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Some 1% / 99% comments 

• 99% of the Reanalysis users are happy with 1% 
of the data 

• The other 99% of the data is required (if not 
demanded) by the remaining 1% of the users.  

• That 1% of the users thus has a lot of impact 
on data storage and data transmission issues 

• How do you split data wisely into 1%/99%? 
One common way: High-Res and Low-Res 
versions (both time and space). 

 



W.J.A. Kuipers 1970 seminar at Dutch Weather 
Service (KNMI) about EOF 

• This was not about teleconnections, NAO, PNA 

• Not about the workings of nature or to ‘let the data 
speak’ diagnostics 

• It was about reducing a data set to ~0.1-1% of its 
original size to fit a ~1970 computer 

• Curiously, while EOFs are maximally efficient for 
data compression, it is very costly (CPU, Memory) to 
calculate EOFs, but, keep in mind: you have to do 
this only once. 

• Curiously, data compression is as desirable now as it 
was in 1970. 



• Almost everybody ….. has calculated EOF 
• My guess: They all did it by first calculating the 

covariance matrix Q or Qa.  
• Evaluating the elements of the covariance matrix 

requires ns * ns * nt  (Q)  or  nt * nt * ns  (Q
a)  

multiplications where ns and nt are the number of 
points in space and time.  

• Example (CFSR) Reanalysis full resolution data:  
    space =1152*576 =663552 points, and  

time=32*365*24  =280320  

    (ns * nt =1.86 * 1011 is one unit )  

 

 It would take 5.22*1016 (1.23*1017) multiplications 
to fill Qa (Q) (for one variable). That is before any 
EOFs are calculated.!! {CPU cost is nt units) 



Help from Bob Kistler: 

• Rearranged the do loops 

• Applied both methods of multi-tasking: MPI 
(message passing) and OPENMP (threading) 

• George vandenBerghe helped to configure batch 
jobs for power 6 machine so as to use all 64 logical 
cpu’s on each physical node 

• Even so, it is hard in terms of CPU to fill Q (mind 
you: this is only for a single variable at one level). 



The good news: 

• We can find EOFs without first filling 
the covariance matrix. 

• This advance addresses CPU problems, 
not so much memory problems (which 
are also an obstacle, but 2nd to CPU).  

• So we can calculate EOFs from CFSR ? 



Lay-out talk 

• The new(?) method 

• Examples to show that it actually 
works and yields the expected 
results 

• Why does it work? 

• Origin of the method 
 



 Basics: f (s, t) = ∑m αm(t) em(s)   (0) 

• Multiply lhs and rhs of (0) by αn(t) and sum over 
all times t (n is a specific mode number). Result: 

 em(s) = ∑t αm(t) f (s, t) / ∑ t α
2

m(t)  (1) 

. Multiply lhs and rhs side of (0) by en(s) and sum 

over all space s. Result: 

 αm(t) = ∑s  w(s) em(s) f (s, t) / ∑s w(s) e2
m(s)  (2) 

where w(s) are spatial weights, not shown below. 

 

 

 

  



em(s) = ∑t αm(t) f (s, t) / ∑ t α
2

m(t)  (1) 
αm(t) = ∑s  em(s) f (s, t) / ∑s e

2
m(s) (2) 

• The above are orthogonality relationships. If we 
know αm(t) and f(s,t), em(s) can be calculated trivially. 
If we know em(s) and f(s,t), αm(t) can be calculated 
trivially. This is the basis of the iteration. 

• Randomly pick (or make) a time series α0(t), and stick 
into (1). This yields e0(t). Stick e0(t) into (2). This 
yields α1(t). This is one iteration. Etc. This generally 
converges to the first EOF α1(t), e1(s). CPU cost 2 
units per iteration. 

• freduced(s,t) = f(s,t) - α1(t) e1(s) and repeat. One finds 
mode#2. Etc. 

 

 

 



Example to show it works 

• This is a lowres example when the cov matrix 
can be calculated.  

 

• 1948-2011 JFM seasonal Z500 mean at 2.5 
degree grid. 64 time levels 

 

• Domain 20N-pole (144*29=4176 gridpoints)   



 

Example using a 
covariance matrix 



 

Example using an 
iterative method 
(100 iterations) 



The route to EOF#1 taken by the 
iteration from a guess 

 



 The route to EOF1 from a guess 
field (pick: (1948+2010)/2) 
Iterations 1-4 

 Where 
we go to 



 The route to EOF1 from a guess 
field (pick: (1948+2010)/2) 
Iterations 5-8 

 Where 
we go to 



An example of the difficulties with 
convergence: 

 



 The route to EOF1 from a very 
different guess field (pick: 1964) 
Iterations 1-4 

↓ Where 
we go to 



 The route to EOF1 from a very 
different guess field (pick: 1964) 
Iterations 97-100! 

↓ Where 
we go to 



 The route to EOF1 from a 
ridiculous guess field  
Iterations 1-4 

↓ Where 
we go to 



 The route to EOF1 from a  
another ridiculous guess field  
Iterations 1-4 

↓ Where 
we go to 



Savings in CPU? 

• None (to write home about) for a small problem 

• Iteration is factor 30 faster for ns=nt=4000 

• When ns and nt go higher (10,000 or 100,000) 
the cov matrix method quickly becomes 
‘impossible’ (depending on computer and 
smarts of programmer), while iteration is still 
possible (although not inexpensive). 



Other comments 

• The calculation is simple (shorter code) 

• No issues of space-time reversal apply 

• You can start with a guess in space or in 
time 

• Does it always work? (give me an 
example where it does NOT) 

• Double precision issues 



Application to highres CFSR daily 
data 

• Something entirely impossible via the cov matrix 
can actually be done  via the iteration method.  

