(A(:), 0)
Generate a 10 x 10 random matrix C

Compare eig(A) and eig(C)
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Nonnegative matrix factorization (NMF)

e Goal: X = WH
e If k << min(m,n)

o Extreme case: rank(W)=1
e Meaning?

@ Constraints:

A my (v - [A]

m=m nxEk kxm
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Nonnegative matrix factorization (NMF)

Interpretation

o Rewrite X = WH as X ; = 31| H;W.;

o W.; can be considered as a basis function
e X.; is in the space spanned by W
o Columns of W are not necessarily orthogonal

@ Recall PCA

o What are the similarities?
o What are the differences?
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Nonnegative matrix factorization (NMF)

Application

Face recognition

Original

Decomposing faces into parts

Basis of objects

o Orthogonal (Eigenface)
e non-orthogonal (NMF)

W can be regarded as face parts

(]

H can be regarded as weights
for combing basis functions
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Nonnegative matrix factorization (NMF)

Approach

@ L[5 norm between X and WH
e min|X — WH|,

@ Subject to?
e W>0,H>0

@ Non-convex
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Nonnegative matrix factorization (NMF)

Quick detour

Coordinated Descent
o z=f(x)g(y)
e maybe non-convex -> local minima
o Fix x = x0, z = f(x0)g(y) = &(y)
o If z= g(y) is convex, unique solution y;

@ Do the same thing for z = g(y1)f(x) until converge or after
certain number of iterations.
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Nonnegative matrix factorization (NMF)

Solution

Coordinated Descent

@ Random initialize W and H
o lteratively solve | X — WH|,

e |X — WH|, given H
o |X — WH|, given W

o Update until converge
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Nonnegative matrix factorization (NMF)

Iterative Update Rules

Coordinated Descent

@ Random initialize W and H

@ The Euclidean distance |X — WH]|; is nonincreasing under the
update rules

o Wiu=W,> AH‘W and normalize W for each column.
° Hau = May E VVla(W,’_;L)W
e Update until converge
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Nonnegative matrix factorization (NMF)

Interpretation

@ [> norm between X and WH

o Gaussian distribution.

o KL divergence (D(p||q) = 3" piIn £)
o L, distance

@ Basis functions (W) are not orthogonal
e Good or not?

@ Variations

e X = WSH, where S can be used for controlling smoothness
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Nonnegative matrix factorization (NMF)

Matlab experiments (15 mins)

@ Generate a 2 x 2 random matrices A
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Nonnegative matrix factorization (NMF)

Matlab experiments (15 mins)

@ Generate a 2 x 2 random matrices A
@ Resize it to 10 x 10
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Nonnegative matrix factorization (NMF)

Matlab experiments (15 mins)

@ Generate a 2 x 2 random matrices A
@ Resize it to 10 x 10

@ Random initialize matrix Wigx3 and Higxs
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Nonnegative matrix factorization (NMF)

Matlab experiments (15 mins)

@ Generate a 2 x 2 random matrices A
@ Resize it to 10 x 10

@ Random initialize matrix Wigx3 and Higxs

Use iterative update rule Wi, = Wi, 3 rfhi—Hay and
ip
Hap = Hap 3 Wla(WH)
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Nonnegative matrix factorization (NMF)

Matlab experiments (15 mins)

@ Generate a 2 x 2 random matrices A
@ Resize it to 10 x 10

@ Random initialize matrix Wigx3 and Higxs

Use iterative update rule Wi, = W;; Y (M)/(%),Hau and
in

Hap = Hap 3 Wla(WH)
Define your convergence criteria.
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Nonnegative matrix factorization (NMF)

Discussion

@ How to use NMF in your projects?
@ Do you buy it?

