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Lecture Outline

• COOL operational semantics

• Motivation

• Notation

• The rules



3

Motivation

• We must specify for every Cool expression what 
happens when it is evaluated
– This is the “meaning” of an expression

• The definition of a programming language:
– The tokens ⇒ lexical analysis
– The grammar ⇒ syntactic analysis
– The typing rules ⇒ semantic analysis
– The evaluation rules 

⇒ code generation and optimization
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Evaluation Rules So Far

• We have specified evaluation rules indirectly
– The compilation of Cool to a stack machine
– The evaluation rules of the stack machine

• This is a complete description
– Why isn’t it good enough?
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Assembly Language Description of Semantics

• Assembly-language descriptions of language 
implementation have irrelevant detail
– Whether to use a stack machine or not
– Which way the stack grows
– How integers are represented 
– The particular instruction set of the architecture

• We need a complete description
– But not an overly restrictive specification
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Programming Language Semantics

• A multitude of ways to specify semantics 
– All equally powerful
– Some more suitable to various tasks than others

• Operational semantics
– Describes program evaluation via execution rules

•  on an abstract machine
– Most useful for specifying implementations
– This is what we use for Cool



7

Other Kinds of Semantics 

• Denotational semantics 
– Program’s meaning is a mathematical function
– Elegant, but introduces complications

• Need to define a suitable space of functions

• Axiomatic semantics
– Program behavior described via logical formulae

• If execution begins in state satisfying X, then it ends in state 
satisfying Y

• X, Y formulas
– Foundation of many program verification systems
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Introduction to Operational Semantics

• Once again we introduce a formal notation

• Logical rules of inference, as in type checking
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Inference Rules

• Recall the typing judgment
                  Context ⊢ e : C

(in the given context, expression e has type C)

• We try something similar for evaluation
                 Context ⊢ e : v

(in the given context, expr. e evaluates to value v)
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Example Operational Semantics Rule

• Example:

• The result of evaluating an expression can 
depend on the result of evaluating its 
subexpressions

• The rules specify everything that is needed to 
evaluate an expression

Context ⊢ e1 : 5

Context ⊢ e2 : 7


Context ⊢ e1 + e2 : 12
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Contexts are Needed for Variables

• Consider the evaluation of y ← x + 1
– We need to keep track of values of variables
– We need to allow variables to change their values 

during evaluation

• We track variables and their values with:
– An environment : tells us where in memory a variable is 

stored
– A store : tells us what is in memory
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Variable Environments

• A variable environment is a map from variable 
names to locations 
– Tells in what memory location the value of a variable is 

stored
– Keeps track of which variables are in scope

• Example:
                     E = [a : l1, b : l2]
• E(a) looks up variable a in environment E
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Stores

• A store maps memory locations to values
• Example:
                   S = [l1 → 5, l2 → 7]

• S(l1) is the contents of a location l1 in store S

• S’ = S[12/l1] defines a store S’ such that  
S’(l1) = 12    and    S’(l) = S(l) if l ≠ l1
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Cool Values

• Cool values are objects
– All objects are instances of some class 

• X(a1 = l1, …, an = ln) is a Cool object where
– X is the class of the object
– ai are the attributes (including inherited ones)
– li is the location where the value of ai is stored
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Cool Values (Cont.)

• Special cases (classes without attributes)
Int(5)                       the integer 5
Bool(true)                 the boolean true
String(4, “Cool”)       the string “Cool” of length 4

• There is a special value void of type Object
– No operations can be performed on it
– Except for the test isvoid
– Concrete implementations might use NULL here
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Operational Rules of Cool

• The evaluation judgment is
                   so, E, S ⊢ e : v, S’
  read:

– Given so the current value of self
– And E the current variable environment
– And S the current store
– If the evaluation of e terminates then
– The return value is v
– And the new store is S’



17

Notes

• “Result” of evaluation is a value and a store
– New store models the side-effects

