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Cameras, images, and pixels

Traditional camera

Pinhole model

Geometry

Image formation

Pixelated images

Discretization
Interpolation http://chestofbooks.com/arts/photography/Telephotographic-

Lens/images/The-Formation-Of-Images-By-The-Pinhole-
Camera-And-4.jpg
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Cameras, images, and pixels

Single pixel camera

Experimental setting

Random sampling

Reconstruction

# of samples
Reconstruction algorithm

http://dsp.rice.edu/cscamera
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Cameras, images, and pixels

How does it work?

Principles

Random basis
(yi = sum(Ri (:). ∗ u(:)))

.∗ is a componentwise
multiplication
Linear operation y = Ru
Each row of R is random

if u = Dx for some D

Reconstruct x from y = RDx

Yi Li Computer Vision
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Cameras, images, and pixels

Food for thought

Optical illusion

Error in reconstruction

Can it be used for explaining
illusion?
Does the explanation fit into
human model?

Implication to visual
neuroscience?

X. Tang and Y. Li, ICIP 2012
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Linear algebra

Important concepts

Linear equations

Rank, trace, and norms

Eigenvalues/Eigenvectors and Singular Value Decomposition

Yi Li Computer Vision
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Linear algebra

y = Ax

%% so l v e y=Ax

A = rand ( 3 ) ; %% c r e a t i n g a random mat r i x .
r = rank (A) ; %% f u l l rank ?

y = rand ( 3 , 1 ) ;

x = A\y ; %% one way o f s o l v i n g t h i s : l e a s t squa r e
x = i n v (A) ∗y ; %% unique s o l u t i o n i f A i s f u l l rank

y − Ax %% v e r i f y the c o r r e c t n e s s

Yi Li Computer Vision
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Linear algebra

Underdetermined and overdetermined

%% so l v e y=Ax

A = rand ( 3 , 4) ;
r = rank (A) ;

y = rand ( 3 , 1 ) ;

x = A\y ;
x = i n v (A) ∗y ; %% ??

y−A∗x

%% so l v e y=Ax

A = rand ( 4 , 3) ;
r = rank (A) ;

y = rand ( 4 , 1 ) ;

x = A\y ;
x = i n v (A) ∗y ; %% ??

y−A∗x
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Linear algebra

Rank: the concept

Matrix Am×n

Column rank

the maximum number of linearly independent column vectors of A

Row rank

the maximum number of linearly independent row vectors of A

Column rank == row rank

≤min(m,n)

Yi Li Computer Vision
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Linear algebra

Properties

Two matrices A and B

rank(AB)≤min(rank(A),rank(B))

rank(A+B)≤rank(A)+rank(B)

rank(ATA)=rank(AAT )=rank(A)=rank(AT )

row-echelon forms

Ae = rref(A) in matlab

Yi Li Computer Vision
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Linear algebra

Questions

Implication in computer vision

Background pixels over time

Multiple part tracking

Image matching

Your nomination?
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Linear algebra

Eigenvalue and Eigenvector

Matrix An×n

Av = λv

Same eigenvalue may have multiple eigen vectors
zero eigenvalue?

Matlab

eig(A)

Each column in A can be represented by a linear combination of
eigenvectors
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Linear algebra

PCA in computer vision

Eigenface

Each face is a linear vector

Concatenate columns
Faces are usually aligned

Eigenvector = basis

http://www.umiacs.umd.edu/˜knkim/
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Linear algebra

Singular vector decomposition

Matrix Am×n

Factorize A to A = U
∑

V T , where

U is m ×m unitary matrix∑
is a m × n diagonal matrix

V is n × n unitary matrix

Matlab

[u d v] = svd(A)

Why we need Singular Value, if we already have Eigenvalue?

Yi Li Computer Vision
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Linear algebra

SVD

SVD works for arbitrary matrix Am×n

A = U
∑

V T means:

U and V are orthonormal basis∑
is the singular value of A

Can be used for pseudo-inverse: proof A−1 = V
∑−1 UT

Proof columns of V are the eigen vector of ATA (homework)
Consequently,

∑
is the eigenvalue of ATA

How about U ?

