
1

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

Operational Semantics of Cool

CS143
Lecture 13

2

Lecture Outline

• COOL operational semantics

• Motivation

• Notation

• The rules

3

Motivation

• We must specify for every Cool expression what
happens when it is evaluated
– This is the “meaning” of an expression

• The definition of a programming language:
– The tokens ⇒ lexical analysis
– The grammar ⇒ syntactic analysis
– The typing rules ⇒ semantic analysis
– The evaluation rules

⇒ code generation and optimization

4

Evaluation Rules So Far

• We have specified evaluation rules indirectly
– The compilation of Cool to a stack machine
– The evaluation rules of the stack machine

• This is a complete description
– Why isn’t it good enough?

5

Assembly Language Description of Semantics

• Assembly-language descriptions of language
implementation have irrelevant detail
– Whether to use a stack machine or not
– Which way the stack grows
– How integers are represented
– The particular instruction set of the architecture

• We need a complete description
– But not an overly restrictive specification

6

Programming Language Semantics

• A multitude of ways to specify semantics
– All equally powerful
– Some more suitable to various tasks than others

• Operational semantics
– Describes program evaluation via execution rules

• on an abstract machine
– Most useful for specifying implementations
– This is what we use for Cool

7

Other Kinds of Semantics

• Denotational semantics
– Program’s meaning is a mathematical function
– Elegant, but introduces complications

• Need to define a suitable space of functions

• Axiomatic semantics
– Program behavior described via logical formulae

• If execution begins in state satisfying X, then it ends in state
satisfying Y

• X, Y formulas
– Foundation of many program verification systems

8

Introduction to Operational Semantics

• Once again we introduce a formal notation

• Logical rules of inference, as in type checking

9

Inference Rules

• Recall the typing judgment
 Context ⊢ e : C

(in the given context, expression e has type C)

• We try something similar for evaluation
 Context ⊢ e : v

(in the given context, expr. e evaluates to value v)

10

Example Operational Semantics Rule

• Example:

• The result of evaluating an expression can
depend on the result of evaluating its
subexpressions

• The rules specify everything that is needed to
evaluate an expression

Context ⊢ e1 : 5

Context ⊢ e2 : 7

Context ⊢ e1 + e2 : 12

11

Contexts are Needed for Variables

• Consider the evaluation of y ← x + 1
– We need to keep track of values of variables
– We need to allow variables to change their values

during evaluation

• We track variables and their values with:
– An environment : tells us where in memory a variable is

stored
– A store : tells us what is in memory

12

Variable Environments

• A variable environment is a map from variable
names to locations
– Tells in what memory location the value of a variable is

stored
– Keeps track of which variables are in scope

• Example:
 E = [a : l1, b : l2]
• E(a) looks up variable a in environment E

13

Stores

• A store maps memory locations to values
• Example:
 S = [l1 → 5, l2 → 7]

• S(l1) is the contents of a location l1 in store S

• S’ = S[12/l1] defines a store S’ such that
S’(l1) = 12 and S’(l) = S(l) if l ≠ l1

14

Cool Values

• Cool values are objects
– All objects are instances of some class

• X(a1 = l1, …, an = ln) is a Cool object where
– X is the class of the object
– ai are the attributes (including inherited ones)
– li is the location where the value of ai is stored

15

Cool Values (Cont.)

• Special cases (classes without attributes)
Int(5) the integer 5
Bool(true) the boolean true
String(4, “Cool”) the string “Cool” of length 4

• There is a special value void of type Object
– No operations can be performed on it
– Except for the test isvoid
– Concrete implementations might use NULL here

16

Operational Rules of Cool

• The evaluation judgment is
 so, E, S ⊢ e : v, S’
 read:

– Given so the current value of self
– And E the current variable environment
– And S the current store
– If the evaluation of e terminates then
– The return value is v
– And the new store is S’

17

Notes

• “Result” of evaluation is a value and a store
– New store models the side-effects