@ Yes or No, what did you learn?
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L7 minimization

Recall y = Ax

Detail matters

o If Ais orthonormal (e.g., in PCA)
o if Ais full rank, x = A_ly
@ However, y = Ax can be underdetermined

o Well known in undergrad studies: many solutions
o Less known: minimizing > |x|2

e What happens if we minimizing > |x|o or > |x|1?

e Discussion: meaning?
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L7 minimization

Dictionary: the concept

@ In sparse representation, we call A a “dictionary”
@ Assume A is given
@ We further call x as coefficients

@ Now we want to solve y = Ax s.t. minimizing > |x|o
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L7 minimization

Minimizing the cardinality of coefs

Discussion

@ What are the advantages?

e An ideal solution of many problems
@ Problems?

o NP complete
o We need approximation
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L7 minimization

Approximation: Minimizing Linorm

@ Sparseness
@ Convex problem
@ Recall
Feasible set i
X
ol12 / oLl
) AX
Y (a) (b)
o Stable and accurate results (for cases where coefs are sparse)
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L7 minimization

Solver 0: Orthogonal Matching Persuit (OMP)

o ldea: sequentially pick the basis.
o Greedy algorithm
@ For each basis function, calculate the error

e v; =argminy — A.;v; for each i, where v; denotes an all zero
vector except the ielement
e Pick the coefs with minimal fitting error

@ let y =y — A.jv; repeat the procedure for the remaining basis
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L7 minimization

Solver 1: Softthresholding

@ Solve y = Ax in Ly norm
@ Soft thresholding

o Sy(x) =x—0.5\if x > 0.5\
o S\(x) =x+05Xif x < —0.5)
o S\(x)=0, o.w.
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L7 minimization

Solver 1: Pros and Cons

Does it solve all problems?
o Very efficient
@ Only solves Y [x]1 + Aly — Ax|2
@ How about ) |Bx|1 + Aly — Ax|2 ?
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L7 minimization

Solver 2: Bregman iteration

e minJ(x)+ H(x)

e J(x) is continuous but not differentiable
e H(x) is continuous and differentiable

@ Introduce |d — Bx| and E(x, d) = |d|1 + H(x)
o min E(x,d) + 5|d — Bx|>
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L7 minimization

Solver 2: lterative update

o x**1 = argmin H(x) + \/2|d* — Bx — p¥|,
e Lynorm: least square

o d**! = argmin|d|; + \/2|d — Bxkt1 — pk|,
e Soft thresholding

o pktl — pk 4 Bxktl _ gktl

e Simple numerical operation
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L7 minimization

Matlab experiment (20 minutes)

e Randomly generate an orthonormal matrix Ajox10 (how?)

@ Randomly generate y10x1

@ hint: each column of A is a basis function

@ Assuming we want x that has only 3 non-zero coefs to
approximate y = Ax

e Use OMP
o Use soft thresholding
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L7 minimization

How about unknown A?

Sparse coding

@ Y = AX, where both A and X are unknown.

e Y is a matrix, because we need more than one observation to
learn the underlying dictionary

@ Coordinated descent

o Given A, solve X (we know!)
e Given X , solve A
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Low Rank Approximation
Low Rank Submatrix
Low Rank models

What does Low Rank mean?

Idea: correlation
@ Redundancy
@ Accurate representation

@ Reduce the problems caused by noise
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Low Rank Approximation
Low Rank Submatrix
Low Rank models

Modeling

Matrix A can be approximated by X-+E

@ Low rank X

e Example: human motion capture data
@ Sparse noise E

e Example: occlusion
@ Formulation

o min rank(L) + \|E|;
ost. A=L+E
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Low Rank Approximation
Low Rank Submatrix
Low Rank models

Norm: trace norm

Definition
@ Recall: trace is the sum of eigenvalue

@ minimizing trace norm
o |Al, = tr((ATA)Y/?)
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Low Rank Approximation
Low Rank Submatrix

Low Rank models

Putting everything together

o mintr((LTL)Y/2) + \E|;
ost. A=L+E

Yi Li Computer Vision



Low Rank Approximation
Low Rank Submatrix
Low Rank models

Solver: Alternating Direction Method of Multiplier
(ADMM)

Method of multipliers

@ minf(x)st. Ax=>b

o Lagrangian: L(x,y) = f(x) +yT(Ax — b)

o Augmented L,(x,y) = f(x) + y " (Ax — b) + 5|Ax — b5
o x**t1 = argmin L,(x, y¥)