Low rank approximation
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Linear algebra

Trace

Matrix An×n

Simple definition

tr(A) = a11 + .. + aii + ... + ann

Linkage to Eigenvalue

tr(A) = sum(eig(A))

Invariant to the change of basis!
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Linear algebra

Properties

tr(A+B)≤tr(A)+tr(B)

tr(A) = tr(AT )

tr(ATB) = tr(BAT )

tr(ATB), “inner product” of A and B

tr(ABC ) = tr(BCA)=tr(CBA)

Yi Li Computer Vision
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Linear algebra

L2 norm

”Least square”

Case 1: Line fitting

a few pairs (xi , yi ), or simply (x , y)
β = (xT x)−1xT y

Case 2: Signal-to-noise rate in signal processing

decibel (dB)

Matlab: norm(x,2)
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Linear algebra

L1 norm

Sum of absolute values

In many cases: Dist =
∑
|x |

Example: Dist = |x1 − x2|+ |y1 − y2| (”Manhattan Distance”)

Why are the differences?:

online figure

Yi Li Computer Vision
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Linear algebra

L1 norm

Sum of absolute values
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Linear algebra

L0 norm

”Count of non-zero values”

Ideal definition for measuring the sparseness of a vector

Problem:

Very difficult optimization, NP complete
Card(x) in constraints, or minimize the set size of the non-zero
variable
Need approximation in many practical problems

Yi Li Computer Vision
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Linear algebra

Matlab practice (and Q/A)

Practice

Generate two 2× 2 random matrices A and B

Use bilinear interpolation to resize them to 10× 10

Calculate the rank(A)

trace(ATB)=trace(BTA)=sum of A.*B

show norm(A(:), 2), norm(A(:), 1), and norm(A(:), 0)

Generate a 10× 10 random matrix C

Compare eig(A) and eig(C)

Yi Li Computer Vision
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Goal: X = WH

If k << min(m,n)

Extreme case: rank(W)=1
Meaning?

Constraints:

Yi Li Computer Vision
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Interpretation

Rewrite X = WH as X:,i =
∑n

j=1 HjiW:,j

W:,j can be considered as a basis function
X:,i is in the space spanned by W
Columns of W are not necessarily orthogonal

Recall PCA

What are the similarities?
What are the differences?

Yi Li Computer Vision
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Application
Face recognition

Decomposing faces into parts

Basis of objects

Orthogonal (Eigenface)
non-orthogonal (NMF)

W can be regarded as face parts

H can be regarded as weights
for combing basis functions

Yi Li Computer Vision
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Approach

L2 norm between X and WH

min |X −WH|2

Subject to?

W ≥ 0, H ≥ 0

Non-convex

Yi Li Computer Vision
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Quick detour

Coordinated Descent

z = f (x)g(y)

maybe non-convex -> local minima

Fix x = x0, z = f (x0)g(y) = ḡ(y)

If z = ḡ(y) is convex, unique solution y1

Do the same thing for z = g(y1)f (x) until converge or after
certain number of iterations.

Yi Li Computer Vision
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Solution

Coordinated Descent

Random initialize W and H

Iteratively solve |X −WH|2
|X −WH|2 given H
|X −WH|2 given W

Update until converge

Yi Li Computer Vision



Introduction
Prerequisites

Nonnegative matrix factorization (NMF)
L1 minimization

Low Rank models
Conclusion

Iterative Update Rules

Coordinated Descent

Random initialize W and H

The Euclidean distance |X −WH|2 is nonincreasing under the
update rules

Wia = Wia

∑ Xiµ

(WH)iµ
Haµ and normalize W for each column.

Haµ = Haµ

∑
Wia

Xiµ

(WH)iµ

Update until converge

Yi Li Computer Vision
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Interpretation

L2 norm between X and WH

Gaussian distribution.
KL divergence (D(p||q) =

∑
pi ln pi

qi
)

L1 distance

Basis functions (W ) are not orthogonal

Good or not?

Variations

X = WSH, where S can be used for controlling smoothness

Yi Li Computer Vision
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Matlab experiments (15 mins)

Practice

Generate a 2× 2 random matrices A

Resize it to 10× 10

Random initialize matrix W10×3 and H10×3

Use iterative update rule Wia = Wia
∑ Xiµ

(WH)iµ
Haµ and

Haµ = Haµ
∑

Wia
Xiµ

(WH)iµ

Define your convergence criteria.

Yi Li Computer Vision
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Discussion

How to use NMF in your projects?

Do you buy it?

