Lexical Analysis

CS143
Lecture 3

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

Outline

* Informal sketch of lexical analysis
— ldentifies tokens in input string

* |Issues in lexical analysis
— Lookahead
— Ambiguities

- Specifying lexers (aka. scanners)
— By regular expressions (aka. regex)
— Examples of regular expressions

Lexical Analysis

- What do we want to do? Example:
it (i==])
L=0;
else
L=1;

- The input is just a string of characters:
\Ttif (I == j)\rl\’r\’rz = 0;\n\telse\n\t\tz = 1;

 Goal: Partition input string into substrings
— Where the substrings are called tokens

What’s a Token?

- A syntactic category
— In English:

noun, verb, adjective, ...

— In a programming language:
|dentifier, Integer, Keyword, Whitespace, ...

Tokens

- Atoken class corresponds to a set of strings

Infinite set
« Examples

— |dentifier: strings of letters or
digits, starting with a letter

— Integer: a non-empty string of digits

— Keyword: “else” or “if” or “begin” or ...

— Whitespace: a non-empty sequence of blanks,
newlines, and tabs

What are Tokens For?

Classify program substrings according to role

Lexical analysis produces a stream of tokens
... Which is input to the parser

« Parser relies on token distinctions
— An identifier is treated differently than a keyword

Designing a Lexical Analyzer: Step 1

« Define a finite set of tokens

— Tokens describe all items of interest
- Identifiers, integers, keywords

— Choice of tokens depends on
 language
- design of parser

Example

* Recall
\tif (i == j)\n\t\1z = O;\n\telse\n\t\tz = 1;

 Useful tokens for this expression:
Integer, Keyword, Relation, Identifier, Whitespace, (,),

- N.B, (,), =, ; above are tokens, not characters

Designing a Lexical Analyzer: Step 2

« Describe which strings belong to each token

* Recall:
— ldentifier: strings of letters or digits, starting with a letter
— Integer: a non-empty string of digits
— Keyword: “else” or “if” or “begin” or ...
— Whitespace: a non-empty sequence of blanks,
newlines, and tabs

Lexical Analyzer: Implementation

An implementation must do two things:

1. Classify each substring as a token

2. Return the value or lexeme (value) of the token

— The lexeme is the actual substring
— From the set of substrings that make up the token

The lexer thus returns token-lexeme pairs
— And potentially also line numbers, file names, etc. to
Improve later error messages

10

Example

* Recall:
\tif (i == j)\n\t\1z = O;\n\telse\n\t\tz = 1;

11

Lexical Analyzer: Implementation

« The lexer usually discards “uninteresting” tokens
that don’t contribute to parsing.

- Examples: Whitespace, Comments

12

True Crimes of Lexical Analysis

 Isit as easy as it sounds?

« Sort of... if you do not make it hard!

* Look at some history

13

Lexical Analysis in FORTRAN

FORTRAN rule: Whitespace is insignificant

E.g., VARI is the same as VA Rl

A terrible design!

Historical footnote: FORTRAN Whitespace rule
motivated by inaccuracy of punch card operators

14

FORTRAN Example

« Consider
-DOS5I1=1,25
- DOS5I1=1.25

15

Lexical Analysis in FORTRAN (Cont.)

» Two important points:

1. The goal is to partition the string. This is implemented
by reading left-to-right, recognizing one token at a time

2. “Lookahead” may be required to decide where one
token ends and the next token begins

16

Lookahead

- Even our simple example has lookahead issues
— lvs. if

17

Lexical Analysis in PL/I

- PL/I keywords are not reserved
IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

18

Lexical Analysis in PL/l (Cont.)

 PL/I Declarations:
DECLARE (ARGI,. .., ARGN)|

- Cannot tell whether DECLARE is a keyword or

array reference until after the).
— Requires arbitrary lookahead!