• Daily T2m 1979-2010. nt=11688, ns=663552 

• It works well, but, but and but 
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Application to highres CFSR daily 
data 

• Something entirely impossible via the cov matrix 
can actually be done  via the iteration method.  

• Daily T2m 1979-2010. nt=11688, ns=663552 

• It works well, but, but and but 

-  Iteration at low spatial res (Cost=2X30X200 units) 

- Convergence issues (or are these the real EOFs?) 

- Pulling teeth on T2m 

- Even with 200 modes only 96%EV (residual error 
1.15K). Compressibility of data set not good. 



As eigenvalues become smaller the spectrum becomes flatter.  
 
One has to iterate more and more to achieve convergence to the next EOF.  
 
The smaller the added EV the longer the iteration. Not a desirable situation. 
Not (yet?) a good approach when ‘all’ modes are needed.  
 



Compressibility  

• Regardless of our ability to calculate EOFs, do 
EOFs compress data sets enough? An example 
for a presumably very compressible data set: 
Z500 (daily, 1979-2012, daily climo, iter=100). 

     originl  reconstr    res     EV       mode# 

•    93.65  93.28   8.29  99.22  197 

•    93.65  93.28   8.23  99.23  198 

•    93.65  93.29   8.18  99.24  199 

•    93.65  93.29   8.12  99.25  200      (wrt daily climo) 

 

•  5621.5 5621.5  8.14 100.00 200     (absolute) 

•  148.05 147.83   8.14  99.70  200     (wrt annual mean) 



Why does iteration work? 
Understand the Power Method 

• In applied math the power method is used to 
calculate the largest eigenvalue (and 
associated eigenvector) of matrix A. 

• Bad press (method gives you only one mode) 
does not apply to us 

• Why&How it works?  

 



Power Method 
• A guess e0(s) can always be written as a linear 

combination of projections onto the unknown 
EOFs: e0(s) = Σm αm em(s) 

• Q em = λm em by definition 

• Execution of Q e0 (which is done for the power 
method) thus yields: Σm λm αm em(s).  

• Continue, kth iteration: Q ek .One can see the next 
highest λ emerge. 

• Method is ‘slow’ (i.e. many iterations required, 
depending on the separation of next highest 
eigenvalues, ‘luck’ with initial projection… 



• What is the connection between power 
method and the iteration? Acknowledge Chris 
Bretherton (Jan 2000). 

 

 

em(s) = ∑t αm(t) f (s, t) / ∑ t α
2

m(t)  (1) 
αm(t) = ∑s  em(s) f (s, t) / ∑s e

2
m(s) (2) 

 
em(s) = ∑t αm(t) f (s, t)  
αm(t) = ∑s  em(s) f (s, t) 

 
in essence: 

Iteration k+1:      e k+1  = f f T  e k  



Baldwin, Mark P., David B. Stephenson, Ian T. Jolliffe, 2009: Spatial Weighting 
and Iterative Projection Methods for EOFs. J. Climate, 22, 234–243 

“Another method involving iteration between a spatial pattern and a time series was proposed 
by Clint and Jennings (1970).  
 
Van den Dool et al. (2000) used a similar approach to find the leading EOF beginning from  
the leading empirical orthogonal teleconnection (EOT) pattern.  
 
Iteration between a time series and spatial pattern to calculate the leading EOF was discovered 
independently by G. Hegerl (2008, personal communication).” 
 
Class Notes Kalnay  



• Formally, the singular value decomposition of an m×n real 
matrix M is a factorization of the form M = U Σ VT , 

• where U is an m×m real matrix, Σ is an m×n diagonal matrix 
with nonnegative real numbers on the diagonal, and VT (the 
conjugate transpose of V) is an n×n matrix. The diagonal 
entries Σi,i of Σ are known as the singular values of M. The m 
columns of U and the n columns of V are called the left 
singular vectors and right singular vectors of M, respectively. 

• Singular value decomposition and eigendecomposition are 
closely related. Namely: 

• The left singular vectors of M are eigenvectors of MMT . 

• The right singular vectors of M are eigenvectors of MTM. 

• The non-zero singular values of Σ are the square roots of the 
non-zero eigenvalues of MTM or MMT  

Appendix (adapted from Wiki) 



Toumazou, Vincent, Jean-Francois Cretaux, 2001: Using a Lanczos Eigensolver 
in the Computation of Empirical Orthogonal Functions. Mon. Wea. Rev., 129, 

1243–1250.  

 

The computation of the singular values can be achieved through three different strategies  
in terms of linear algebra.  
 
The first one is called the SVD strategy  
and is based on the singular value decomposition (SVD) algorithm.  
 
The two others (QR and Lanczos) strategies are based on the formulation  
as an eigenvalue problem.  

Acknowledge Michael Tippett at IRI 



General conclusions 

• Iteration methods allows calculation of a 
limited # of EOFs, where the covariance matrix 
method would nearly be impossible (large 
data sets) 

• How limited? 

• Using EOF for storage and transmission 
hindered by fundamental “compressibility” 
issues. (I would prefer # of modes <= 1% of nt 

to explain ‘enough’) 



Other comments 
• The method works for the same reason as the power method 

(when applied to the cov matrix) 

• The calculation is simple (shorter code) 

• No issues of space-time reversal apply 

• You can start with a guess in space or in time 

• Does it always work? (give me an example where it does NOT) 

• A convergence criterion? (to save on iterations when not 
needed) 

• What guess to use? 

• Double precision issues 

• Iterative EOT? 

• Swarming a bunch of guess fields simultaneously (Tippett) 


