
1

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

Overview of Semantic Analysis  
and

Type Checking I

CS143
Lecture 9

2

Midterm Thursday

• Material through lecture 8
• Open note, except computation
• Held in class on Thursday

3

Outline

• The role of semantic analysis in a compiler
– A laundry list of tasks

• Scope
– Implementation: symbol tables

• Types

4

The Compiler So Far

• Lexical analysis
– Detects inputs with illegal tokens

• Parsing
– Detects inputs with ill-formed parse trees

• Semantic analysis
– Last “front end” phase
– Catches all remaining errors

5

Why a Separate Semantic Analysis?

• Parsing cannot catch some errors

• Some language constructs not context-free

6

What Does Semantic Analysis Do?

• Checks of many kinds . . . coolc checks:
1. All identifiers are declared
2. Types
3. Inheritance relationships
4. Classes defined only once
5. Methods in a class defined only once
6. Reserved identifiers are not misused
And others . . .

• The requirements depend on the language

7

Scope

• Matching identifier declarations with uses
– Important static analysis step in most languages
– Including COOL!

8

What’s Wrong?

• Example 1
Let y: String ← “abc” in y + 3

• Example 2
Let y: Int in x + 3

Note: An example property that is not context free.

9

Scope (Cont.)

• The scope of an identifier is the portion of a
program in which that identifier is accessible

• The same identifier may refer to different things in
different parts of the program
– Different scopes for same name don’t overlap

• An identifier may have restricted scope

10

Static vs. Dynamic Scope

• Most languages have static scope
– Scope depends only on the program text, not run-time

behavior
– Cool has static scope

• A few languages are dynamically scoped
– Lisp, SNOBOL
– Lisp has changed to mostly static scoping
– Scope depends on execution of the program

11

Static Scoping Example

let x: Int <- 0 in
{

x;
let x: Int <- 1 in

x;
x;

}

12

Static Scoping Example (Cont.)

let x: Int <- 0 in
{

x;
let x: Int <- 1 in

x;
x;

}
Uses of x refer to closest enclosing definition

13

Dynamic Scope

• A dynamically-scoped variable refers to the
closest enclosing binding in the execution of the
program

• Example
g(y) = let a ← 4 in f(3);
f(x) = a;

•

14

Scope in Cool

• Cool identifier bindings are introduced by
– Class declarations (introduce class names)
– Method definitions (introduce method names)
– Let expressions (introduce object ids)
– Formal parameters (introduce object ids)
– Attribute definitions (introduce object ids)
– Case expressions (introduce object ids)

15

Scope in Cool (Cont.)

• Not all kinds of identifiers follow the most-closely
nested rule

• For example, class definitions in Cool
– Cannot be nested
– Are globally visible throughout the program

• In other words, a class name can be used before
it is defined

16

Example: Use Before Definition

Class Foo {
. . . let y: Bar in . . .

};

Class Bar {
. . .

};

17

More Scope in Cool

Attribute names are global within the class in which
they are defined

Class Foo {
f(): Int { a };
a: Int ← 0;

}

18

More Scope (Cont.)

• Method/attribute names have complex rules

• A method need not be defined in the class in
which it is used, but in some parent class

• Methods may also be redefined (overridden)

19

Implementing the Most-Closely Nested Rule

• Much of semantic analysis can be expressed as a
recursive descent of an AST

– Before: Process an AST node n
– Recurse: Process the children of n
– After: Finish processing the AST node n

• When performing semantic analysis on a portion
of the AST, we need to know which identifiers are
defined

20

Implementing . . . (Cont.)

• Example: the scope of let bindings is one subtree
of the AST:

let x: Int ← 0 in e

• x is defined in subtree e

21

Symbol Tables

• Consider again: let x: Int ← 0 in e
• Idea:

– Before processing e, add definition of x to current
definitions, overriding any other definition of x

– Recurse
– After processing e, remove definition of x and restore

old definition of x

• A symbol table is a data structure that tracks the
current bindings of identifiers

22

Symbol Tables

Structure is a stack of scopes (maps).

