Compressive Sensing, Low Rank models, and Low Rank Submatrix

NICTA Computer Vision Short Course 2012

Yi Li
yi.li@nicta.com.au
http://users.cecs.anu.edu.au/~yili

Sep 12, 2012 ver. 1.8 http://tinyurl.com/brl89pk

Outline

- Introduction
 - Cameras, images, and pixels
- 2 Prerequisites
 - Linear algebra
- 3 Nonnegative matrix factorization (NMF)
- 4 L_1 minimization
- Low Rank models
 - Low Rank Approximation
 - Low Rank Submatrix
- 6 Conclusion

Traditional camera

Pinhole model

- Geometry
- Image formation
- Pixelated images
 - Discretization
 - Interpolation

 $\label{lem:http://chestofbooks.com/arts/photography/Telephotographic-Lens/images/The-Formation-Of-Images-By-The-Pinhole-Camera-And-4.jpg$

Single pixel camera

Experimental setting

- Random sampling
- Reconstruction
 - # of samples
 - Reconstruction algorithm
- http://dsp.rice.edu/cscamera

How does it work?

Principles

• Random basis

$$(y_i = sum(R_i(:). * u(:)))$$

- .* is a componentwise multiplication
- Linear operation y = Ru
- Each row of R is random
- if u = Dx for some D
- Reconstruct x from y = RDx

Food for thought

Optical illusion

- Error in reconstruction
 - Can it be used for explaining illusion?
 - Does the explanation fit into human model?
- Implication to visual neuroscience?
- X. Tang and Y. Li, ICIP 2012

Important concepts

- Linear equations
- Rank, trace, and norms
- Eigenvalues/Eigenvectors and Singular Value Decomposition

y = Ax

Underdetermined and overdetermined

```
%% solve y=Ax

A = rand(3, 4);
r = rank(A);

y = rand(3,1);

x = A\y;
x = inv(A)*y; %% ??

y-A*x

%% solve y=Ax

A = rand(4, 3);
r = rank(A);

y = rand(4,1);

x = A\y;
x = inv(A)*y; %% ??

y-A*x
```

Rank: the concept

- Matrix $A_{m \times n}$
- Column rank
 - the maximum number of linearly independent column vectors of A
- Row rank
 - the maximum number of linearly independent row vectors of A
- Column rank == row rank
 - $\leq \min(m,n)$

Properties

Two matrices A and B

- rank(AB)≤min(rank(A),rank(B))
- $rank(A+B) \le rank(A) + rank(B)$
- $rank(A^TA) = rank(AA^T) = rank(A) = rank(A^T)$
- row-echelon forms
 - Ae = rref(A) in matlab

Questions

Implication in computer vision

- Background pixels over time
- Multiple part tracking
- Image matching
- Your nomination?

Eigenvalue and Eigenvector

- Matrix $A_{n \times n}$
- $Av = \lambda v$
 - Same eigenvalue may have multiple eigen vectors
 - zero eigenvalue?
- Matlab
 - eig(A)
- Each column in A can be represented by a linear combination of eigenvectors

PCA in computer vision

Eigenface

- Each face is a linear vector
 - Concatenate columns
 - · Faces are usually aligned
- Eigenvector = basis
- http://www.umiacs.umd.edu/~knkim/

Singular vector decomposition

- Matrix $A_{m \times n}$
- Factorize A to $A = U \sum V^T$, where
 - U is $m \times m$ unitary matrix
 - \sum is a $m \times n$ diagonal matrix
 - V is $n \times n$ unitary matrix
- Matlab
 - [u d v] = svd(A)
- Why we need Singular Value, if we already have Eigenvalue?

SVD

- SVD works for arbitrary matrix $A_{m \times n}$
- $A = U \sum V^T$ means:
 - U and V are orthonormal basis
 - \sum is the singular value of A
 - Can be used for pseudo-inverse: proof $A^{-1} = V \sum^{-1} U^T$
 - Proof columns of V are the eigen vector of A^TA (homework)
 - Consequently, \sum is the eigenvalue of A^TA
 - How about *U* ?
- Low rank approximation

Trace

- Matrix $A_{n \times n}$
- Simple definition

•
$$tr(A) = a_{11} + ... + a_{ii} + ... + a_{nn}$$

- Linkage to Eigenvalue
 - tr(A) = sum(eig(A))
- Invariant to the change of basis!

