
Compilers

CS143
Lecture 1

1

Instructor: Fredrik Kjolstad

The slides in this course are designed by
Alex Aiken,

with modifications by Fredrik Kjolstad.

2

Staff

• Instructor
– Fredrik Kjolstad

• TAs
– Tejas Narayanan
– Colin Schultz
– James Dong
– Olivia Hsu
– Daniel Rebelsky
– Trevor Gale

3

Administrivia

• Syllabus is on-line
– cs143.stanford.edu
– Assignment dates
– Midterm (Thursday May 2)
– Final

• Office hours
– Office hours spread throughout the week (some on zoom)
– My office hours: Thursday 5-6pm (zoom) and Friday 9-10am (Gates 486)
– Office hours starting next week to be announced

• Communication
– Use ed, email, zoom, office hours

4

http://cs143.stanford.edu

Webpages and servers

• Course webpage at cs143.stanford.edu
– Syllabus, lecture slides, handouts, assignments, and policies

• Canvas at https://canvas.stanford.edu/courses/190387
– Lecture recordings available under the Panopto Course Videos tab

• Ed Discussion at https://edstem.org/us/courses/57833/discussion/
– This is where you should ask most questions
– Also accessible from Canvas

• Gradescope at https://www.gradescope.com/courses/761000
– This is where you will hand in written assignments

• Computing Resources at myth.stanford.edu
– We will use myth for the programming assignments
– Class folder: /afs/ir/class/cs143/

5

http://cs143.stanford.edu/
http://rice.stanford.edu/

Text

• The Purple Dragon Book

• Aho, Lam, Sethi & Ullman

• Not required
– But a useful reference

6

Course Structure

• Course has theoretical and practical aspects

• Need both in programming languages!

• Written assignments + exams = theory

• Programming assignments = practice

7

Academic Honesty

• Don’t use work from uncited sources

• We may use plagiarism detection software
– many cases in past offerings

PLAGIARISM

8

The Course Project

• You will write your own compiler!
• One big project
• … in 4 parts
• Start early

9

PA4

code generation

PA3

type checker

PA2

parser

PA1

lexer

start early!

Course Goal

• Open the lid of compilers and see inside
– Understand what they do
– Understand how they work
– Understand how to build them

10

• Correctness over performance
– Correctness is essential in compilers
– They must produce correct code
– Enormous consequences if they do not
– Other classes focus on performance (CS149, CS243)

How are Languages Implemented?

• Two major strategies:
– Interpreters run your program
– Compilers translate your program

11

Interpreter

Machine

Program
Compiler

Machine

Program Binary Code

Language Implementations

• Compilers dominate low-level languages
– C, C++, Go, Rust

• Interpreters dominate high-level languages
– Python, JavaScript

• Many language implementations provide both
– Java, Javascript, WebAssembly
– Interpreter + Just in Time (JIT) compiler

12

History of High-Level Languages

• 1954: IBM develops the 704

• Problem
– Software costs exceeded

hardware costs!

• All programming done in
assembly

13

The Solution

• Enter “Speedcoding”

• An interpreter

• Ran 10-20 times slower than hand-written
assembly

14

FORTRAN I

• Enter John Backus

• Idea
– Translate high-level code to

assembly

– Many thought this
impossible

– Had already failed in other
projects

15

FORTRAN I (Cont.)

• 1954-7
– FORTRAN I project

• 1958
– >50% of all software is in

FORTRAN

• Development time halved

• Performance close to
hand-written assembly!

16

FORTRAN I

• The first compiler
– Huge impact on computer science

• Led to an enormous body of theoretical and practical
work

• Modern compilers preserve the outlines of FORTRAN I

• Can you name a modern compiler?

17

The Structure of a Compiler

1. Lexical Analysis
2. Parsing
3. Semantic Analysis
4. Optimization
5. Code Generation

Can be understood by analogy to how
humans comprehend English.

18

— identify words
— identify sentences
— analyse sentences
— editing
— translation

Lexical Analysis

• First step: recognize words.
– Smallest unit above letters

This is a sentence.

19

More Lexical Analysis

• Lexical analysis is not trivial.

• Suppose we scramble the whitespaces:
ist his ase nte nce

• Suppose we replace whitespace with z:
iszthiszazsentence

20

And More Lexical Analysis

• Lexical analyzer divides program text into
“words” or “tokens”

if x == y then z = 1; else z = 2;

• Units:

21

Parsing

• Once words are understood, the next step is to
understand sentence structure

• Parsing = Diagramming Sentences
– The diagram is a tree

22

Diagramming a Sentence

This line is a longer sentence

verbarticle noun article adjective noun

subject object

sentence

23

Parsing Programs

• Parsing program expressions is the same
• Consider:

if x == y then z = 1 else z = 2
• Diagrammed:

if-then-else

x y z 1 z 2==

assignrelation assign

predicate else-stmtthen-stmt

24

Semantic Analysis

• Once sentence structure is understood, we can
try to understand “meaning”
– But meaning is too hard for compilers

• Compilers perform limited semantic analysis to
catch inconsistencies

25

Semantic Analysis in English

• Example:
Jack said Jerry left his assignment at home.

What does “his” refer to? Jack or Jerry?

• Even worse:
Jill said Jill left her assignment at home?

How many Jills are there?
Which one left the assignment?

26

Semantic Analysis in Programming

• Programming
languages define strict
rules to avoid such
ambiguities

• This C++ code prints
“4”; the inner definition
is used

{
	 int i = 3;
	 {
	 	 int i = 4;
	 	 cout << Jack;
	 }
}

27

More Semantic Analysis

• Compilers perform many semantic checks
besides variable bindings

• Example:
Jack left her homework at home.

• Possible type mismatch between her and Jack
– If Jack is male

28

Optimization

• Akin to editing
– Minimize reading time
– Minimize items the reader must keep in short-term

memory

• Automatically modify programs so that they
– Run faster
– Use less memory
– In general, to conserve some resource

• The project has little optimization.
– See CS243 Program Analysis and Optimization 29

Optimization Example

x = y * 0 is the same as x = 0

(the * operator is annihilated by zero)

30

Is this optimization legal?

Code Generation

• Typically produces assembly code

• Generally a translation into another language
– Analogous to human translation

31

Intermediate Representations (IR)

• Compilers typically perform translations between
successive intermediate languages
– All but first and last are intermediate representations

(IR) internal to the compiler

• IRs are generally ordered in
descending level of abstraction
– Highest is source
– Lowest is assembly

32

Source

IR

Assembly

IR

…

Intermediate Representations (IR) (Cont.)

• IRs are useful because lower levels expose
features hidden by higher levels
– registers
– memory layout
– raw pointers
– etc.

• But lower levels obscure high-level meaning
– Classes
– Higher-order functions
– Even loops…

33

Issues

• Compiling is almost this simple, but there are
many pitfalls

• Example: How to handle erroneous programs?

• Language design has a big impact on the compiler
– Determines what is easy and hard to compile
– Course theme: many trade-offs in language design

34

Compilers Today

• The overall structure of almost every compiler
adheres to our outline

• The proportions have changed since FORTRAN
– Early: lexing and parsing most complex/expensive

– Today: optimization dominates all other phases, lexing
and parsing are well understood and cheap

• Compilers are now also found inside libraries:
• XLA, TVM, Halide, DBMS, …

35