• Some things don’t change
– The variable environment 
– The value of self
– The operational semantics allows for non-terminating 

evaluations
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Operational Semantics for Base Values

• No side effects in these cases
(the store does not change)

so, E, S ⊢ true : Bool(true), S so, E, S ⊢ false : Bool(false), S

s is a string literal

n is the length of s


so, E, S ⊢ s : String(n,s), S
i is an integer literal

so, E, S ⊢ i : Int(i), S
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Operational Semantics of Variable References

• Note the double lookup of variables
– First from name to location
– Then from location to value

• The store does not change

E(id) = lid

S(lid) = v


so, E, S ⊢ id : v, S
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Operational Semantics for Self

• A special case:

so, E, S ⊢ self : so, S
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Operational Semantics of Assignment

• Three step process
– Evaluate the right hand side

⇒ a value v and new store S1

– Fetch the location of the assigned variable
– The result is the value v and an updated store

so, E, S ⊢ e : v, S1 

E(id) = lid


S2 = S1[v/lid]


so, E, S ⊢ id ← e : v, S2
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Operational Semantics of Conditionals (true)

• The “threading” of the store enforces an 
evaluation sequence
– e1 must be evaluated first to produce S1 
– Then e2 can be evaluated

• The result of evaluating e1 is a Bool. Why?

so, E, S ⊢ e1 : Bool(true), S1 

so, E, S1 ⊢ e2 : v, S2


so, E, S ⊢ if e1 then e2 else e3 : v, S2
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Operational Semantics of Conditionals (false)

so, E, S ⊢ e1 : Bool(false), S1 

so, E, S1 ⊢ e3 : v, S2


so, E, S ⊢ if e1 then e2 else e3 : v, S2



24

Operational Semantics of Sequences

• Again the threading of the store expresses the 
required evaluation sequence

• Only the last value is used
• But all the side-effects are collected

so, E, S ⊢ e1 : v1, S1 

so, E, S1 ⊢ e2 : v2, S2


… 

so, E, Sn-1 ⊢ en : vn , Sn


so, E, S ⊢ { e1; …; en; } : vn, Sn
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Operational Semantics of while (I)

• If e1 evaluates to false the loop terminates
– With the side-effects from the evaluation of e1
– And with result value void

• Type checking ensures  e1 evaluates to a Bool

so, E, S ⊢ e1 : Bool(false), S1 

so, E, S ⊢ while e1 loop e2 pool : void, S1
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Operational Semantics of while (II)

• Note the sequencing (S → S1 → S2 → S3)
• Note how looping is expressed

– Evaluation of “while …” is expressed in terms of the 
evaluation of itself in another state

• The result of evaluating e2 is discarded
– Only the side-effect is preserved

so, E, S ⊢ e1 : Bool(true), S1 

so, E, S1 ⊢ e2 : v, S2


so, E, S2 ⊢ while e1 loop e2 pool : void, S3

so, E, S ⊢ while e1 loop e2 pool : void, S3
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Operational Semantics of let Expressions (I)

• In what context should e2 be evaluated?
– Environment like E but with a new binding of id to a 

fresh location lnew

– Store like S1 but with lnew mapped to v1

so, E, S ⊢ e1 : v1, S1 

so, ?, ? ⊢ e2 : v, S2

so, E, S ⊢ let id : T ← e1 in e2 : v2, S2
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Operational Semantics of let Expressions (II)

• We write lnew =  newloc(S) to say that lnew is a 
location not already used in S
– newloc is like the memory allocation function

• The operational rule for let:

so, E, S ⊢ e1 : v1, S1

lnew = newloc(S1) 

so, E[lnew/id] , S1[v1/lnew] ⊢ e2 : v2, S2

so, E, S ⊢ let id : T ← e1 in e2 : v2, S2
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Operational Semantics of new

• Informal semantics of new T
– Allocate locations to hold all attributes of an object of 

class T
• Essentially, allocate a new object

– Initialize attributes with their default values 
– Evaluate the initializers and set the resulting attribute 

values
– Return the newly allocated object
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Default Values