Conclusion

Properties

•
$$tr(A+B) \le tr(A) + tr(B)$$

•
$$tr(A) = tr(A^T)$$

•
$$tr(A^TB) = tr(BA^T)$$

•
$$tr(A^TB)$$
, "inner product" of A and B

•
$$tr(ABC) = tr(BCA) = tr(CBA)$$

L_2 norm

"Least square"

- Case 1: Line fitting
 - a few pairs (x_i, y_i) , or simply (x, y)
 - $\beta = (x^T x)^{-1} x^T y^T$
- Case 2: Signal-to-noise rate in signal processing
 - decibel (dB)
- Matlab: norm(x,2)

L_1 norm

Sum of absolute values

- In many cases: $Dist = \sum |x|$
- Example: $Dist = |x_1 x_2| + |y_1 y_2|$ ("Manhattan Distance")
- Why are the differences?:

L_1 norm

Sum of absolute values

- In many cases: $Dist = \sum |x|$
- Example: $Dist = |x_1 x_2| + |y_1 y_2|$ ("Manhattan Distance")
- Why are the differences?:

L_1 norm

Sum of absolute values

- In many cases: $Dist = \sum |x|$
- Example: $Dist = |x_1 x_2| + |y_1 y_2|$ ("Manhattan Distance")
- Why are the differences?:

L_0 norm

"Count of non-zero values"

- Ideal definition for measuring the sparseness of a vector
- Problem:
 - Very difficult optimization, NP complete
 - Card(x) in constraints, or minimize the set size of the non-zero variable
 - Need approximation in many practical problems

- Generate two 2×2 random matrices A and B
- ullet Use bilinear interpolation to resize them to 10 imes 10
- Calculate the rank(A)
- trace(A^TB)=trace(B^TA)=sum of A.*B
- show norm(A(:), 2), norm(A(:), 1), and norm(A(:), 0)
- Generate a 10 × 10 random matrix C
- Compare eig(A) and eig(C)

Practice |

- Generate two 2×2 random matrices A and B
- ullet Use bilinear interpolation to resize them to 10 imes 10
- Calculate the rank(A)
- trace (A^TB) =trace (B^TA) =sum of A.*B
- show norm(A(:), 2), norm(A(:), 1), and norm(A(:), 0)
- Generate a 10 × 10 random matrix C
- Compare eig(A) and eig(C)

- Generate two 2×2 random matrices A and B
- ullet Use bilinear interpolation to resize them to 10 imes 10
- Calculate the rank(A)
- trace(A^TB)=trace(B^TA)=sum of A.*B
- show norm(A(:), 2), norm(A(:), 1), and norm(A(:), 0)
- Generate a 10 × 10 random matrix C
- Compare eig(A) and eig(C)

- Generate two 2×2 random matrices A and B
- ullet Use bilinear interpolation to resize them to 10 imes 10
- Calculate the rank(A)
- trace (A^TB) =trace (B^TA) =sum of A.*B
- show norm(A(:), 2), norm(A(:), 1), and norm(A(:), 0)
- Generate a 10 × 10 random matrix C
- Compare eig(A) and eig(C)

- Generate two 2×2 random matrices A and B
- ullet Use bilinear interpolation to resize them to 10 imes 10
- Calculate the rank(A)
- trace(A^TB)=trace(B^TA)=sum of A.*B
- show norm(A(:), 2), norm(A(:), 1), and norm(A(:), 0)
- Generate a 10 × 10 random matrix C
- Compare eig(A) and eig(C)

- Generate two 2×2 random matrices A and B
- ullet Use bilinear interpolation to resize them to 10 imes 10
- Calculate the rank(A)
- trace(A^TB)=trace(B^TA)=sum of A.*B
- show norm(A(:), 2), norm(A(:), 1), and norm(A(:), 0)
- Generate a 10×10 random matrix C
- Compare eig(A) and eig(C)

- Generate two 2×2 random matrices A and B
- ullet Use bilinear interpolation to resize them to 10 imes10
- Calculate the rank(A)
- trace(A^TB)=trace(B^TA)=sum of A.*B
- show norm(A(:), 2), norm(A(:), 1), and norm(A(:), 0)
- Generate a 10×10 random matrix C
- Compare eig(A) and eig(C)

L₁ minimization Low Rank models Conclusion

- Goal: X = WH
- If k << min(m,n)
 - Extreme case: rank(W)=1
 - Meaning?
- Constraints:

Interpretation

- Rewrite X = WH as $X_{:,i} = \sum_{j=1}^{n} H_{ji} W_{:,j}$
 - $W_{:,i}$ can be considered as a basis function
 - $X_{:,i}$ is in the space spanned by W
 - Columns of W are not necessarily orthogonal
- Recall PCA
 - What are the similarities?
 - What are the differences?

