Code Generation

CS143
Lecture 12

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications



Lecture Outline

 Topic 1: Basic Code Generation
— The MIPS assembly language
— A simple source language
— Stack-machine implementation of the simple language

+ Topic 2: Code Generation for Objects



From Stack Machines to MIPS

» The compiler generates code for a stack machine
with accumulator

- We want to run the resulting code on the MIPS
processor (or simulator)

- We simulate stack machine instructions using
MIPS instructions and registers



Simulating a Stack Machine...

- The accumulator is kept in MIPS register $a0

» The stack is kept in memory
— The stack grows towards lower addresses
— Standard convention on the MIPS architecture

 The address of the next location on the stack is

kept in MIPS register $sp
— The top of the stack is at address $sp + 4



MIPS Assembly

MIPS architecture
— Prototypical Reduced Instruction Set Computer (RISC)
architecture
— Arithmetic operations use registers for operands and
results
— Must use load and store instructions to use operands
and results in memory

— 32 general purpose registers (32 bits each)
- We will use $sp, $a0 and $t1 (a temporary register)

 Read the SPIM documentation for details



A Sample of MIPS Instructions

— lw reg, offset(reg,)
- Load 32-bit word from address reg, + offset into reg,
— add reg, reg, reg,
. reg, < reg, + reg,
— SW reg, offset(reg,)
- Store 32-bit word in reg, at address reg, + offset
— addiu reg, reg, imm
- reg, < reg, + imm

u” means overflow is not checked
— lireg imm
* reg < imm



MIPS Assembly. Example.

« The stack-machine code for 7 + 5 in MIPS:

acc < 7 i $a0 7

push acc sw $a0 0($sp)
addiu $sp $sp -4

acc <— 5 i $a0 5

acc < acc + top_of_stack Iw $t1 4($sp)
add $a0 $a0 $t1

0Op addiu $sp $sp 4

- We now generalize this to a simple language...



A Small Language

- Alanguage with integers and integer operations

P—-D;PID
D — def id(ARGS) = E;
ARGS — id, ARGS | id
E — intlid | if E, = E, then E, else E,
|E, +E, | E, - E, | id(E,,...,E.)

-yl—n



A Small Language (Cont.)

 The first function definition f is the “main” routine
* Running the program on input i means computing
f(i)
* Program for computing the Fibonacci numbers:
def fib(x) = if x =1 then O else
if x =2 then 1 else
fib(x - 1) + fib(x — 2)



Code Generation Strategy

« For each expression e we generate MIPS code

that:

— Computes the value of e in $a0
— Preserves $sp and the contents of the stack

- We define a code generation function cgen(e)
whose result is the code generated for e

10



Code Generation for Constants

* The code to evaluate a constant simply copies it
into the accumulator:
cgen(i) = li $a0 i

- This preserves the stack, as required

- Color key:
— RED: compile time
— BLUE: run time

11



Code Generation for Add

cgen(e, +e,) =
cgen(e,)
sw $a0 0($sp)
addiu $sp $sp -4
cgen(e,)
lw $t1 4($sp)
add $a0 $t1 $a0
addiu $sp $sp 4

cgen(e, +e,) =
cgen(e,)
print “sw $a0 0($sp)”
print “addiu $sp $sp -4”
cgen(e,)
print “Iw $t1 4($sp)”
print “add $a0 $t1 $a0”
print “addiu $sp $sp 4”

12



Code Generation for Add. Wrong!

- Optimization: Put the result of e, directly in $t17?

cgen(e, + e,) =
cgen(e,)
move $t1 $a0
cgen(e,)
add $a0 $t1 $a0

- Try to generate code for : 3 + (7 + 5)

13



Code Generation Notes

- The code for + is a template with “holes” for code
for evaluating e, and e,

-+ Stack machine code generation is recursive
— Code for e, + e, is code for e, and e, glued together

- Code generation can be written as a recursive-

descent of the AST
— At least for expressions

14



Code Generation for Sub and Constants

- New instruction: sub reg, reg,reg,
— Implements reg, < reg, - reg,
cgen(e, - e,) =
cgen(e,)
sw $a0 0($sp)
addiu $sp $sp -4
cgen(e,)
lw $t1 4(Ssp)
sub $a0 $t1 $a0
addiu $sp $sp 4

15



Code Generation for Conditional

 We need flow control instructions

- New instruction: beq reg, reg, label
— Branch to label if reg, = reg,

 New instruction: b label
— Unconditional jump to label

16



Code Generation for If (Cont.)

cgen(if e, = e, then e;else e,) =
cgen(e,)
sw $a0 O($sp)
addiu $sp $sp -4
cgen(e,)
lw $t1 4($sp)
addiu $sp $sp 4
beq $a0 $t1 true_branch

false_branch:
cgen(e,)
b end_if
true_branch:
cgen(e;)
end_if:

17



The Activation Record

« Code for function calls and function definitions
depends on the layout of the AR

« A very simple AR suffices for this language:

— The result is always in the accumulator
* No need to store the result in the AR

— The activation record holds actual parameters
- For f(x,,...,X,) push x,...,X; on the stack

- These are the only variables in this language

18



The Activation Record (Cont.)

