Significant Advance in Calculating
EOF From a Very Large Data set.

Huug van den Dool

Some 1% / 99% comments

99% of the Reanalysis users are happy with 1%
of the data

The other 99% of the data is required (if not
demanded) by the remaining 1% of the users.

That 1% of the users thus has a lot of impact
on data storage and data transmission issues

How do you split data wisely into 1%/99%?
One common way: High-Res and Low-Res
versions (both time and space).

W.J.A. Kuipers 1970 seminar at Dutch Weather
Service (KNMI) about EOF

This was not about teleconnections, NAO, PNA

Not about the workings of nature or to ‘let the data
speak’ diagnostics

It was about reducing a data set to ~0.1-1% of its
original size to fit a 1970 computer

Curiously, while EOFs are maximally efficient for
data compression, it is very costly (CPU, Memory) to
calculate EOFs, but, keep in mind: you have to do
this only once.

Curiously, data compression is as desirable now as it
was in 1970.

Almost everybodly has calculated EOF

My guess: They all did it by first calculating the
covariance matrix Q or Q3.

Evaluating the elements of the covariance matrix
requiresn, *n.*n, (Q) or n,*n.* n. (Q3)
multiplications where n_.and n, are the number of
points in space and time.

Example (CFSR) Reanalysis full resolution data:
space =1152*576 =663552 points, and
time=32*365*24 =280320

(n,* n,=1.86 * 10!is one unit)

=>» It would take 5.22*10%° (1.23*10'/) multiplications
to fill Q2 (Q) (for one variable). That is before any
EOFs are calculated.!! {CPU cost is n, units)

Help from Bob Kistler:

Rearranged the do loops

Applied both methods of multi-tasking: MPI
(message passing) and OPENMP (threading)

George vandenBerghe helped to configure batch
jobs for power 6 machine so as to use all 64 logical
cpu’s on each physical node

Even so, it is hard in terms of CPU to fill Q (mind
you: this is only for a single variable at one level).

The good news:

* We can find EOFs without first filling
the covariance matrix.

* This advance addresses CPU problems,
not so much memory problems (which
are also an obstacle, but 2"9 to CPU).

e So we can calculate EOFs from CFSR ?

Lay-out talk

* The new(?) method

* Examples to show that it actually
works and yields the expected
results

* Why does it work?
* Origin of the method

Basics: f (s, t) =2, a (t) e (s) (O)

* Multiply Ihs and rhs of (0) by o (t) and sum over
all times t (n is a specific mode number). Result:

en(s) =2, a,(t)f(s, t) /3>, as(t) (1)

. Multiply Ihs and rhs side of (0) by e (s) and sum
over all space s. Result:

am(t) = ZS w(s) em(s) f (S, t) / ZS w(s) ezm(s) (2)
where w(s) are spatial weights, not shown below.

en(s) =2 a,(t)f(s, t) />, a2 (t) (1)
o, (t) =2, en(s) f(s, t) />, e (s) (2)

 The above are orthogonality relationships. If we
know a,(t) and f(s,t), e ,(s) can be calculated trivially.
If we know e_(s) and f(s,t), a.,(t) can be calculated
trivially. This is the basis of the iteration.

* Randomly pick (or make) a time series a°(t), and stick
into (1). This yields e%(t). Stick e°(t) into (2). This
vields al(t). This is one iteration. Etc. This generally
converges to the first EOF a,(t), e,(s). CPU cost 2
units per iteration.

o freduced(s t) = f(s,t) - a,(t) e,(s) and repeat. One finds
mode#2. Etc.

Example to show it works

* This is a lowres example when the cov matrix
can be calculated.

e 1948-2011 JFM seasonal Z500 mean at 2.5
degree grid. 64 time levels

* Domain 20N-pole (144*29=4176 gridpoints)

EOF far JFM 1948-2011 HGT 500 mb

EOF1 {23.0 REV) {seed=62.5M,55W) EOFZ {194 REV) (meed=55H,107.5W){partial 1)

' 3

|5k: .
E; Example using a
covariance matrix

1 8A01 BSB1ES0 85T 37019751 9801 9841 901 SEA200020%200 0 VA0 B AR08 8701 9751 B0 S84 90 SEA200020am201 0

EOF3 (9.1 XEV) (seed=37.5M,172 SW(partidl 142) EOF4 (7.1 2BV} (seed=57.5N,20W){partial 14243)