• Some things don’t change
– The variable environment
– The value of self
– The operational semantics allows for non-terminating

evaluations

18

Operational Semantics for Base Values

• No side effects in these cases
(the store does not change)

so, E, S ⊢ true : Bool(true), S so, E, S ⊢ false : Bool(false), S

s is a string literal

n is the length of s

so, E, S ⊢ s : String(n,s), S
i is an integer literal

so, E, S ⊢ i : Int(i), S

19

Operational Semantics of Variable References

• Note the double lookup of variables
– First from name to location
– Then from location to value

• The store does not change

E(id) = lid

S(lid) = v

so, E, S ⊢ id : v, S

20

Operational Semantics for Self

• A special case:

so, E, S ⊢ self : so, S

21

Operational Semantics of Assignment

• Three step process
– Evaluate the right hand side

⇒ a value v and new store S1

– Fetch the location of the assigned variable
– The result is the value v and an updated store

so, E, S ⊢ e : v, S1

E(id) = lid

S2 = S1[v/lid]

so, E, S ⊢ id ← e : v, S2

22

Operational Semantics of Conditionals (true)

• The “threading” of the store enforces an
evaluation sequence
– e1 must be evaluated first to produce S1
– Then e2 can be evaluated

• The result of evaluating e1 is a Bool. Why?

so, E, S ⊢ e1 : Bool(true), S1

so, E, S1 ⊢ e2 : v, S2

so, E, S ⊢ if e1 then e2 else e3 : v, S2

23

Operational Semantics of Conditionals (false)

so, E, S ⊢ e1 : Bool(false), S1

so, E, S1 ⊢ e3 : v, S2

so, E, S ⊢ if e1 then e2 else e3 : v, S2

24

Operational Semantics of Sequences

• Again the threading of the store expresses the
required evaluation sequence

• Only the last value is used
• But all the side-effects are collected

so, E, S ⊢ e1 : v1, S1

so, E, S1 ⊢ e2 : v2, S2

…

so, E, Sn-1 ⊢ en : vn , Sn

so, E, S ⊢ { e1; …; en; } : vn, Sn

25

Operational Semantics of while (I)

• If e1 evaluates to false the loop terminates
– With the side-effects from the evaluation of e1
– And with result value void

• Type checking ensures e1 evaluates to a Bool

so, E, S ⊢ e1 : Bool(false), S1

so, E, S ⊢ while e1 loop e2 pool : void, S1

26

Operational Semantics of while (II)

• Note the sequencing (S → S1 → S2 → S3)
• Note how looping is expressed

– Evaluation of “while …” is expressed in terms of the
evaluation of itself in another state

• The result of evaluating e2 is discarded
– Only the side-effect is preserved

so, E, S ⊢ e1 : Bool(true), S1

so, E, S1 ⊢ e2 : v, S2

so, E, S2 ⊢ while e1 loop e2 pool : void, S3

so, E, S ⊢ while e1 loop e2 pool : void, S3

27

Operational Semantics of let Expressions (I)

• In what context should e2 be evaluated?
– Environment like E but with a new binding of id to a

fresh location lnew

– Store like S1 but with lnew mapped to v1

so, E, S ⊢ e1 : v1, S1

so, ?, ? ⊢ e2 : v, S2

so, E, S ⊢ let id : T ← e1 in e2 : v2, S2

28

Operational Semantics of let Expressions (II)

• We write lnew = newloc(S) to say that lnew is a
location not already used in S
– newloc is like the memory allocation function

• The operational rule for let:

so, E, S ⊢ e1 : v1, S1

lnew = newloc(S1)

so, E[lnew/id] , S1[v1/lnew] ⊢ e2 : v2, S2

so, E, S ⊢ let id : T ← e1 in e2 : v2, S2

29

Operational Semantics of new

• Informal semantics of new T
– Allocate locations to hold all attributes of an object of

class T
• Essentially, allocate a new object

– Initialize attributes with their default values
– Evaluate the initializers and set the resulting attribute

values
– Return the newly allocated object

30

Default Values

• For each class A there is a default value denoted
by DA
– Dint = Int(0)
– Dbool = Bool(false)
– Dstring = String(0, “”)
– DA = void (for any other class A)