• enter_scope() start a new nested scope
• find_symbol(x) finds current x (or null)
• add_symbol(x) add a symbol x to the table
• check_scope(x) true if x defined in current scope
• exit_scope() exit current scope

We will supply a symbol table manager for your
project

23

Class Definitions

• Class names can be used before being defined

• We can’t check class names
– using a symbol table
– or even in one pass

• Solution
– Pass 1: Gather all class names
– Pass 2: Do the checking

• Semantic analysis requires multiple passes
– Probably more than two

24

Types

• What is a type?
– The notion varies from language to language

• Consensus
– A set of values
– A set of operations on those values

• Classes are one instantiation of the modern
notion of type

25

Why Do We Need Type Systems?

Consider the assembly language fragment

add $r1, $r2, $r3

What are the types of $r1, $r2, $r3?

26

Types and Operations

• Certain operations are legal for values of each
type

– It doesn’t make sense to add a function pointer and an
integer in C

– It does make sense to add two integers

– But both have the same assembly language
implementation!

27

Type Systems

• A language’s type system specifies which
operations are valid for which types

• The goal of type checking is to ensure that
operations are used with the correct types
– Enforces intended interpretation of values, because

nothing else will!

28

Type Checking Overview

• Three kinds of languages:

– Statically typed: All or almost all checking of types is
done as part of compilation (C, Java, Cool)

– Dynamically typed: Almost all checking of types is done
as part of program execution (Scheme)

– Untyped: No type checking (machine code)

29

The Type Wars

• Competing views on static vs. dynamic typing

• Static typing proponents say:
– Static checking catches many programming errors at compile time
– Avoids overhead of runtime type checks

• Dynamic typing proponents say:
– Static type systems are restrictive
– Rapid prototyping difficult within a static type system

30

The Type Wars (Cont.)

• In practice
– code written in statically typed languages usually has

an escape mechanism
• Unsafe casts in C, Java

– Some dynamically typed languages support “pragmas”
or “advice”

• i.e., type declarations

• Why don’t we have static typing everyone likes?

31

Types Outline

• Type concepts in COOL

• Notation for type rules
– Logical rules of inference

• COOL type rules

• General properties of type systems

32

Cool Types

• The types are:
– Class Names
– SELF_TYPE

• The user declares types for identifiers

• The compiler infers types for expressions
– Infers a type for every expression

33

Type Checking and Type Inference

• Type Checking is the process of verifying fully
typed programs

• Type Inference is the process of filling in missing
type information

• The two are different, but the terms are often
used interchangeably

34

Rules of Inference

• We have seen two examples of formal notation
specifying parts of a compiler
– Regular expressions
– Context-free grammars

• The appropriate formalism for type checking is
logical rules of inference

35

Why Rules of Inference?

• Inference rules have the form
If Hypothesis is true, then Conclusion is true

• Type checking computes via reasoning
If E1 and E2 have certain types,

then E3 has a certain type

• Rules of inference are a compact notation for “If-
Then” statements

36

From English to an Inference Rule

• The notation is easy to read with practice

• Start with a simplified system and gradually add
features

• Building blocks
– Symbol ∧ is “and”
– Symbol ⇒ is “if-then”
– x:T is “x has type T”

37

From English to an Inference Rule (2)

If e1 has type Int and e2 has type Int,
then e1 + e2 has type Int

(e1 has type Int ∧ e2 has type Int) ⇒
e1 + e2 has type Int

(e1: Int ∧ e2: Int) ⇒ e1 + e2: Int

38

From English to an Inference Rule (3)

The statement
(e1: Int ∧ e2: Int) ⇒ e1 + e2: Int

is a special case of
Hypothesis1 ∧ . . . ∧ Hypothesisn ⇒ Conclusion

This is an inference rule.

39

Notation for Inference Rules

• Modern inference rules are written
⊢ Hypothesis … ⊢ Hypothesis

⊢ Conclusion

• Cool type rules have hypotheses and conclusions
 ⊢ e:T

• ⊢ means “it is provable that . . .”

Two Rules

i is an integer literal
⊢ i : Int

⊢ e1: Int ⊢ e2: Int
⊢ e1 + e2 : Int

40

[Int]

[Add]

41

Two Rules (Cont.)

