
CS143 Written Assignment 4

Due: June 4th, 2024 EOD

1. Consider the RPN calculator program shown in Listings 1 and 2. For purposes of
simplicity, we assume that all values of type Int cannot be void, so we can store them
in a machine word instead of storing pointers. So for example, when passing num to
init, the argument would be pushed directly onto the stack as a regular integer, rather
than constructing a new Int object.

Suppose we are generating code for the AMD64 architecture, which has 8-byte words
(so for this question, all pointers and integers are 8 bytes long), and the following
calling convention, which resembles the convention given in lecture, is used:

Listing 1: RPN Calculator Program

1 class Value { -- tag: 1
2 value: Int;
3 value (): Int { value };
4 set(i: Int): SELF_TYPE { { value ← i; self; } };
5 };
6
7 class MulOp inherits Value { -- tag: 2
8 operate(a: Int , b: Int): Int { a * b };
9 };

10 class AddOp inherits MulOp { -- tag: 3
11 operate(a: Int , b: Int): Int { a + b };
12 };
13
14 class Stack { -- tag: 4
15 head: Object;
16 tail: Stack;
17 get(): Object { head };
18 pop(): Stack { tail };
19 set(v: Object ): SELF_TYPE { { head ← v; self; } };
20 push(s: Stack): SELF_TYPE { { tail ← s; self; } };
21 };

1



Listing 2: Main class

23 class Main { -- tag: 5
24 stack: Stack;
25 reduce (): Int { let x : Object ← stack.get() in {
26 stack ← stack.pop();
27 case x of
28 op : MulOp ⇒ let
29 temp : Value ,
30 lhs : Int ,
31 rhs : Int in {
32 rhs ← reduce ();
33 lhs ← reduce ();
34 temp ← (new Value);
35 temp.set(op.operate(lhs , rhs)). value ();
36 };
37 val : Value ⇒ val.value ();
38 esac;
39 } };
40 init(num : Int): Object { {
41 -- computes 2 * num + 1
42 -- stack: [Value(2), Value(num), MulOp , Value(1), AddOp]
43 -- where Value(x) means a Value whose value is set to x
44 stack ← (new Stack).set((new Value).set (2)). push(stack);
45 stack ← (new Stack).set((new Value).set(num)). push(stack );
46 stack ← (new Stack).set((new MulOp )). push(stack);
47 stack ← (new Stack).set((new Value).set (1)). push(stack);
48 stack ← (new Stack).set((new AddOp )). push(stack);
49 } };
50 main() : Object { let
51 io : IO ← new IO,
52 num : Int ← io.in_int () in {
53 init(num);
54 io.out_int(reduce ());
55 io.out_string("\n");
56 } };
57 };

2



Calling convention:

• First, the frame pointer is pushed by the caller.

• Next, all arguments are pushed onto the stack in reverse order. Integers are stored
directly as machine words. Since self is the first argument for all functions, it is
always pushed last.

• The caller pushes the return address and jumps to the start of the function, using
the call instruction.

• Now, the callee sets the frame pointer to the current stack pointer on entry to the
function.

• Local variables are pushed onto the stack as necessary, following their scope in
the program. For example, when calling reduce() when the top of the stack is a
regular Value, only two values are pushed onto the stack (x and val), but when
entering line 32, a total of 5 values are pushed onto the stack.

• When the callee returns, it resets the stack pointer to the frame pointer.

• The callee then pops the return address and jumps back to the caller at the return
address, using the ret instruction.

• The caller restores the saved frame pointer.

3



(a) Suppose the dispatch tables are stored beginning at memory address 0x8000, in
the order Stack, Value, MulOp, AddOp, Main. Assume that Object has no
methods. The following is a representation of the dispatch table for Stack:

Address Line Number (Method)
0x8000 ⟨line 17⟩ (get)
0x8008 ⟨line 18⟩ (pop)
0x8010 ⟨line 19⟩ (set)
0x8018 ⟨line 20⟩ (push)

Here, ⟨line x⟩ refers to the address of the generated code for line x. Also, the
ordering of the methods in the dispatch table are assumed to match the order
they are declared in the source code.

Using this format, provide dispatch tables for Value, MulOp, AddOp. (We will
assume for the remainder of the question that Main’s dispatch table is located at
0x8800.)

(b) Consider the state of the heap on entry to line 53. It is shown in the following
tables (ignoring IO):

Address Value Meaning
⟨object Main⟩ + 0x0000 5 (class tag)
⟨object Main⟩ + 0x0008 4 (object size)
⟨object Main⟩ + 0x0010 0x8800 (dispatch ptr)
⟨object Main⟩ + 0x0018 void (stack)

Assume attributes are stored in the order they are declared in the program.

Since we do not know the precise heap layout, we specify heap addresses as an
offset from the start, according to the class name.

Give the heap layout after executing line 44. Hint: there is at most one object
for each class. When referring to other heap objects, you should reference them
by their class name, e.g. ⟨object Stack⟩.

4



(c) Consider the stack layout on entry to line 53. Suppose the return address of main
is at address 0x2000, the initial value of the frame pointer is 0x7ffffff8, and the
stack starts at address 0x77780000, so the first entry is at 0x7777fff8.