Application Face recognition

- Decomposing faces into parts
- Basis of objects
 - Orthogonal (Eigenface)
 - non-orthogonal (NMF)
- W can be regarded as face parts
- *H* can be regarded as weights for combing basis functions

Approach

 \bullet L_2 norm between X and WH

•
$$\min |X - WH|_2$$

- Subject to?
 - $W \ge 0, H \ge 0$
- Non-convex

Quick detour

Coordinated Descent

- z = f(x)g(y)
 - maybe non-convex -> local minima
- Fix $x = x_0$, $z = f(x_0)g(y) = \bar{g}(y)$
 - If $z = \bar{g}(y)$ is convex, unique solution y_1

Conclusion

• Do the same thing for $z = g(y_1)f(x)$ until converge or after certain number of iterations.

Solution

Coordinated Descent

- Random initialize W and H
- Iteratively solve $|X WH|_2$
 - $|X WH|_2$ given H
 - $|X WH|_2$ given W
- Update until converge

Iterative Update Rules

Coordinated Descent

- Random initialize W and H
- The Euclidean distance $|X WH|_2$ is nonincreasing under the update rules
 - $W_{ia}=W_{ia}\sum \frac{X_{i\mu}}{(WH)_{i\mu}}H_{a\mu}$ and normalize W for each column. $H_{a\mu}=H_{a\mu}\sum W_{ia}\frac{X_{i\mu}}{(WH)_{i\mu}}$
- Update until converge

Interpretation

- \bullet L_2 norm between X and WH
 - Gaussian distribution.
 - KL divergence $(D(p||q) = \sum p_i \ln \frac{p_i}{q_i})$

Conclusion

- *L*₁ distance
- Basis functions (W) are not orthogonal
 - Good or not?
- Variations
 - X = WSH, where S can be used for controlling smoothness

Practice

- Generate a 2×2 random matrices A
- Resize it to 10×10
- ullet Random initialize matrix $W_{10 imes3}$ and $H_{10 imes3}$
- Use iterative update rule $W_{ia} = W_{ia} \sum \frac{X_{i\mu}}{(WH)_{i\mu}} H_{a\mu}$ and $H_{a\mu} = H_{a\mu} \sum W_{ia} \frac{X_{i\mu}}{(WH)_{i\mu}}$
- Define your convergence criteria.

Practice

- Generate a 2×2 random matrices A
- Resize it to 10×10
- Random initialize matrix $W_{10\times3}$ and $H_{10\times3}$
- Use iterative update rule $W_{ia}=W_{ia}\sum \frac{X_{i\mu}}{(WH)_{i\mu}}H_{a\mu}$ and $H=H=\sum W_{i}$, $X_{i\mu}$
 - $H_{a\mu}=H_{a\mu}\sum W_{ia}rac{\lambda_{i\mu}}{(WH)_{i\mu}}$
- Define your convergence criteria.

Practice

- Generate a 2 × 2 random matrices A
- Resize it to 10×10
- Random initialize matrix $W_{10\times3}$ and $H_{10\times3}$
- Use iterative update rule $W_{ia} = W_{ia} \sum \frac{X_{i\mu}}{(WH)_{i\mu}} H_{a\mu}$ and $H_{a\mu} = H_{a\mu} \sum W_{ia} \frac{X_{i\mu}}{(WH)}$
- Define your convergence criteria.

Practice

- Generate a 2 × 2 random matrices A
- Resize it to 10×10
- Random initialize matrix $W_{10\times3}$ and $H_{10\times3}$
- Use iterative update rule $W_{ia}=W_{ia}\sum rac{X_{i\mu}}{(WH)_{i\mu}}H_{a\mu}$ and

Conclusion

$$H_{\mathsf{a}\mu} = H_{\mathsf{a}\mu} \sum W_{\mathsf{i}\mathsf{a}} rac{X_{\mathsf{i}\mu}}{(WH)_{\mathsf{i}\mu}}$$

• Define your convergence criteria.