< <

-m I N I I | *— -ﬂ | |11 1 *—
-G8 -0 -05 =13 -1 81 43 5 07 A —N& —&F -05 =13 —01 81 0% a5 b

i g

2 19501 955 19BN ES 3 71975 9619851 8901 HIS2000R0IE0 0 T sm 551983651 37019 751 91601 9851 9901 SR SIMINIGI0N 0
Houuad wvanrn darn Daal &PC SMCEP S SO A Hasa Pea~ad 1081-=7010

EOF for JFM 1948-2011 HGT 500 mb(iter)

EOF1 {23.0 %EV) (sead=guess) EOF2 {19.4 %EU} {seed—guen}(pwhd 1)

Example using an
iterative method
(100 iterations)

1EﬁD1 BEB1EG0TEEE 87301 975 9801 3841 3801 SES20002 0052010 1!5[!1!5.':135[!13551 A1 3751 JB11 98518801 IRS200020KIRZ010

EOF3 (9.1 2BV} (asad=mguess)fpartial 142) EQF4 (7.2 XEV) (seedmguess)(partial 1%2&3)

-ﬂ | |11 1 *—
—N& —&F -05 =13 —01 81 0% a5 b

- et

19501955196 M3651 3 2019751 963198519901 90.5200020052010 19501955196 0r13651 9 2019751 9619851 990190520002095201 0
Houuad wvanrn darn Daal &PC SMCEP S SO A Hasa Pea~ad 1081-=7010

The route to EOF#1 taken by the
iteration from a guess

Path to EOF1 for JFM 1948-2011 Z500mb

queaa EOF1 {ter=0.5) towards EOF1 (iber=1.5}

The route to EOF1 from a guess
field (pick: (1948+2010)/2)
lterations 1-4

- 1HDWE.'JWEDNENEMQTI}IQMIQBNEHEHEEEIDGE[IDGEZD'IIJ 1EﬁD1EﬁS1iED’]iE.’}IE?ﬂ1 9751 9601 36413801 3852000200320 0 E O F fo r J F M 1 g 4 8 2 O 1

EOF1 {23.0 %EV) (sead=guess)

bowards EOF1 (nhr-! 5 bowards EOF1 (iber=3.5)

- 1EﬁD1 BEB1EG0TEEE 87301 975 9801 3841 3801 SES20002 0052010

90955 196 B 3719 75 9619851 8901 SIS 00URNE0 0 19501 955 9B IIEE 3 71 9751 96198515901 9952 IS 0 EOF3 (9.1 2BV} (ased=quesa)fpartial 1&3) Ex
Huuda van dan Daal CPCANCEP ANWE A0S Hasa Pariad 1881-=2010 P T

Path to EOF1 for JFM 1948-2011 Z500mb

towards EOF1 (iber=5.5)

: g

The route to EOF1 from a guess
field (pick: (1948+2010)/2)
lterations 5-8

EOF far JFM 1948-201

EOF1 {23.0 %EV) (sead=guess)

1850195 5198019551 57015751 981 9BS1 9901 SIS20I0IDNGZ0T 0 EOF3 (9.1 2BV} (ssed=quess){partial 1&2) EX
Huua wvan dan Daal CPC ANCERP Swd A0 Hasa Paqad 19821 -=2010 P T

An example of the difficulties with
convergence:

Path to EOF1 for JFM 1948-2011 Z500mb

queas EOF1 {jtar=0.5) towards EDFI (nber—l .5}

The route to EOF1 from a very

different guess field (pick: 1964)
lterations 1-4

1EﬁD1 BEB1EG0TEEE 87301 975 9801 3841 3801 SES20002 0052010 1!5[!1!5.':135[!13551 A1 3751 JB11 98518801 IRS200020KIRZ010

towards EOF (uhr-ﬂ 5 bowards EOF1 (iter=3.5)

4 Where
we go to
EOF for JFM 1948—2011 HGT 500 mb(iter)

EOF1 {23.0 %EV) (ssad=guess) EOF2 (19.4 %’E\J‘} {seed—gness)(pcrhd 1)

-ﬂ | |11 1 *—
—N& —&F -05 =13 —01 81 0% a5 b

:zeé]

19501955196 M3651 3 2019751 963198519901 90.5200020052010
Houuad wvanrn darn Daal &PC SMCEP S SO A

19501955196 0r13651 9 2019751 9619851 990190520002095201 0
Hasa Pea~ad 1081-=7010

Path to EOF1 for JFM 1948-2011 Z500mb

towards EOF1 {itar=98.5) tawarda EOF1 {jtar=97.5)

The route to EOF1 from a very
different guess field (pick: 1964)
Iterations 97-100!