The following is a representation of the stack layout on entry to line 44, where
the user as entered the value 5:
Address Value Meaning
0x7777fff8 0x7ffffff8 (saved frame pointer)
0x7777fff0 ⟨object Main⟩ (argument 0 of main)
0x7777ffe8 0x2000 (return address of main)
0x7777ffe0 ⟨object IO⟩ (local variable io)
0x7777ffd8 5 (local variable num)
0x7777ffd0 0x7777ffe8 (saved frame pointer)
0x7777ffc8 5 (argument 1 of init)
0x7777ffc0 ⟨object Main⟩ (argument 0 of init)
0x7777ffb8 ⟨line 53⟩ (return address of init)

As shown above, return addresses specify the line number of the next instruction
to be executed; since the caller needs to restore the frame pointer, this is the line
number of the dispatch.

The call graph of reduce is shown in Figure 1. Give the stack layout on entry
to line 11 (AddOp.operate), highlighted in red in the call graph. As before, you
should refer to objects by their class name; you do not need to distinguish different
objects of the same class. Hint: make sure to consider what the actual values of
the local variables are.

Figure 1: Call graph for reduce, when num = 5. The stack is shown below each call to reduce.

reduce
[Value(2), Value(5), MulOp, Value(1), AddOp]

reduce
[Value(2), Value(5), MulOp, Value(1)]

Value.value

reduce
[Value(2), Value(5), MulOp]

reduce
[Value(2), Value(5)]

Value.value

reduce
[Value(2)]

Value.value

MulOp.operate

AddOp.operate

5



2. Suppose we would like to add basic support for exception handling to Cool. We do
this by introducing two new expressions:

try e1 catch e2 yrt

throw

The behavior of these constructs is as follows: the throw expression produces an error
and “halts execution”, resuming at the nearest catch expression. For try expressions,
if e1 executes normally without producing an error, its result is returned. Otherwise,
if an error was produced, e2 is executed and returned.

(a) Give the operational semantics for the try and throw expressions above. Also,
show how the operational semantics for the + operator is changed to accomodate
this. Hint: introduce a new value ⊥, which represents the result of an expression
that produces an error.

(b) Show the evaluation of the expression below using operational semantics. You
may omit the environments so, S, E.

try 2 + throw catch 3 yrt

For reference, here is the proof tree for 2 ∗ ∼1 7→ Int(−2):

⊢ 2 7→ Int(2), S
[Int]

⊢ 1 7→ Int(1), S
[Int]

⊢ ∼1 7→ Int(−1), S [Neg]

⊢ 2 ∗ ∼1 7→ Int(−2), S [Arith]

(c) Simplicio wants to implement this feature using the following pseudocode (assume
he has a separate scheme for method calls, which cannot be handled locally):

procedure Codegen(e, catchLabel)
if e is try e1 catch e2 yrt then

ourLabel ← fresh label
ourEnd ← fresh label
Codegen(e1, ourLabel)
emit jmp ourEnd
emit ourLabel:
Codegen(e2, catchLabel)
emit ourEnd:

else if e is throw then
emit jmp catchLabel

else
. . .

end if
end procedure

What is wrong with his approach? Give an example of code that can produce
undesired behavior and explain what happens.

6



3. Consider the following program, represented as a control-flow graph. a and b are the
inputs to the program.

Entry(a, b)

x := a

y := x ∗ 2
z := x− a

w := x+ z

v := b
if x > v goto B2
else goto B3

x := x+ 2

h := x
goto B4

h := x
goto B4

u := h+ b

h := x

v := v + 2
if v < 10 goto B4

else goto B5

f := h ∗ 32
g := v − b

return (f, g)

Exit

B1

B2 B3

B4

B5

(a) Perform the following local optimizations on each basic block in order, and show
the final result. You do not need to show the intermediate steps.

• Algebraic simplification (assume addition/subtraction is the fastest operation,
followed by shifting, then multiplication.)

• Copy propagation

• Algebraic simplification again

• Constant propagation

• Algebraic simplification

7



(b) Notice that some optimization opportunities are missed by local optimization.
We would like to perform global copy propagation by incorporating information
from other basic blocks. When optimizing a basic block B, if we know that a
variable v is always a copy of another variable u on entry to B, then we can use
this information to propagate the copy to v. This analysis requires us to consider
the program’s control flow. To do this, we store a mapping from each basic block
and variable to a semilattice element1 representing this information. Then we
can perform dataflow analysis, as with constant propagation, to compute a fixed
point that consolidates the final state across all paths in the program.

We use the following semilattice structure (note: the convention used here is
reversed from what is used in lecture; this follows what is used in the textbook.)

⊤

a b . . . y z

⊥

, where a, b, . . . , y, z represent variables. We also define the meet (greatest lower
bound) as follows:

⊤ ∧⊤ = ⊤ ⊤ ∧ a = a ∧ ⊤ = a

a ∧ a = a a ∧ b = ⊥ (a ̸= b)

⊥ ∧ any = any ∧ ⊥ = ⊥

The meet operator is used to combine information from a basic block’s predeces-
sors: if we know the state of a variable v on exit from every predecessor P1, . . . , Pk

of B (and the corresponding semilattice elements are stored as Out[Pi, v]), then
the state of v on entry to B is

In[B, v] = Out[P1, v] ∧ · · · ∧Out[Pk, v]

=
∧

predecessors P

Out[P, v].