19

Lexical Analysis in C++

Unfortunately, the problems continue today

C++ template syntax:
Foo<Bar>
C++ stream syntax:
cin >> var;
But there is a conflict with nested templates:
Foo<Bor<Bazz>A>

Closing templates, not stream 20

Review

« The goal of lexical analysis is to
— Partition the input string into lexemes
— |dentify the token of each lexeme

» Left-to-right scan => lookahead sometimes
required

21

Next

» We still need
— A way to describe the lexemes of each token

— A way to resolve ambiguities
- Is if two variables i and f?
* Is == two equal signs = =7

22

Regular Languages

» There are several formalisms for specifying tokens

- Regular languages are the most popular
— Simple and useful theory
— Easy to understand
— Efficient implementations

23

Languages

Def. Let alphabet 2 be a set of characters.
A language over 2 is a set of strings of
characters drawn from 2.

24

Examples of Languages

. Alphabet = English

characters

Language = English
sentences

* Not every string of English

characters is an English
sentence

. Alphabet = ASCII

Language = C programs

Note: ASCII character set
Is different from English
character set

25

Notation

- Languages are sets of strings.

- Need some notation for specifying which sets we
want

- The standard notation for regular languages is
regular expressions.

26

Atomic Regular Expressions

» Single character

'C!= {"C"}

* Epsilon
8 — {""}

. Not the empty set, but set with
a single, empty, string.

27

Compound Regular Expressions

 Union

A+ B = {S\SEA orSEB}

« Concatenation

AB={ab|aE A and bE B}

 |teration

| times

28

Regular Expressions

- Def. The regular expressions over 2 are the
smallest set of expressions including

where cE),

where A, B are rexp over)

" " "
where A is a rexp over)

29

Syntax vs. Semantics

- Notation so far was imprecise

AB = {ab\aEA and bE{B}

/

B as a piece of syntax B as a set
(the semantics of the syntax)

30

Syntax vs. Semantics

L(a +'b) Semantics (content)

Box

Syntax (label)

31

Syntax vs. Semantics

 To be careful, we distinguish syntax and semantics.

e = {7
L(e) = {"e}

L(A+B) = L(A)UL(B)

L(AB) = {abla€L(A) and bE€ L(B)}
L(A*) = U,y L(A")

32

Segue

* Regular expressions are simple, almost trivial
— But they are useful!

- We will describe tokens in regular expressions

33

Example: Keyword

Keyword: “else” or “if” or “begin” or ...

‘else’ + ‘if’ + ‘begin’ + . ..

J €)

Abbreviation: ‘else’ =‘e’ I’ ‘s’ ‘e

34

Example: Integers

digit

integer

Integer: a non-empty string of digits
— VO'+!1|+12!+V3!+'4!+|51+!6V+!7V+!8'+!9!
= digit digit’

Abbreviation: AT = AA*
Abbreviation: [0-2] = '0"+ ']" + 2

35

Example: Identifier

|dentifier: strings of letters or digits, starting with a
letter

€y

letter = ‘A+...+Z+a+...+Z

identifier = letter (letter + digit)”

Is (letter” + digit*) the same as (letter + digit)*?

36

Example: Whitespace

Whitespace: a non-empty sequence of blanks,
newlines, and tabs

(v '+ \n' + v\tv)+

37

Example: Phone Numbers

* Regular expressions are all around you!
- Consider (650)-723-3232

2

exchange
phone
area

phone number

digits U {-()}
digit’
4

digit

digit’

'("area ')-' exchange '-' phone

38

Example: Email Addresses

- Consider anyone@cs.stanford.edu

D letters U {,@}

name = letter’

address name '(@' name "' name . name

39

Example: Unsigned Pascal Numbers

digit

digits

opt fraction
opt exponent

num

0" +1+2+H3+H4+H5+6'+H7+H8 9
digit”

("' digits) +¢

('E'(+'+ '+ ¢) digits) + ¢

digits opt fraction opt exponent

40

Other Examples

* File names
« Grep tool family

41

Summary

* Regular expressions describe many useful
languages
— We will look at non-regular languages next week

* Regular languages are a language
specification
— We still need an implementation

* Next time: Given a string s and a rexp R, is

sEL(R)?

42

