Overview of Semantic Analysis
and
Type Checking |

CS143
Lecture 9

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

Midterm Thursday

- Material through lecture 8
- Open note, except computation
* Held in class on Thursday

Outline

* The role of semantic analysis in a compiler
— Alaundry list of tasks

« Scope
— Implementation: symbol tables

« Types

The Compiler So Far

 Lexical analysis
— Detects inputs with illegal tokens

» Parsing
— Detects inputs with ill-formed parse trees

- Semantic analysis
— Last “front end” phase
— Catches all remaining errors

Why a Separate Semantic Analysis?

» Parsing cannot catch some errors

- Some language constructs not context-free

What Does Semantic Analysis Do?

Checks of many kinds . . . coolc checks:
1. All identifiers are declared

2. Types

3. Inheritance relationships

4. Classes defined only once

5. Methods in a class defined only once

6. Reserved identifiers are not misused

And others . ..

The requirements depend on the language

Scope

- Matching identifier declarations with uses

— Important static analysis step in most languages
— Including COOL!

What’s Wrong?

« Example 1
Let y: String <— “abc” iny + 3

- Example 2
Lety:Intinx + 3

Note: An example property that is not context free.

Scope (Cont.)

« The scope of an identifier is the portion of a
program in which that identifier is accessible

- The same identifier may refer to different things in

different parts of the program
— Different scopes for same name don’t overlap

- An identifier may have restricted scope

Static vs. Dynamic Scope

» Most languages have static scope
— Scope depends only on the program text, not run-time
behavior
— Cool has static scope

- Afew languages are dynamically scoped
— Lisp, SNOBOL
— Lisp has changed to mostly static scoping
— Scope depends on execution of the program

10

Static Scoping Example

let X: Int<-01In
{
X;
let X: Int <- 1 1in
X,
X;

11

Static Scoping Example (Cont.)

let(x)Int <- 0 in
{
&)

let(x:|Int<- 1 In

X,

&)
}

Uses of x refer to closest enclosing definition

Dynamic Scope

» A dynamically-scoped variable refers to the

closest enclosing binding in the execution of the
program

* Example
g(y) = le{(@)y— 4 in f(3);
f(x) =@))

13

Scope in Cool

 Cool identifier bindings are introduced by
— Class declarations (introduce class names)
— Method definitions (introduce method names)
— Let expressions (introduce object ids)
— Formal parameters (introduce object ids)
— Attribute definitions (introduce object ids)
— Case expressions (introduce object ids)

14

Scope in Cool (Cont.)

* Not all kinds of identifiers follow the most-closely
nested rule

- For example, class definitions in Cool
— Cannot be nested
— Are globally visible throughout the program

* In other words, a class name can be used before
it is defined

15

Example: Use Before Definition

Class Foo {
...lety:Barin. ..

};

Class Bar {

};

16

More Scope in Cool

Attribute names are global within the class in which
they are defined

Class Foo {

fO): Int{a};

a: Int < O;

17

More Scope (Cont.)

- Method/attribute names have complex rules

« A method need not be defined in the class in
which it is used, but in some parent class

- Methods may also be redefined (overridden)

18

Implementing the Most-Closely Nested Rule

* Much of semantic analysis can be expressed as a
recursive descent of an AST

— Before: Process an AST node n
— Recurse: Process the children of n
— After: Finish processing the AST node n

- When performing semantic analysis on a portion
of the AST, we need to know which identifiers are
defined

19

Implementing . .. (Cont.)

- Example: the scope of let bindings is one subtree
of the AST:

letx:Int<—0iIne

- X IS defined in subtree e

20

Symbol Tables

« Consider again:letx:Int <~ 0ine

* |ldea:
— Before processing e, add definition of x to current
definitions, overriding any other definition of x
— Recurse
— After processing e, remove definition of x and restore
old definition of x

- A symbol table is a data structure that tracks the
current bindings of identifiers

21

Symbol Tables

Structure is a stack of scopes (maps).

- enter_scope() start a new nested scope

- find_symbol(x) finds current x (or null)

- add_symbol(x) add a symbol x to the table

- check_scope(x) true if x defined in current scope
» exit_scope() exit current scope

We will supply a symbol table manager for your
project

22

Class Definitions

Class names can be used before being defined

We can’t check class names
— using a symbol table
— Or even in one pass

Solution
— Pass 1: Gather all class names
— Pass 2: Do the checking

Semantic analysis requires multiple passes
— Probably more than two

23

Types

- What is a type?
— The notion varies from language to language

- Consensus
— A set of values
— A set of operations on those values

« Classes are one instantiation of the modern
notion of type

24

Why Do We Need Type Systems?

Consider the assembly language fragment

add $r1, $r2, $r3

What are the types of $r1, $r2, $r3?

25

Types and Operations

- Certain operations are legal for values of each
type

— It doesn’t make sense to add a function pointer and an
integer in C

— It does make sense to add two integers

— But both have the same assembly language
Implementation!

