
1

CS143
Lecture 4

Implementation of Lexical Analysis

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

2

Written Assignments

• WA1 assigned today

• Due in one week
– 11:59pm
– Electronic hand-in on Gradescope

3

Tips on Building Large Systems

• KISS (Keep It Simple, Stupid!)

• Don’t optimize prematurely

• Design systems that can be tested

• It is easier to modify a working system than to get
a system working

Value simplicity

4

“It's not easy to write good software. […] it has a lot to do with valuing
simplicity over complexity.”
- Barbara Liskov

“Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are, by
definition, not smart enough to debug it.”
- Brian Kernighan

“There are two ways of constructing a software design: One way is to
make it so simple that there are obviously no deficiencies, and the other
way is to make it so complicated that there are no obvious deficiencies.
The first method is far more difficult.”
- Tony Hoare

“Simplicity does not precede complexity, but follows it.”
- Alan Perlis

5

Outline

• Specifying lexical structure using regular
expressions

• Finite automata
– Deterministic Finite Automata (DFAs)
– Non-deterministic Finite Automata (NFAs)

• Implementation of regular expressions

6

Convert Regular Expressions to Finite Automata

• High-level sketch

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven
Implementation of DFA

Lexer → Regex → NFA → DFA → Tables

7

Notation

• There is variation in regular expression notation

• Union: A + B ≡ A | B
• Option: A + ε ≡ A?
• Range: ‘a’+’b’+…+’z’ ≡ [a-z]
• Excluded range:

 complement of [a-z] ≡ [^a-z]

Lexer → Regex → NFA → DFA → Tables

8

Regular Expressions in Lexical Specification

• Last lecture: a specification for the predicate
 s ∈ L(R)

• But a yes/no answer is not enough!
• Instead: partition the input into tokens

• We will adapt regular expressions to this goal

Lexer → Regex → NFA → DFA → Tables

9

Lexical Specification → Regex in five steps

1. Write a regex for each token
• Number = digit +
• Keyword = ‘if’ + ‘else’ + …
• Identifier = letter (letter + digit)*
• OpenPar = ‘(‘
• …

Lexer → Regex → NFA → DFA → Tables

10

Lexical Specification → Regex in five steps

2. Construct R, matching all lexemes for all tokens

 R = Keyword + Identifier + Number + …
 = R1 + R2 + …

(This step is done automatically by tools like flex)

Lexer → Regex → NFA → DFA → Tables

11

Lexical Specification → Regex in five steps

3. Let input be x1…xn
For 1 ≤ i ≤ n check

 x1…xi ∈ L(R)

4. If success, then we know that
 x1…xi ∈ L(Rj) for some j

5. Remove x1…xi from input and go to (3)

Lexer → Regex → NFA → DFA → Tables

12

Ambiguity 1

• There are ambiguities in the algorithm

• How much input is used? What if
• x1…xi ∈ L(R) and also
• x1…xK ∈ L(R)

• Rule: Pick longest possible string in L(R)
– Pick k if k > i
– The “maximal munch”

Lexer → Regex → NFA → DFA → Tables

13

Ambiguity 2

• Which token is used? What if
• x1…xi ∈ L(Rj) and also
• x1…xi ∈ L(Rk)

• Rule: use rule listed first
– Pick j if j < k
– E.g., treat “if” as a keyword, not an identifier

Lexer → Regex → NFA → DFA → Tables

14

Error Handling

• What if
 No rule matches a prefix of input ?

• Problem: Can’t just get stuck …
• Solution:

– Write a rule matching all “bad” strings
– Put it last (lowest priority)

Lexer → Regex → NFA → DFA → Tables

15

Summary

• Regular expressions provide a concise notation for string
patterns

• Use in lexical analysis requires small extensions
– To resolve ambiguities
– To handle errors

• Good algorithms known
– Require only single pass over the input
– Few operations per character (table lookup)

Lexer → Regex → NFA → DFA → Tables

16

Finite Automata

• Regular expressions = specification
• Finite automata = implementation

• A finite automaton consists of
– An input alphabet Σ
– A set of states S
– A start state n
– A set of accepting states F ⊆ S
– A set of transitions state →input state

Lexer → Regex → NFA → DFA → Tables

17

Finite Automata

• Transition
s1 →a s2

• Is read
In state s1 on input “a” go to state s2

• If end of input and in accepting state => accept

• Otherwise => reject

Lexer → Regex → NFA → DFA → Tables

18

Finite Automata State Graphs

• A state

• The start state

• An accepting state

• A transition
a

Lexer → Regex → NFA → DFA → Tables

19

A Simple Example

• A finite automaton that accepts only “1”

1

Lexer → Regex → NFA → DFA → Tables

0,1

0,1

0

20

Another Simple Example

• A finite automaton accepting any number of 1’s
followed by a single 0

• Alphabet: {0,1}

0

1

Lexer → Regex → NFA → DFA → Tables

0,1

0

21

And Another Example

• Alphabet {0,1}
• What language does this recognize?