. yk+1 _ yk < p(AXk—H _ b)

@ Problem: how about f(x) = > |Bx|1 + Aly — Ax|2 ?
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Low Rank Approximation
Low Rank Submatrix

Low Rank models

e minf(x)+g(z)st. Ax+Bz=c
@ Augmented
Ly(x,z,y) = f(x)+g(z)+y T (Ax+Bz—c)+ 2|Ax+ Bz —c|>
k+1
k+1

= argmin L,(x, z%, y¥)
o ZKtt = argmin L,(x**1, z, y¥)
o yk+1 _ yk + p(AXk+1 -+ sz+1 _ C)

@ X

@ Key idea: separate x and z

@ Problem: This is a so called “two term admm”. It is not clear
any separation higher than 2 terms will converge

e empirically yes!
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Low Rank Approximation
Low Rank Submatrix
Low Rank models

Problem of Low Rank matrix?

X is the low rank version of A
@ Only a subset of features correlated

o DNA
e Data mining

@ Noise is not sparse
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Low Rank Approximation
Low Rank Submatrix
Low Rank models

Solution: finding LR submatrix directly

Random projection
@ “Binarization” of a matrix A
e B = sign(A — mean(A(:)))
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Low Rank Approximation
Low Rank Submatrix
Low Rank models

An (extremely fast) method for detecting Ir submatrix

Loop: the concept

o Take any 2 x 2 submatrix [Bj;, Bjj/; Bij, Bjrji] of B
o Take the product p = B;iBjy Bj1;Bjrjr
o p=-1if [Bj, Bj; B}, Birjr] is rank 2
o p=1if [Bj, Bjy; Bij, Birji] is rank 1
o Fix /, and test its “similarity” with other rows
o Sum all loops Z =37,3"., 3= BBy BirjByrjy = [BBTBB];
e Practice: verify Zj Zj, > BijBjjBirjBirjy = [BBTBBT];

Yi Li Computer Vision



Low Rank Approximation
Low Rank Submatrix
Low Rank models

Procedure

Algorithm

o Calculate Z,,, = [BB"BBT];
@ Sort Zow
@ Truncate the bottom p% rows
Calculate Z., = [BTBBTB]J-J-
Sort Z.o
Truncate the bottom p% cols

until max number of iterations
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Low Rank Approximation
Low Rank Submatrix
Low Rank models

Does it work? Matlab experiments (20 mins)

LR Submatrix

Generate a 2 x 2 random matrices A;

Use bilinear interpolation to resize it to 20 x 20

Randomly embed A; to A

°
°

@ Generate a 50 x 50 random matrices A,
°

@ binarize A, to 1/-1 and run the procedure
°

Visualize the results for each iteration
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Low Rank Approximation
Low Rank Submatrix
Low Rank models

Discussion: multiple submatrix?

@ How can we find multiple submatrices?
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Conclusion

Take home message

Take home message

@ Linear algebra is important
@ Sparseness is useful

@ Low rank models are effective
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Conclusion

Homework

Download a face dataset from http://tinyurl.com/bpdduaj
e Each column is a face (165 x 120), and each row is a pixel location
o Visualize the first 10 faces in this dataset (hint: reshape()).
@ Problem 1: Use all the faces to compute the Eigenfaces of this dataset
@ You define the number of eigenvectors
@ You must visualize all the eigenfaces and the reconstruction errors
@ Problem 2: Use the eigenfaces as the dictionary, use L; minimization to
approximate each face
o You define the number of non-zero coefs
@ You must visualize the reconstruction errors and compare them to
the errors in the Problem 1
@ Problem 3: Find the first low rank submatrix in this dataset
@ Truncate rows only, for simplicity
@ Recall that each row is a pixel location, visualize the submatrix in
the original image space for the first 10 faces
@ Explain what is the common feature in this dataset
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Conclusion

Requirement

@ You must use MATLAB and / or C++
@ No team work
@ You must hand in a zip file that has

e Your code and a readme file, explaining how to run it
e a report that

@ 1) describes your experiments comprehensively;
@ 2) presents your results neatly; and
@ 3) must include reasonable discussion;
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