4 Where

we go to
EOF for JFM 1948-2011 HGT 500 mb(iter)

EOF1 {23.0 %EV) (ssad=guess)

-m I N I I | *— -ﬂ | |11 1 *—
-G8 -0 -05 =13 -1 81 43 5 07 A —N& —&F -05 =13 —01 81 0% a5 b

Pty iy L b

19501955196 M3651 3 2019751 963198519901 90.5200020052010 950955 195 651 3701 9 75 919519901 8052000200520
Houuad wvanrn darn Daal &PC SMCEP S SO A Hasa Pea~ad 1081-=7010

Path to EOF1 for JFM 1948-2011 Z500mb

queaa EOF1 {ter=0.5) towards EOF1 (iber=1.5}

P ? \

The route to EOF1 from a
ridiculous guess field
Iterations 1-4

4 Where

we go to
EOF for JFM 1948-2011 HGT 500 mb(iter)

EOF1 {23.0 %EV) (ssad=guess)

=] -I s b

19801955 BB 3701 9751 951 9819001 G052 020052010
Huuda van dan Daal CPCANCEP ANWE A0S Hasa Pariad 1881-=2010

Path to EOF1 for JFM 1948-2011 Z500mb

towards EOF1 (iber=1.5}

queaa EOF1 {ter=0.5)

The route to EOF1 from a

another ridiculous guess field
Iterations 1-4

1!5[!155.':135[!13551 A1 3751 381 9851 5801 BRSZ0A0Z0ASZD10 1EﬁD1 BEE1E60TAGE 87301 3754 9601 364130801 385200020052010

bowards EOF1 (iler=2.5)

bowards EOF1 (ul:er-.i 5)

4 Where
we go to
EOF for JFM 1948—2011 HGT 500 mb(iter)

EOF1 {23.0 %EV) (ssad=guess) EOF2 (19.4 %’E\J‘} {seed—gness)(pcrhd 1)

195015551960 JE5 TN 9 751951 98519901 BBSEWOEWEEDW

195019551%0195519?019?519&019351990199520#]020#]5201@
Huuda van dan Daal CPCANCEP ANWE A0S

Hasa Pariad 1881-=2010

Savings in CPU?

* None (to write home about) fOr @ small problem
e |teration is factor 30 faster for ns=nt=4000

* When ns and nt go higher (10,000 or 100,000)
the cov matrix method quickly becomes
‘impossible’ (depending on computer and
smarts of programmer), while iteration is still
possible (although not inexpensive).

Other comments
* The calculation is simple (shorter code)
* No issues of space-time reversal apply
* You can start with a guess in space or in
time
* Does it always work? (give me an
example where it does NOT)

* Double precision issues

Application to highres CFSR daily
data

 Something entirely impossible via the cov matrix
can actually be done via the iteration method.
e Daily T2m 1979-2010. nt=11688, ns=663552

* It works well, but, but and but

100

90 —
/ Cumulative EV modes 1-m 21 0.23

20 22 022
(23 022

24 019

70 25 0.2
26 019

60 27 018
28 0.19

29 0.17

>0 30 0.16
31 016

40 32 0.15
33 015

30 34 0.14
35 013

36 013

20 37 013
38 0.12

10 39 013
40 012

0 EV by mode 41 011
1 21 M 61 81 101 121 141 161 181 42 0ll

43 0.1

44 0.1

Application to highres CFSR daily
data

Something entirely impossible via the cov matrix
can actually be done via the iteration method.

Daily T2m 1979-2010. nt=11688, ns=663552

It works well, but, but and but

lteration at low spatial res (Cost=2X30X200 units)
Convergence issues (or are these the real EOFs?)
Pulling teeth on T2m

Even with 200 modes only 96%EV (residual error
1.15K). Compressibility of data set not good.

As eigenvalues become smaller the spectrum becomes flatter.
One has to iterate more and more to achieve convergence to the next EOF.