* The stack discipline guarantees that on function
exit $sp is the same as it was on function entry

 We need the return address

A pointer to the current activation is useful
—This pointer lives in register $fp (frame pointer)
—Reason for frame pointer will be clear shortly

19



The Activation Record

- Summary: For this language, an AR with the
caller’s frame pointer, the actual parameters, and
the return address suffices

 Picture: Consider a call to f(x,y), the AR is:
oldfp |
Y >~ AR off
X
FP| return |

SP



Code Generation for Function Call

» The calling sequence is the instructions (of both
caller and callee) to set up a function invocation

* New instruction: jal label
— Jump to label, save address of next instruction in $ra
— On other architectures the return address is stored on
the stack by the “call” instruction

21



Code Generation for Function Call (Cont.)

cgen(f(ey,...,e,)) =
sw $fp 0($sp)
addiu $sp $sp -4
cgen(e,)
sw $a0 0($sp)
addiu $sp $sp -4

cgen(e,)

sw $a0 0($sp)
addiu $sp $sp -4
jal f_entry

The caller saves its value
of the frame pointer

Then it saves the actual
parameters in reverse
order

The caller saves the return
address in register $ra

The AR so far is 4" n+4
bytes long

22



Code Generation for Function Definition

* New instruction: jr reg

— Jump to address in register reg

cgen(def f(x,,...,X,) =€) =
move $fp $sp
sw $ra 0($sp)
addiu $sp $sp -4
cgen(e)
lw $ra 4($sp)
addiu $sp $sp z
Iw $fp 0($sp)
jr $ra

* Note: The frame pointer

points to the top, not bottom
of the frame

« The callee pops the return

address, the actual
arguments and the saved
value of the frame pointer

e 2=4"n+ 8

23



Calling Sequence: Example for f(x,y)

Before call On entry Before exit After call
FP FP FF
SP old fp old fp SP
y y
X X
SP FP| return

SP



Code Generation for Variables

« Variable references are the last construct

- The “variables” of a function are just its

parameters
— They are all in the AR
— Pushed by the caller

* Problem: Because the stack grows when
iIntermediate results are saved, the variables are
not at a fixed offset from $sp

25



Code Generation for Variables (Cont.)

 Solution: use a frame pointer
— Always points to the return address on the stack
— Since it does not move it can be used to find the
variables

- Let x, be the it (i = 1,...,n) formal parameter of the
function for which code is being generated

cgen(x;) = Iw $a0 z($fp) (z=4%)

26



Code Generation for Variables (Cont.)

- Example: For a function def f(x,y) = e the
activation and frame pointer are set up as follows:

FP

SP

old fp

y

X

return

» Xisatfp+4
* Yisatfp +8

27



Summary

» The activation record must be designed together
with the code generator

- Code generation can be done by recursive
traversal of the AST

- We recommend you use a stack machine for your
Cool compiler (it's simple)

28



Summary

* Production compilers do different things
— Emphasis is on keeping values (esp. current stack
frame) in registers
— Intermediate results are laid out in the AR, not pushed
and popped from the stack

29



An Improvement

- |dea: Keep temporaries in the AR

» The code generator must assign a location in the
AR for each temporary

30



Example

def fib(x) = if x =1 then O else
If x =2 then 1 else
fib(x - 1) + fib(x — 2)

- What intermediate values are placed on the
stack?

- How many slots are needed in the AR to hold
these values?

31



How Many Temporaries?

- Let NT(e) = # of temps needed to evaluate e

— Needs at least as many temporaries as NT(e,)
— Needs at least as many temporaries as NT(e,) + 1

- Space used for temporaries in e, can be reused for
temporaries in e,

32



The Equations

NT(e, +e,) =max(NT(e,), 1 + NT(e,))
NT(e, - e,) =max(NT(e,), 1 + NT(e,))
NT(if e, = e, then e, else e,) = max(NT(e,),1 + NT(e,), NT(e;), NT(e,))
NT(id(ey,...,e,) = max(NT(e,),...,NT(e,))
NT(int) =0
NT(id) =0

Is this bottom-up or top-down?
What is NT(...code for fib...)?