Practice

- Generate a 2×2 random matrices A
- Resize it to 10×10
- Random initialize matrix $W_{10\times3}$ and $H_{10\times3}$
- Use iterative update rule $W_{ia} = W_{ia} \sum \frac{X_{i\mu}}{(WH)_{i\mu}} H_{a\mu}$ and

Conclusion

$$H_{\mathsf{a}\mu} = H_{\mathsf{a}\mu} \sum W_{\mathsf{i}\mathsf{a}} rac{X_{\mathsf{i}\mu}}{(WH)_{\mathsf{i}\mu}}$$

• Define your convergence criteria.

Discussion

- How to use NMF in your projects?
- Do you buy it?
- Yes or No, what did you learn?

Recall y = Ax

Detail matters

- If A is orthonormal (e.g., in PCA)
- if A is full rank, $x = A^{-1}y$
- However, y = Ax can be underdetermined
 - Well known in undergrad studies: many solutions
 - Less known: minimizing $\sum |x|_2$
- What happens if we minimizing $\sum |x|_0$ or $\sum |x|_1$?
 - Discussion: meaning?

Dictionary: the concept

- In sparse representation, we call A a "dictionary"
- Assume A is given
- We further call x as coefficients
- Now we want to solve y = Ax s.t. minimizing $\sum |x|_0$

Minimizing the cardinality of coefs

Discussion

- What are the advantages?
 - An ideal solution of many problems
- Problems?
 - NP complete
 - We need approximation

Approximation: Minimizing L_1 norm

- Sparseness
- Convex problem
- Recall

Stable and accurate results (for cases where coefs are sparse)

Solver 0: Orthogonal Matching Persuit (OMP)

OMP

- Idea: sequentially pick the basis.
 - Greedy algorithm
- For each basis function, calculate the error
 - $v_i = \arg \min y A_{:,i}v_i$ for each i, where v_i denotes an all zero vector except the i^{th} element
 - Pick the coefs with minimal fitting error
- let $y = y A_{:,i}v_i$ repeat the procedure for the remaining basis

Solver 1: Softthresholding

- Solve y = Ax in L_2 norm
- Soft thresholding

•
$$S_{\lambda}(x) = x - 0.5\lambda$$
 if $x > 0.5\lambda$

•
$$S_{\lambda}(x) = x + 0.5\lambda$$
 if $x < -0.5\lambda$

•
$$S_{\lambda}(x) = 0$$
, o.w.

Solver 1: Pros and Cons

Does it solve all problems?

- Very efficient
- Only solves $\sum |x|_1 + \lambda |y Ax|_2$
- How about $\sum |Bx|_1 + \lambda |y Ax|_2$?

Solver 2: Bregman iteration

- $\min J(x) + H(x)$
 - J(x) is continuous but not differentiable
 - H(x) is continuous and differentiable
- Introduce $|d Bx|_2$ and $E(x, d) = |d|_1 + H(x)$
 - min $E(x, d) + \frac{\lambda}{2}|d Bx|_2$

Solver 2: Iterative update

•
$$x^{k+1} = \arg \min H(x) + \lambda/2|d^k - Bx - p^k|_2$$

• L2norm: least square

•
$$d^{k+1} = \arg\min |d|_1 + \lambda/2|d - Bx^{k+1} - p^k|_2$$

Soft thresholding

•
$$p^{k+1} = p^k + Bx^{k+1} - d^{k+1}$$

Simple numerical operation

Matlab experiment (20 minutes)

- Randomly generate an orthonormal matrix $A_{10\times10}$ (how?)
- Randomly generate $y_{10\times 1}$
- hint: each column of A is a basis function
- Assuming we want x that has only 3 non-zero coefs to approximate y = Ax
 - Use OMP
 - Use soft thresholding

How about unknown A?

Sparse coding

- Y = AX, where both A and X are unknown.
 - Y is a matrix, because we need more than one *observation* to learn the underlying dictionary
- Coordinated descent
 - Given A, solve X (we know!)
 - Given X, solve A

What does Low Rank mean?

Idea: correlation

- Redundancy
- Accurate representation
- Reduce the problems caused by noise

Modeling

Matrix A can be approximated by X+E

Low rank X

Example: human motion capture data

• Sparse noise E

Example: occlusion

Formulation

• min $rank(L) + \lambda |E|_1$

• s.t. A = L + E

Norm: trace norm

Definition

- Recall: trace is the sum of eigenvalue
- minimizing trace norm
- $|A|_* = tr((A^T A)^{1/2})$

Putting everything together

Formulation

• min
$$tr((L^T L)^{1/2}) + \lambda |E|_1$$

• s.t.
$$A = L + E$$

Solver: Alternating Direction Method of Multiplier (ADMM)

Method of multipliers

- min f(x) s.t. Ax = b
- Lagrangian: $L(x, y) = f(x) + y^{T}(Ax b)$
- Augmented $L_{\rho}(x,y) = f(x) + y^{T}(Ax b) + \frac{\rho}{2}|Ax b|_{2}$
 - $x^{k+1} = \arg\min L_{\rho}(x, y^k)$
 - $y^{k+1} = y^k + \rho(Ax^{k+1} b)$
- Problem: how about $f(x) = \sum |Bx|_1 + \lambda |y Ax|_2$?