31

More Notation

• For a class A we write
 class(A) = (a1 : T1 ← e1, …, an : Tn ← en) where

– ai are the attributes (including the inherited ones)
– Ti are their declared types
– ei are the initializers

32

Operational Semantics of new

• new SELF_TYPE allocates an object with the
same dynamic type as self

T0 = if (T == SELF_TYPE and so = X(…)) then X else T

class(T0) = (a1 : T1 ← e1,…, an : Tn ← en)

li = newloc(S) for i = 1,…,n

v = T0(a1= l1, …, an= ln)

S1 = S[DT1/l1,…,DTn/ln]

E’ = [a1 : l1, …, an : ln]

v, E’, S1 ⊢ { a1 ← e1; …; an ← en; } : vn, S2

so, E, S ⊢ new T : v, S2

33

Notes on Operational Semantics of new.

• The first three steps allocate the object

• The remaining steps initialize it
– By evaluating a sequence of assignments

• State in which the initializers are evaluated
– Self is the current object
– Only the attributes are in scope (same as in typing)
– Initial values of attributes are the defaults

34

Operational Semantics of Method Dispatch

• Informal semantics of e0.f(e1,…,en)
– Evaluate the arguments in order e1,…,en

– Evaluate e0 to the target object
– Let X be the dynamic type of the target object
– Fetch from X the definition of f (with n args.)
– Create n new locations and an environment that maps

f’s formal arguments to those locations
– Initialize the locations with the actual arguments
– Set self to the target object and evaluate f’s body

35

More Notation

• For a class A and a method f of A (possibly
inherited) we write:

impl(A, f) = (x1, …, xn, ebody) where
– xi are the names of the formal arguments
– ebody is the body of the method

36

Operational Semantics of Dispatch

so, E, S ⊢ e1 : v1 , S1

so, E, S1 ⊢ e2 : v2 , S2

…

so, E, Sn-1 ⊢ en : vn , Sn

so, E, Sn ⊢ e0 : v0, Sn+1

v0 = X(a1 = l1,…, am = lm)

impl(X, f) = (x1,…, xn, ebody)

lxi = newloc(Sn+1) for i = 1,…,n

E’ = [a1 : l1, …, am : lm, x1 : lx1, …, xn : lxn]

Sn+2 = Sn+1[v1/lx1,…,vn/lxn]

v0 , E’, Sn+2 ⊢ ebody : v, Sn+3

so, E, S ⊢ e0.f(e1,…,en) : v, Sn+3

37

Notes on Operational Semantics of Dispatch

• The body of the method is invoked with
– E’ mapping formal arguments and self’s attributes
– S like the caller’s except with actual arguments bound

to the locations allocated for formals

• The notion of the activation record is implicit
– New locations are allocated for actual arguments

• The semantics of static dispatch is similar

38

Runtime Errors

Operational rules do not cover all cases
Consider the dispatch example:

…

so, E, Sn ⊢ e0 : v0,Sn+1

v0 = X(a1 = l1,…, am = lm)

impl(X, f) = (x1,…, xn, ebody)

…

so, E, S ⊢ e0.f(e1,…,en) : v, Sn+3

What happens if impl(X, f) is not defined?
Cannot happen in a well-typed program

39

Runtime Errors (Cont.)

• There are some runtime errors that the type
checker does not prevent
– A dispatch on void
– Division by zero
– Substring out of range
– Heap overflow

• In such cases execution must abort gracefully
– With an error message, not with segfault

40

Conclusions

• Operational rules are very precise & detailed
– Nothing is left unspecified
– Read them carefully

• Most languages do not have a well specified
operational semantics

• When portability is important an operational
semantics becomes essential