Yes or No, what did you learn?
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Recall y = Ax

Detail matters

If A is orthonormal (e.g., in PCA)

if A is full rank, x = A−1y

However, y = Ax can be underdetermined

Well known in undergrad studies: many solutions
Less known: minimizing

∑
|x |2

What happens if we minimizing
∑
|x |0 or

∑
|x |1?

Discussion: meaning?

Yi Li Computer Vision
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Dictionary: the concept

In sparse representation, we call A a “dictionary”

Assume A is given

We further call x as coefficients

Now we want to solve y = Ax s.t. minimizing
∑
|x |0

Yi Li Computer Vision
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Minimizing the cardinality of coefs

Discussion

What are the advantages?

An ideal solution of many problems

Problems?

NP complete
We need approximation

Yi Li Computer Vision
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Approximation: Minimizing L1norm

Sparseness

Convex problem

Recall

Stable and accurate results (for cases where coefs are sparse)
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Solver 0: Orthogonal Matching Persuit (OMP)

OMP

Idea: sequentially pick the basis.

Greedy algorithm

For each basis function, calculate the error

vi = arg min y − A:,ivi for each i , where vi denotes an all zero
vector except the i thelement
Pick the coefs with minimal fitting error

let y = y − A:,jvj repeat the procedure for the remaining basis

Yi Li Computer Vision



Introduction
Prerequisites

Nonnegative matrix factorization (NMF)
L1 minimization

Low Rank models
Conclusion

Solver 1: Softthresholding

Solve y = Ax in L2 norm

Soft thresholding

Sλ(x) = x − 0.5λ if x > 0.5λ
Sλ(x) = x + 0.5λ if x < −0.5λ
Sλ(x) = 0, o.w.

Yi Li Computer Vision
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Solver 1: Pros and Cons

Does it solve all problems?

Very efficient

Only solves
∑
|x |1 + λ|y − Ax |2

How about
∑
|Bx |1 + λ|y − Ax |2 ?

Yi Li Computer Vision
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Solver 2: Bregman iteration

min J(x) + H(x)

J(x) is continuous but not differentiable
H(x) is continuous and differentiable

Introduce |d − Bx |2 and E (x , d) = |d |1 + H(x)

minE (x , d) + λ
2 |d − Bx |2

Yi Li Computer Vision
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Solver 2: Iterative update

xk+1 = arg minH(x) + λ/2|dk − Bx − pk |2
L2norm: least square

dk+1 = arg min |d |1 + λ/2|d − Bxk+1 − pk |2
Soft thresholding

pk+1 = pk + Bxk+1 − dk+1

Simple numerical operation

Yi Li Computer Vision
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Matlab experiment (20 minutes)

Randomly generate an orthonormal matrix A10×10 (how?)

Randomly generate y10×1

hint: each column of A is a basis function

Assuming we want x that has only 3 non-zero coefs to
approximate y = Ax

Use OMP
Use soft thresholding

Yi Li Computer Vision
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How about unknown A?

Sparse coding

Y = AX , where both A and X are unknown.

Y is a matrix, because we need more than one observation to
learn the underlying dictionary

Coordinated descent

Given A , solve X (we know!)
Given X , solve A

Yi Li Computer Vision
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Low Rank Approximation
Low Rank Submatrix

What does Low Rank mean?

Idea: correlation

Redundancy

Accurate representation

Reduce the problems caused by noise

Yi Li Computer Vision
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Low Rank Approximation
Low Rank Submatrix

Modeling

Matrix A can be approximated by X+E

Low rank X

Example: human motion capture data

Sparse noise E

Example: occlusion

Formulation

min rank(L) + λ|E |1
s.t. A = L + E

Yi Li Computer Vision
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Low Rank Approximation
Low Rank Submatrix

Norm: trace norm

Definition

Recall: trace is the sum of eigenvalue

minimizing trace norm

|A|∗ = tr((ATA)1/2)

Yi Li Computer Vision
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Low Rank Approximation
Low Rank Submatrix

Putting everything together

Formulation

min tr((LTL)1/2) + λ|E |1
s.t. A = L + E

Yi Li Computer Vision
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Low Rank Approximation
Low Rank Submatrix

Solver: Alternating Direction Method of Multiplier
(ADMM)

Method of multipliers

min f (x) s.t. Ax = b

Lagrangian: L(x , y) = f (x) + yT (Ax − b)

Augmented Lρ(x , y) = f (x) + yT (Ax − b) + ρ
2 |Ax − b|2

xk+1 = arg min Lρ(x , yk)
yk+1 = yk + ρ(Axk+1 − b)

Problem: how about f (x) =
∑
|Bx |1 + λ|y − Ax |2 ?