26

Type Systems

« Alanguage’s type system specifies which
operations are valid for which types

» The goal of type checking is to ensure that

operations are used with the correct types
— Enforces intended interpretation of values, because
nothing else will!

27

Type Checking Overview

» Three kinds of languages:

— Statically typed: All or almost all checking of types is
done as part of compilation (C, Java, Cool)

— Dynamically typed: Almost all checking of types is done
as part of program execution (Scheme)

— Untyped: No type checking (machine code)

28

The Type Wars

- Competing views on static vs. dynamic typing

- Static typing proponents say:
— Static checking catches many programming errors at compile time
— Avoids overhead of runtime type checks

« Dynamic typing proponents say:
— Static type systems are restrictive
— Rapid prototyping difficult within a static type system

29

The Type Wars (Cont.)

* |In practice
— code written in statically typed languages usually has

an escape mechanism
- Unsafe casts in C, Java

— Some dynamically typed languages support “pragmas”

or “advice”
* I.e., type declarations

- Why don’t we have static typing everyone likes?

30

Types Outline

Type concepts in COOL

Notation for type rules
— Logical rules of inference

COOL type rules

General properties of type systems

31

Cool Types

* The types are:

— Class Names
— SELF TYPE

- The user declares types for identifiers

- The compiler infers types for expressions
— Infers a type for every expression

32

Type Checking and Type Inference

- Type Checking is the process of verifying fully
typed programs

- Type Inference is the process of filling in missing
type information

« The two are different, but the terms are often
used interchangeably

33

Rules of Inference

- We have seen two examples of formal notation

specifying parts of a compiler
— Regular expressions
— Context-free grammars

» The appropriate formalism for type checking is
logical rules of inference

34

Why Rules of Inference?

* Inference rules have the form
If Hypothesis is true, then Conclusion is true

- Type checking computes via reasoning
If E, and E, have certain types,

then E, has a certain type

* Rules of inference are a compact notation for “If-
Then” statements

35

From English to an Inference Rule

- The notation is easy to read with practice

- Start with a simplified system and gradually add
features

- Building blocks
— Symbol A is “and”
— Symbol = is “if-then”
— x:Tis “x has type T”

36

From English to an Inference Rule (2)

If e, has type Int and e, has type Int,
then e, + e, has type Int

(e, has type Int A e, has type Int) =
e, + e, has type Int

(e;sInt A eyl Int) = e, + e, Int

37

From English to an Inference Rule (3)

The statement
(e;iInt A esiInt) = e, + e, Int
IS a special case of
Hypothesis, A . .. A Hypothesis, = Conclusion

This is an inference rule.

38

Notation for Inference Rules

 Modern inference rules are written
— Hypothesis ... - Hypothesis

— Conclusion

- Cool type rules have hypotheses and conclusions
—e:T
* - means “it is provable that . . .”

39

Two Rules

| IS an integer literal

=1 Int

~e;rInt e, Int

— e, +6e,: Int

[Int]

[Add]

40

Two Rules (Cont.)

- These rules give templates describing how to
type integers and + expressions

- By filling in the templates, we can produce
complete typings for expressions

41

Example: 1 + 2

1isanintliteral 2 is an int literal

1 :Int ~ 2: Int

1+2:Int

42

Soundness

« Atype system is sound if
— Whenever e : T

— Then e evaluates to a value of type T

- We only want sound rules
— But some sound rules are better than others:

| IS an integer literal
— i : Object

43

Type Checking Proofs

- Type checking proves facts e: T
— Proof is on the structure of the AST
— Proof has the shape of the AST
— One type rule is used for each AST node

* In the type rule used for a node e:
— Hypotheses are the proofs of types of e’s
subexpressions
— Conclusion is the type of e

- Types are computed in a bottom-up pass over the
AST

44

Rules for Constants

— false : Bool

S Is a string literal

— s: String

[False]

[String]

45

Rule for New

new T produces an object of type T
— Ignore SELF_TYPE for now . . .

Fnew T :T

[New]

46

Two More Rules

~ e: Bool
~ le : Bool

~ e,: Bool
= e, T

~ while e, loop e, pool : Object

[Not]

[Loop]

47

A Problem

- What is the type of a variable reference?

X IS a variable [Var]
X7

« The local, structural rule does not carry enough
information to give x a type.

48

A Solution

 Put more information in the rules!

- Atype environment gives types for free variables
— Atype environment is a function from
Objectldentifiers to Types
— Avariable is free in an expression if it is not defined
within the expression

49

Type Environments

Let O be a function from Objectldentifiers to Types

The sentence
Ore:T

IS read: Under the assumption that the free
variables in e have the types given by O, it is
provable that the expression € has the type T

50

Modified Rules

The type environment is added to the earlier rules:

| IS an integer literal
Ori:lnt

[Int]

Ore;:Int OF e, Int

[Add]
Or e, +e,:Int

51

New Rules

And we can write new rules:

52

Let

O[T, /x] - ey:T,

Orletx:Tyine,: T,

[Let-No-Init]

O[T/y] means O modified to return T on argument y
mnemonic: “in O, T is the type of y”

Note that the let-rule enforces variable scope

53

Notes

» The type environment gives types to the free
identifiers in the current scope

« The type environment is passed down the AST
from the root towards the leaves

« Types are computed up the AST from the leaves
towards the root

54

Let with Initialization

Now consider let with initialization:

Oregy: T,
O[Ty/X] - e,: T,

Orletx:Ty<eyine,: T,

This rule is weak. Why?