The smaller the added EV the longer the iteration. Not a desirable situation.
Not (yet?) a good approach when ‘all’ modes are needed.

Compressibility

* Regardless of our ability to calculate EOFs, do
EOFs compress data sets enough? An example

for a presumably very compressible data set:
/500 (daily, 1979-2012, daily climo, iter=100).

originl reconstr res EV mode#

93.65 93.28 8.29 99.22 197
93.65 93.28 8.23 99.23 198
93.65 93.29 8.18 99.24 199
93.65 93.29 8.12 99.25 200 (wrt daily climo)

5621.55621.5 8.14 100.00 200 (absolute)
148.05 147.83 8.14 99.70 200 (wrt annual mean)

Why does iteration work?
Understand the Power Method

* |[n applied math the power method is used to
calculate the largest eigenvalue (and
associated eigenvector) of matrix A.

e Bad press (method gives you only one mode)
does not apply to us

e Why&How it works?

Power Method

A guess e%(s) can always be written as a linear
combination of projections onto the unknown
EOFs: e%(s) =2 a. e (s)

Qe =A, e, bydefinition

Execution of Q e° (which is done for the power
method) thus yields: Z_ A o e_(s).

Continue, kt" iteration: Q e* .One can see the next
highest A emerge.

Method is ‘slow’ (i.e. many iterations required,
depending on the separation of next highest
eigenvalues. ‘luck’ with initial oroiection...

 What is the connection between power
method and the iteration? Acknowledge Chris
Bretherton (Jan 2000).

en(s) =2, a.,(t) f(s, t) />, a2, (t) (1)
o, (t) =2, e(s) f(s, t) />, e (s) (2)

e (s)=2,a.(t)f(s,t)
a.(t) =2 e,(s)f(s,t)

In essence:
lteration k+1: ekl =ffT ek

Baldwin, Mark P., David B. Stephenson, lan T. Jolliffe, 2009: Spatial Weighting
and Iterative Projection Methods for EOFs. J. Climate, 22, 234-243

“Another method involving iteration between a spatial pattern and a time series was proposed
by Clint and Jennings (1970).

Van den Dool et al. (2000) used a similar approach to find the leading EOF beginning from
the leading empirical orthogonal teleconnection (EOT) pattern.

Iteration between a time series and spatial pattern to calculate the leading EOF was discovered
independently by G. Hegerl (2008, personal communication).”

Class Notes Kalnay

Appendix (adapted from Wiki)

Formally, the singular value decomposition of an m X n real
matrix M is a factorization of the formM=U X VT,

where U is an m X m real matrix, 2 is an m X n diagonal matrix
with nonnegative real numbers on the diagonal, and V' (the
conjugate transpose of V) is an n X n matrix. The diagonal
entries 2;; of 2 are known as the singular values of M. The m
columns of U and the n columns of V are called the left
singular vectors and right singular vectors of M, respectively.

Singular value decomposition and eigendecomposition are
closely related. Namely:

The left singular vectors of M are eigenvectors of MM .
The right singular vectors of M are eigenvectors of MTM.

The non-zero singular values of 2 are the square roots of the
non-zero eigenvalues of MM or MMT

Toumazou, Vincent, Jean-Francois Cretaux, 2001: Using a Lanczos Eigensolver
in the Computation of Empirical Orthogonal Functions. Mon. Wea. Rev., 129,
1243-1250.

The computation of the singular values can be achieved through three different strategies
in terms of linear algebra.

The first one is called the SVD strategy
and is based on the singular value decomposition (SVD) algorithm.

The two others (QR and Lanczos) strategies are based on the formulation
as an eigenvalue problem.

Acknowledge Michael Tippett at IR/

General conclusions

* |teration methods allows calculation of a
limited # of EOFs, where the covariance matrix
method would nearly be impossible (large
data sets)

e How limited?

* Using EOF for storage and transmission
nindered by fundamental “compressibility”
issues. (I would prefer # of modes <= 1% of n,
to explain ‘enough’)

Other comments

The method works for the same reason as the power method
(when applied to the cov matrix)

The calculation is simple (shorter code)

No issues of space-time reversal apply

You can start with a guess in space or in time

Does it always work? (give me an example where it does NOT)

A convergence criterion? (to save on iterations when not
needed)

What guess to use?
Double precision issues
Iterative EOT?

Swarming a bunch of guess fields simultaneously (Tippett)