Yi Li Computer Vision
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Low Rank Approximation
Low Rank Submatrix

ADMM

ADMM

min f (x) + g(z) s.t. Ax + Bz = c

Augmented
Lρ(x , z , y) = f (x) +g(z) +yT (Ax +Bz−c) + ρ

2 |Ax +Bz−c|2
xk+1 = arg min Lρ(x , zk , yk)
zk+1 = arg min Lρ(xk+1, z , yk)
yk+1 = yk + ρ(Axk+1 + Bzk+1 − c)

Key idea: separate x and z

Problem: This is a so called “two term admm”. It is not clear
any separation higher than 2 terms will converge

empirically yes!

Yi Li Computer Vision
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Low Rank Approximation
Low Rank Submatrix

Problem of Low Rank matrix?

X is the low rank version of A

Only a subset of features correlated

DNA
Data mining

Noise is not sparse

Yi Li Computer Vision
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Low Rank Approximation
Low Rank Submatrix

Solution: finding LR submatrix directly

Random projection

“Binarization” of a matrix A

B = sign(A−mean(A(:)))
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Low Rank Approximation
Low Rank Submatrix

An (extremely fast) method for detecting lr submatrix

Loop: the concept

Take any 2× 2 submatrix [Bij ,Bij ′ ;Bi ′j ,Bi ′j ′ ] of B

Take the product p = BijBij ′Bi ′jBi ′j ′

p=-1 if [Bij ,Bij′ ;Bi ′j ,Bi ′j′ ] is rank 2
p=1 if [Bij ,Bij′ ;Bi ′j ,Bi ′j′ ] is rank 1

Fix i , and test its “similarity” with other rows

Sum all loops Z =
∑

j

∑
j′
∑

i ′ BijBij′Bi ′jBi ′j′ = [BBTBBT ]ii
Practice: verify

∑
j

∑
j′
∑

i ′ BijBij′Bi ′jBi ′j′ = [BBTBBT ]ii
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Low Rank Approximation
Low Rank Submatrix

Procedure

Algorithm

Calculate Zrow = [BBTBBT ]ii

Sort Zrow

Truncate the bottom p% rows

Calculate Zcol = [BTBBTB]jj

Sort Zcol

Truncate the bottom p% cols

until max number of iterations
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Low Rank Approximation
Low Rank Submatrix

Does it work? Matlab experiments (20 mins)

LR Submatrix

Generate a 2× 2 random matrices A1

Use bilinear interpolation to resize it to 20× 20

Generate a 50× 50 random matrices A2

Randomly embed A1 to A2

binarize A2 to 1/-1 and run the procedure

Visualize the results for each iteration
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Low Rank Approximation
Low Rank Submatrix

Discussion: multiple submatrix?

How can we find multiple submatrices?
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Take home message

Take home message

Linear algebra is important

Sparseness is useful

Low rank models are effective
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Homework

Download a face dataset from http://tinyurl.com/bpdduaj

Each column is a face (165 × 120), and each row is a pixel location
Visualize the first 10 faces in this dataset (hint: reshape()).

Problem 1: Use all the faces to compute the Eigenfaces of this dataset

You define the number of eigenvectors
You must visualize all the eigenfaces and the reconstruction errors

Problem 2: Use the eigenfaces as the dictionary, use L1 minimization to
approximate each face

You define the number of non-zero coefs
You must visualize the reconstruction errors and compare them to
the errors in the Problem 1

Problem 3: Find the first low rank submatrix in this dataset

Truncate rows only, for simplicity
Recall that each row is a pixel location, visualize the submatrix in
the original image space for the first 10 faces
Explain what is the common feature in this dataset

Yi Li Computer Vision
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Requirement

You must use MATLAB and / or C++

No team work

You must hand in a zip file that has

Your code and a readme file, explaining how to run it
a report that

1) describes your experiments comprehensively;
2) presents your results neatly; and
3) must include reasonable discussion;
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