[Let-Init]

55

Subtyping

« Define a relation < on classes
— X=X
— X <Y if Xinherits from Y
—X=<ZifX=sYandY <=/

* An improvement
O e, T,

O[T/X] - e,: T.
To=T

[Let-Init]

O letx:T<eyjine,: T,

56

Two Lets with Initialization

Less Precise Let More Precise Let
Or e, T,
Ot €T O[T/x] + e,: T,

Orletx:Ty<ejine,;: T, OrletxiT < ¢ejine,: T,

Both let rules are sound, but more programs
typecheck with the second one

57

Assignment

* More uses of subtyping:

O(x) =T,

Or e, T,
T,=T,

OFXx<e:T,

[Assign]

58

Initialized Attributes

« Let O(x) =T for all attributes x:T in class C

- Attribute initialization is similar to let, except for
the scope of names

O(x) =T,
O+ e T,
T,=T, [Attr-Init]
O x:Ty<ey;

59

If-Then-Else

Consider:
if e, then e, else e, fi

The result can be either e, or e,

The type is either e,’s type of e,’s type

The best we can do is the smallest supertype
larger than the type of e, or e,

60

Least Upper Bounds

 lub(X,Y), the least upper bound of Xand Y, is Z if
—X=<ZAY<s/Z

Z is an upper bound

— VL. X<Z'ANY<.l'=/Z</

Z 1s least among upper bounds

+ In COOL, the least upper bound of two types is
their least common ancestor in the inheritance
tree

61

If-Then-Else Revisited

O + e,: Bool
Ore;:T, [If-Then-Else]
Ore,T,

O + if g then e, else e, fi: lub(T, T,)

62

Case

« The rule for case expressions takes a lub over all
branches
OFr ey T,
O[T,/X{] - e4: T,
. [Case]
O[T, /x]+e, T,

Orcaseeyof x;: T, =€y ...;x,: T,—=e,; esac : lub(T’,,....,T",)

63

Method Dispatch

* There is a problem with type checking method
calls:

Or ey T,

Or e, T,
[Dispatch]

Ore,T,

O+ eyf(eq, ... ,e,): 7?

- We need information about the formal parameters
and return type of f

64

Notes on Dispatch

- In Cool, method and object identifiers live in

different name spaces
— A method foo and an object foo can coexist in the
same scope

« Inthe type rules, this is reflected by a separate
mapping M for method signatures

M(Caf) - (T1" . 'Tn’Tn+1)

means in class C there is a method f
F(X4: T o X T)e T

65

The Dispatch Rule Revisited

O, Mre, T,
O, Mre;;T,

O,Mrke. T,
M(Ty,f) = (T, ..., T, T,,4)

> N+

T.<T.for1<i=<n

O, M+ e,fleq,e) T

n+1

[Dispatch]

66

Static Dispatch

- Static dispatch is a variation on normal dispatch

- The method is found in the class explicitly named
by the programmer

» The inferred type of the dispatch expression must
conform to the specified type

67

Static Dispatch (Cont.)

O, Mre, T,
O, Mre;;T,

O,Mrke. T,
To=T
M(T,f) = (T,T", T, .,

T.<T.for1=<i=<n

)

[StaticDispatch]

O, M+ e,@Tf(el, ... ,e): T

n+1

68

The Method Environment

 The method environment must be added to all
rules

In most cases, M is passed down but not actually
used

— Only the dispatch rules use M

OMFEe;:Int OMFE e, Int

OM*E e, +e,:Int

[Add]

69

More Environments

- For some cases involving SELF_TYPE, we need
to know the class in which an expression appears

- The full type environment for COOL.:
— A mapping O giving types to object ids
— A mapping M giving types to methods
— The current class C

70

Sentences

The form of a sentence in the logic is
OMCHre:T

Example:

O,M,CH+e;:Int OM,C F e, Int

OM,CHe,+e,:Int

[Add]

71

Type Systems

« The rules in this lecture are COOL-specific
— More info on rules for self next time
— Other languages have very different rules

« General themes
— Type rules are defined on the structure of expressions
— Types of variables are modeled by an environment

- Warning: Type rules are very compact!

72

One-Pass Type Checking

« COOL type checking can be implemented in a
single traversal over the AST

- Type environment is passed down the tree
— From parent to child

» Types are passed up the tree
— From child to parent

73

Implementing Type Systems

OM/C*Hre,:Int OM,CH e, Int

OMCFH e, +e,:Int

TypeCheck(Environment, e, + e,) ={
T, = TypeCheck(Environment, e,);
T, = TypeCheck(Environment, e.);
Check T, == T, == Int;
return Int; }

[Add]

74