We also define a transfer function fB for each basic block as follows:

fB(In[v]) = In[v], if v is not modified in B

fB(In[v]) = ⊥, if v is set to something that is not a copy

fB(In[v]) = x, if v is a copy of x on exit from B

1The specific details of what a semilattice is are not relevant, except that you need a semilattice in order
to perform dataflow, and that we have a meet (greatest lower bound).

8



To perform global copy propagation, we perform the following steps:

procedure CopyPropagation(CFG B1, . . . , Bn, set of variables v⃗)
assign In[Entry, v]← ⊥ for every variable v
assign Out[B, v]← ⊤ for every basic block B and variable v
repeat

for each basic block B do
assign In[B, v]←

∧
predecessors P Out[P, v], for each variable v

assign Out[B]← fB(In[B])
end for

until no values have changed
for each basic block B do

for each variable v where In[B, v] ̸= ⊥ do ▷ note: In[B, v] ̸= ⊤
temporarily insert v := In[B, v] at the beginning of B

end for
perform local copy propagation
remove the inserted copies

end for
end procedure

For example, for the following CFG:

Entry(a, n)

x := a

i := i+ 1
if i < n goto B1

else goto B2

x := a + x
return x

Exit

B1

B2

We perform the dataflow process as follows: after initialization (note that In is
not initialized), we have

Out[Entry, a] = ⊥ Out[Entry, i ] = ⊥ Out[Entry, n] = ⊥ Out[Entry, x] = ⊥
Out[B1, a] = ⊤ Out[B1, i ] = ⊤ Out[B1, n] = ⊤ Out[B1, x] = ⊤
Out[B2, a] = ⊤ Out[B2, i ] = ⊤ Out[B2, n] = ⊤ Out[B2, x] = ⊤

Suppose we first visit B1. After we set In[B1]:

In[B1, a] = ⊥ In[B1, i ] = ⊥ In[B1, n] = ⊥ In[B1, x] = ⊥

9



We then compute Out[B1] according to the transfer function. Since x is a copy
of a, we set Out[B1, a] to a. The full output of the transfer function is:

Out[B1, a] = ⊥ Out[B1, i ] = ⊥ Out[B1, n] = ⊥ Out[B1, x] = a

Next, we set In[B2] = Out[B1], as B1 is the only predecessor of B2, and compute
the transfer function:

Out[B2, a] = ⊥ Out[B2, i ] = ⊥ Out[B2, n] = ⊥ Out[B2, x] = ⊥

In the next iteration, we must recompute the dataflow using the updated informa-
tion from the previous iteration. In particular, since Out[B1] has changed and B1
is a predecessor of B1, we should recompute In[B1] and Out[B1] = fB1(In[B1]).
We now have:

In[B1, a] = ⊥ In[B1, i ] = ⊥ In[B1, n] = ⊥ In[B1, x] = a
Out[B1, a] = ⊥ Out[B1, i ] = ⊥ Out[B1, n] = ⊥ Out[B1, x] = a

Since Out[B1] has not changed, In[B2] and Out[B2] are also unchanged, so we
have converged. We can now use In to perform constant propagation for each
basic block. The results of dataflow as summarized below:

In[B1, a] = ⊥ In[B1, i ] = ⊥ In[B1, n] = ⊥ In[B1, x] = a
In[B2, a] = ⊥ In[B2, i ] = ⊥ In[B2, n] = ⊥ In[B2, x] = a

Using this, we find that B1 cannot be optimized, but we can optimize B2:

(after inserting copies) (after copy propagation) (copies removed)
x := a x := a
x := a+ x ⇒ x := a+ a ⇒ x := a+ a
return x return x return x

Perform global copy propagation on the given CFG (without the local optimiza-
tions in part (a)). You do not have to show your work.

Hint: you should process blocks in the order given, as information propagate
faster if the iteration order roughly follows the program’s control flow2. This can
significantly reduce the number of iterations necessary for convergence.

Hint: you should only recompute the results for basic blocks for which Out has
changed for some predecessor. This can save a significant amount of work.

Note: you can also perform this optimization by inspection, if you are confident.

2The optimal ordering for a forward dataflow problem is given by a reverse postorder (RPO) traversal of
the CFG. For “rapid” dataflow problems (such as copy propagation, but not constant propagation), dataflow
is guaranteed to terminate in d+2 iterations, where d is the ‘loop depth’ of the CFG, the maximum number
of retreating edges in any cycle-free path.

10



4. Using the same CFG in Problem 3 (without any optimizations):

(a) Label each point in the program with the set of live variables.

(b) Show the interference graph. For ease of grading, also include a list of edges in
the form below:

a - b;
b - c;

(c) Give a minimal coloring for the interference graph. You should not use the algo-
rithm in class, as this is not guaranteed to give a minimal result.

11