33



The Revised AR

- For a function definition f(x;,...,x,) = e the AR has

2 +n+ NT(e) elements

— Return address

— Frame pointer

— N arguments

— NT(e) locations for intermediate results

34



Picture

FP

Return Addr.

Temp NT(e)

Temp 1

35



Revised Code Generation

- Code generation must know how many
temporaries are in use at each point

- Add a new argument to code generation: the
position of the next available temporary

36



Code Generation for + (original)

cgen(e, +e,) =
cgen(e,)
sw $a0 0($sp)
addiu $sp $sp -4
cgen(e,)
lw $t1 4($sp)
add $a0 $t1 $a0
addiu $sp $sp 4

37



Code Generation for + (revised)

cgen(e, + e,, nt) =
cgen(e,, nt)
sw $a0 nt($fp)

cgen(e,, nt + 4)

lw $t1 nt($fp)
add $a0 $t1 $a0

38



Notes

« The temporary area is used like a small, fixed-
size stack

» Exercise: Write out cgen for other constructs

39



Code Generation for OO Languages

Topic |l

40



Object Layout

« OO implementation = Stuff from last part + more
stuft

« OO Slogan: If B is a subclass of A, then an object
of class B can be used wherever an object of
class A is expected

« This means that code in class A works unmodified
for an object of class B

41



Two Issues

- How are objects represented in memory?

* How is dynamic dispatch implemented?

42



Object Layout Example

Class A{

5

Class B inherits A{
b: Int;
fO): Int{a};
g):Int{a<a+b};
¥

a: Int;
d: Int;
fO):Int{a<—a+d};

Class C inherits A{
c: Int;
h(): Int{a<a+c};

};

43



Object Layout (Cont.)

- Attributes a and d are inherited by classes B and
C

« All methods in all classes refer to a

- For A methods to work correctly in A, B, and C
objects, attribute a must be in the same “place” in
each object

44



Object Layout (Cont.)

An object is like a struct in C. The reference
foo.attribute

IS an index into a foo struct at an offset
corresponding to attribute

Objects in Cool are implemented similarly
— Obijects are laid out in contiguous memory
— Each attribute stored at a fixed offset in object
— When a method is invoked, the object is self

45



Cool Object Layout

+ The first 3 words of Cool objects contain header

iInformation:

Class Tag

Object Size

Dispatch Ptr

Attribute 1

Attribute 2

Offset

0
4
8
12
16

46



Cool Object Layout (Cont.)

Class tag is an integer
— |dentifies class of the object

Object size is an integer
— Size of the object in words

Dispatch ptr is a pointer to a table of methods
— More later

Attributes in subsequent slots

Lay out in contiguous memory

47



Subclasses

Observation: Given a layout for class A, a layout for
subclass B can be defined by extending the
layout of A with additional slots for the additional
attributes of B

Leaves the layout of A unchanged
(B is an extension)

48



Layout Picture

Offset 0 12 16 20
Class

A Atag a d

B Btag a d b
C Ctag a d C

49



Subclasses (Cont.)

 The offset for an attribute is the same in a class

and all of its subclasses
— Any method for an A, can be used on a subclass A,

- Consider layout for A, < ... <A; <A, <A,

Header A, object
A, attrs. A, object
A, attrs A, object
A, attrs




Object Layout Example (Repeat)

Class A{
a: Int;
d: Int;
fO):Int{a<—a+d};
¥
Class B inherits A{ Class C inherits A{
b: Int; c: Int;
fO): Int{a}; h(): Int{a<a+c};
g(): Int{a<a+b}; %

%,

51



Dynamic Dispatch Example

* e.g()

— g refersto methodinBifeisaB

. e.f()

— frefersto methodin AifeisanAor C
(inherited in the case of C)
— freferstomethodinBifeisaB

» The implementation of methods and dynamic
dispatch strongly resembles the implementation
of attributes

52



Dispatch Tables

» Every class has a fixed set of methods
(including inherited methods)

- A dispatch table indexes these methods
— An array of method entry points
— A method f lives at a fixed offset in the dispatch table
for a class and all of its subclasses

53



Dispatch Table Example

Offset 0 4 - The dispatch table for
Class class A has only 1 method
« The tables for B and C
A fA extend the table for A to
the right

- Because methods can be
overridden, the method for
f is not the same in every
C fA h class, but is always at the
same offset

54



Using Dispatch Tables

- The dispatch pointer in an object of class X points
to the dispatch table for class X

- Every method f of class X is assigned an offset O,
In the dispatch table at compile time

55



Using Dispatch Tables (Cont.)

+ To implement a dynamic dispatch e.f() we
— Evaluate e, giving an object x

— Call D[O/]

D is the dispatch table for x
* In the call, self is bound to x

56