• These rules give templates describing how to
type integers and + expressions

• By filling in the templates, we can produce
complete typings for expressions

Example: 1 + 2

1 is an int literal 2 is an int literal
⊢ 1 : Int ⊢ 2: Int

⊢ 1 + 2 : Int

42

43

Soundness

• A type system is sound if
– Whenever ⊢ e : T
– Then e evaluates to a value of type T

• We only want sound rules
– But some sound rules are better than others:

i is an integer literal
⊢ i : Object

44

Type Checking Proofs

• Type checking proves facts e: T
– Proof is on the structure of the AST
– Proof has the shape of the AST
– One type rule is used for each AST node

• In the type rule used for a node e:
– Hypotheses are the proofs of types of e’s

subexpressions
– Conclusion is the type of e

• Types are computed in a bottom-up pass over the
AST

Rules for Constants

⊢ false : Bool

s is a string literal
⊢ s: String

45

[False]

[String]

46

Rule for New

new T produces an object of type T
– Ignore SELF_TYPE for now . . .

⊢ new T : T
[New]

Two More Rules

⊢ e: Bool
⊢ !e : Bool

⊢ e1: Bool
⊢ e2:T

⊢ while e1 loop e2 pool : Object

47

[Not]

[Loop]

48

A Problem

• What is the type of a variable reference?

x is a variable
⊢ x : ?

• The local, structural rule does not carry enough
information to give x a type.

[Var]

49

A Solution

• Put more information in the rules!

• A type environment gives types for free variables
– A type environment is a function from

ObjectIdentifiers to Types
– A variable is free in an expression if it is not defined

within the expression

50

Type Environments

Let O be a function from ObjectIdentifiers to Types

The sentence
O ⊢ e: T

is read: Under the assumption that the free
variables in e have the types given by O, it is
provable that the expression e has the type T

51

Modified Rules

The type environment is added to the earlier rules:

i is an integer literal
O ⊢ i : Int

O ⊢ e1: Int O ⊢ e2: Int
O ⊢ e1 + e2 : Int

[Int]

[Add]

52

New Rules

And we can write new rules:

O(x) = T
O ⊢ x: T

[Var]

53

Let

O[T0/x] ⊢ e1:T1

O ⊢ let x : T0 in e1 : T1

O[T/y] means O modified to return T on argument y
mnemonic: “in O, T is the type of y”

Note that the let-rule enforces variable scope

[Let-No-Init]

54

Notes

• The type environment gives types to the free
identifiers in the current scope

• The type environment is passed down the AST
from the root towards the leaves

• Types are computed up the AST from the leaves
towards the root

55

Let with Initialization

Now consider let with initialization:

O ⊢ e0 : T0

O[T0/x] ⊢ e1: T1

O ⊢ let x : T0 ← e0 in e1 : T1

[Let-Init]

This rule is weak. Why?

56

Subtyping

• Define a relation ≤ on classes
– X ≤ X
– X ≤ Y if X inherits from Y
– X ≤ Z if X ≤ Y and Y ≤ Z

• An improvement
O ⊢ e0: T0

O[T/x] ⊢ e1: T1
T0 ≤ T

O ⊢ let x:T ← e0 in e1 : T1

[Let-Init]

57

Two Lets with Initialization

Less Precise Let More Precise Let

O ⊢ e0 : T0

O[T0/x] ⊢ e1: T1

O ⊢ let x : T0 ← e0 in e1 : T1

O ⊢ e0: T0

O[T/x] ⊢ e1: T1
T0 ≤ T

O ⊢ let x:T ← e0 in e1 : T1

Both let rules are sound, but more programs
typecheck with the second one

58

Assignment

• More uses of subtyping:

O(x) = T0

O ⊢ e1: T1
T1 ≤ T0

O ⊢ x ← e1 : T1
[Assign]

59

Initialized Attributes

• Let O(x) = T for all attributes x:T in class C

• Attribute initialization is similar to let, except for
the scope of names

O(x) = T0

OC ⊢ e1: T1
T1 ≤ T0

O ⊢ x: T0 ← e1;
[Attr-Init]