ADMM

ADMM

- $\min f(x) + g(z)$ s.t. Ax + Bz = c
- Augmented

$$L_{\rho}(x, z, y) = f(x) + g(z) + y^{T}(Ax + Bz - c) + \frac{\rho}{2}|Ax + Bz - c|_{2}$$

- $x^{k+1} = \arg\min L_{\rho}(x, z^k, y^k)$
- $z^{k+1} = \arg\min L_{\rho}(x^{k+1}, z, y^k)$
- $y^{k+1} = y^k + \rho(Ax^{k+1} + Bz^{k+1} c)$
- Key idea: separate x and z
- Problem: This is a so called "two term admm". It is not clear any separation higher than 2 terms will converge
 - empirically yes!

Problem of Low Rank matrix?

X is the low rank version of A

- Only a subset of features correlated
 - DNA
 - Data mining
- Noise is not sparse

Solution: finding LR submatrix directly

Random projection

- "Binarization" of a matrix A
- B = sign(A mean(A(:)))

An (extremely fast) method for detecting Ir submatrix

Loop: the concept

- Take any 2×2 submatrix $[B_{ij}, B_{ij'}; B_{i'j}, B_{i'j'}]$ of B
- Take the product $p = B_{ij}B_{ij'}B_{i'j}B_{i'j'}$
 - p=-1 if $[B_{ij}, B_{ij'}; B_{i'j}, B_{i'j'}]$ is rank 2
 - p=1 if $[B_{ij}, B_{ij'}; B_{i'j}, B_{i'j'}]$ is rank 1
- Fix i, and test its "similarity" with other rows
 - Sum all loops $Z = \sum_i \sum_{i'} \sum_{j'} B_{ij} B_{ij'} B_{i'j} B_{i'j'} = [BB^T BB^T]_{ii}$
 - Practice: verify $\sum_{j} \sum_{j'} \sum_{i'} B_{ij} B_{ij'} B_{i'j} B_{i'j'} = [BB^T BB^T]_{ii}$

Procedure

Algorithm

- Calculate $Z_{row} = [BB^TBB^T]_{ii}$
- Sort Z_{row}
- Truncate the bottom p% rows
- Calculate $Z_{col} = [B^T B B^T B]_{jj}$
- Sort Z_{col}
- Truncate the bottom p% cols
- until max number of iterations

Does it work? Matlab experiments (20 mins)

LR Submatrix

- Generate a 2×2 random matrices A_1
- Use bilinear interpolation to resize it to 20×20
- Generate a 50×50 random matrices A_2
- Randomly embed A_1 to A_2
- binarize A_2 to 1/-1 and run the procedure
- Visualize the results for each iteration

Discussion: multiple submatrix?

• How can we find multiple submatrices?

Take home message

Take home message

- Linear algebra is important
- Sparseness is useful
- Low rank models are effective

Homework

- Download a face dataset from http://tinyurl.com/bpdduaj
 - \bullet Each column is a face (165 \times 120), and each row is a pixel location
 - Visualize the first 10 faces in this dataset (hint: reshape()).
- Problem 1: Use all the faces to compute the Eigenfaces of this dataset
 - You define the number of eigenvectors
 - You must visualize all the eigenfaces and the reconstruction errors
- Problem 2: Use the eigenfaces as the dictionary, use L₁ minimization to approximate each face
 - You define the number of non-zero coefs
 - You must visualize the reconstruction errors and compare them to the errors in the Problem 1
- Problem 3: Find the first low rank submatrix in this dataset
 - Truncate rows only, for simplicity
 - Recall that each row is a pixel location, visualize the submatrix in the original image space for the first 10 faces
 - Explain what is the common feature in this dataset

Requirement

- You must use MATLAB and / or C++
- No team work
- You must hand in a zip file that has
 - Your code and a readme file, explaining how to run it
 - a report that
 - 1) describes your experiments comprehensively;
 - 2) presents your results neatly; and
 - 3) must include reasonable discussion;