0

1

0

1

0

1

Lexer → Regex → NFA → DFA → Tables

22

Epsilon Moves in NFAs

• Another kind of transition: ε-moves
ε

• Machine can move from state A to state B
without reading input

• Only exist in NFAs

A B

Lexer → Regex → NFA → DFA → Tables

23

Deterministic and Nondeterministic Automata

• Deterministic Finite Automata (DFA)
– Exactly one transition per input per state
– No ε-moves

• Nondeterministic Finite Automata (NFA)
– Can have zero, one, or multiple transitions for one

input in a given state
– Can have ε-moves

Lexer → Regex → NFA → DFA → Tables

24

Execution of Finite Automata

• A DFA can take only one path through the state
graph
– Completely determined by input

• NFAs can choose
– Whether to make ε-moves
– Which of multiple transitions for a single input to take

Lexer → Regex → NFA → DFA → Tables

25

Acceptance of NFAs

• An NFA can get into multiple states

• Input:

0

1

0

0

1 0 0

Rule: NFA accepts if it can get to a final state

Lexer → Regex → NFA → DFA → Tables

26

NFA vs. DFA (1)

• NFAs and DFAs recognize the same set of
languages (regular languages)

• DFAs are faster to execute
– There are no choices to consider

Lexer → Regex → NFA → DFA → Tables

27

NFA vs. DFA (2)

• For a given language NFA can be simpler than
DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

• DFA can be exponentially larger than NFA

Lexer → Regex → NFA → DFA → Tables

28

Convert Regular Expressions to NFA (1)

• For each kind of rexp, define an NFA
– Notation: NFA for rexp M

M

• For ε
ε

• For input a
a

Lexer → Regex → NFA → DFA → Tables

29

Convert Regular Expressions to NFA (2)

• For AB
A B

ε

• For A + B

A

B

ε

ε

ε

ε

Lexer → Regex → NFA → DFA → Tables

30

Convert Regular Expressions to NFA (3)

• For A*

A εε

ε

ε

Lexer → Regex → NFA → DFA → Tables

31

Example of RegExp to NFA conversion

• Consider the regular expression
(1+0)*1

• The NFA is

ε
ε

ε
B

1C E
0D F ε

ε
G

ε ε

ε

ε

A H 1I J

Lexer → Regex → NFA → DFA → Tables

32

NFA to DFA: The Trick

• Simulate the NFA
• Each state of DFA

= a non-empty subset of states of the NFA
• Start state

= the set of NFA states reachable through ε-moves from
NFA start state

• Add a transition S →a S’ to DFA iff
– S’ is the set of NFA states reachable from any state in

S after seeing the input a, considering ε-moves as well

Lexer → Regex → NFA → DFA → Tables

33

NFA to DFA. Remark

• An NFA may be in many states at any time

• How many different states ?

• If there are N states, the NFA must be in some
subset of those N states

• How many subsets are there?
– 2N - 1 = finitely many

Lexer → Regex → NFA → DFA → Tables

34

NFA -> DFA Example
ε

1
0 1ε

ε

ε

ε

ε

ε ε

ε

A B
C

D

E

F
G H I J

FGHIABCD

EJGHIABCD
ABCDHI

0

1

0

10 1

Lexer → Regex → NFA → DFA → Tables

35

Implementation

• A DFA can be implemented by a 2D table T
– One dimension is “states”
– Other dimension is “input symbol”
– For every transition Si →a Sk define T[i,a] = k

• DFA “execution”
– If in state Si and input a, read
 T[i,a] = k and skip to state Sk
– Very efficient

st
at

es

input symbols

b
c
d

 a b

 a b

 b b

 a b

a
0 1

Lexer → Regex → NFA → DFA → Tables

36

Table Implementation of a DFA

S

T

U

0

1

0

10 1

0 1

S T U

T T U

U T U

Lexer → Regex → NFA → DFA → Tables

37

Implementation (Cont.)

• NFA -> DFA conversion is at the heart of tools
such as flex

• But, DFAs can be huge

• In practice, flex-like tools trade off speed for
space in the choice of NFA and DFA
representations

Lexer → Regex → NFA → DFA → Tables