60

If-Then-Else

• Consider:
if e0 then e1 else e2 fi

• The result can be either e1 or e2

• The type is either e1’s type of e2’s type

• The best we can do is the smallest supertype
larger than the type of e1 or e2

61

Least Upper Bounds

• lub(X,Y), the least upper bound of X and Y, is Z if
– X ≤ Z ∧ Y ≤ Z

Z is an upper bound

– ∀Z'. X ≤ Z' ∧ Y ≤ Z' ⇒ Z ≤ Z'
Z is least among upper bounds

• In COOL, the least upper bound of two types is
their least common ancestor in the inheritance
tree

If-Then-Else Revisited

O ⊢ e0: Bool
O ⊢ e1: T1

O ⊢ e2: T2

O ⊢ if e0 then e1 else e2 fi: lub(T1,T2)

62

[If-Then-Else]

63

Case

• The rule for case expressions takes a lub over all
branches

O ⊢ e0: T0

O[T1/x1] ⊢ e1: T’1
. . .

O[Tn/xn] ⊢ en: T’n
O ⊢ case e0 of x1: T1 → e1; … ; xn: Tn → en; esac : lub(T’1,…,T’n)

[Case]

64

Method Dispatch

• There is a problem with type checking method
calls:

O ⊢ e0: T0

O ⊢ e1: T1

. . .
O ⊢ en: Tn

O ⊢ e0.f(e1, … ,en): ?
• We need information about the formal parameters

and return type of f

[Dispatch]

65

Notes on Dispatch

• In Cool, method and object identifiers live in
different name spaces
– A method foo and an object foo can coexist in the

same scope
• In the type rules, this is reflected by a separate

mapping M for method signatures
M(C,f) = (T1,. . .Tn,Tn+1)

means in class C there is a method f
f(x1:T1,. . .,xn:Tn): Tn+1

The Dispatch Rule Revisited

O, M ⊢ e0: T0

O, M ⊢ e1: T1

. . .
O, M ⊢ en: Tn

M(T0,f) = (T'1, …,T'n,Tn+1)
Ti ≤ T'i for 1 ≤ i ≤ n

O, M ⊢ e0.f(e1, … ,en): Tn+1

66

[Dispatch]

`

67

Static Dispatch

• Static dispatch is a variation on normal dispatch

• The method is found in the class explicitly named
by the programmer

• The inferred type of the dispatch expression must
conform to the specified type

Static Dispatch (Cont.)

O, M ⊢ e0: T0

O, M ⊢ e1: T1

. . .
O, M ⊢ en: Tn

T0 ≤ T
M(T,f) = (T'1, …,T'n,Tn+1)

Ti ≤ T'i for 1 ≤ i ≤ n
O, M ⊢ e0@T.f(e1, … ,en): Tn+1

68

[StaticDispatch]

69

The Method Environment

• The method environment must be added to all
rules

• In most cases, M is passed down but not actually
used
– Only the dispatch rules use M

O,M ⊢ e1: Int O,M ⊢ e2: Int
O,M ⊢ e1 + e2 : Int

[Add]

70

More Environments

• For some cases involving SELF_TYPE, we need
to know the class in which an expression appears

• The full type environment for COOL:
– A mapping O giving types to object ids
– A mapping M giving types to methods
– The current class C

71

Sentences

The form of a sentence in the logic is
O,M,C ⊢ e: T

Example:

O,M,C ⊢ e1: Int O,M,C ⊢ e2: Int
O,M,C ⊢ e1 + e2 : Int

[Add]

72

Type Systems

• The rules in this lecture are COOL-specific
– More info on rules for self next time
– Other languages have very different rules

• General themes
– Type rules are defined on the structure of expressions
– Types of variables are modeled by an environment

• Warning: Type rules are very compact!

73

One-Pass Type Checking

• COOL type checking can be implemented in a
single traversal over the AST

• Type environment is passed down the tree
– From parent to child

• Types are passed up the tree
– From child to parent

74

Implementing Type Systems

O,M,C ⊢ e1: Int O,M,C ⊢ e2: Int
O,M,C ⊢ e1 + e2 : Int

TypeCheck(Environment, e1 + e2) = {
T1 = TypeCheck(Environment, e1);
T2 = TypeCheck(Environment, e2);
Check T1 == T2 == Int;
return Int; }

[Add]