• For each class A there is a default value denoted 
by DA
– Dint = Int(0)
– Dbool = Bool(false)
– Dstring = String(0, “”)
– DA = void (for any other class A)



31

More Notation

• For a class A we write
 class(A) = (a1 : T1 ← e1, …, an : Tn ← en) where

– ai are the attributes (including the inherited ones)
– Ti are their declared types
– ei are the initializers
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Operational Semantics of new

• new SELF_TYPE  allocates an object with the 
same dynamic type as self

T0 = if (T == SELF_TYPE and so = X(…)) then X else T

class(T0) = (a1 : T1 ← e1,…, an : Tn ← en)

li = newloc(S) for i = 1,…,n

v = T0(a1= l1, …, an= ln)

S1 = S[DT1/l1,…,DTn/ln]

E’ = [a1 : l1, …, an : ln]

v, E’, S1 ⊢ { a1 ← e1; …; an ← en; } : vn, S2

so, E, S ⊢ new T : v, S2
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Notes on Operational Semantics of new.

• The first three steps allocate the object

• The remaining steps initialize it
– By evaluating a sequence of assignments

• State in which the initializers are evaluated
– Self is the current object
– Only the attributes are in scope (same as in typing)
– Initial values of attributes are the defaults
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Operational Semantics of Method Dispatch

• Informal semantics of e0.f(e1,…,en)
– Evaluate the arguments in order e1,…,en

– Evaluate e0 to the target object
– Let X be the dynamic type of the target object
– Fetch from X the definition of f (with n args.)
– Create n new locations and an environment that maps 

f’s formal arguments to those locations
– Initialize the locations with the actual arguments
– Set self to the target object and evaluate f’s body
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More Notation

• For a class A and a method f of A (possibly 
inherited) we write:

impl(A, f) = (x1, …, xn, ebody) where
– xi are the names of the formal arguments
– ebody is the body of the method
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Operational Semantics of Dispatch

so, E, S ⊢ e1  : v1 , S1

so, E, S1 ⊢ e2  : v2 , S2

…

so, E, Sn-1 ⊢ en  : vn , Sn


so, E, Sn ⊢ e0  : v0, Sn+1


v0 = X(a1 = l1,…, am  = lm)

impl(X, f) = (x1,…, xn, ebody)

lxi = newloc(Sn+1) for i = 1,…,n

E’ = [a1 : l1, …, am : lm, x1 : lx1, …, xn : lxn]

Sn+2 = Sn+1[v1/lx1,…,vn/lxn]

v0 , E’, Sn+2 ⊢ ebody : v, Sn+3

so, E, S ⊢ e0.f(e1,…,en)  : v, Sn+3
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Notes on Operational Semantics of Dispatch

• The body of the method is invoked with
– E’ mapping formal arguments and self’s attributes
– S like the caller’s except with actual arguments bound 

to the locations allocated for formals

• The notion of the activation record is implicit
– New locations are allocated for actual arguments

• The semantics of static dispatch is similar
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Runtime Errors

Operational rules do not cover all cases
Consider the dispatch example:

…

so, E, Sn ⊢ e0  : v0,Sn+1


v0 = X(a1 = l1,…, am  = lm)

impl(X, f) = (x1,…, xn, ebody)

…

so, E, S ⊢ e0.f(e1,…,en)  : v, Sn+3

What happens if impl(X, f) is not defined?
Cannot happen in a well-typed program 
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Runtime Errors (Cont.)

• There are some runtime errors that the type 
checker does not prevent
– A dispatch on void
– Division by zero
– Substring out of range
– Heap overflow

• In such cases execution must abort gracefully
– With an error message, not with segfault 
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Conclusions

• Operational rules are very precise & detailed
– Nothing is left unspecified
– Read them carefully

• Most languages do not have a well specified 
operational semantics

• When portability is important an operational 
semantics becomes essential


