Significant Advance in Calculating
EOF From a Very Large Data set.

Huug van den Dool



Some 1% / 99% comments

99% of the Reanalysis users are happy with 1%
of the data

The other 99% of the data is required (if not
demanded) by the remaining 1% of the users.

That 1% of the users thus has a lot of impact
on data storage and data transmission issues

How do you split data wisely into 1%/99%?
One common way: High-Res and Low-Res
versions (both time and space).



W.J.A. Kuipers 1970 seminar at Dutch Weather
Service (KNMI) about EOF

This was not about teleconnections, NAO, PNA

Not about the workings of nature or to ‘let the data
speak’ diagnostics

It was about reducing a data set to ~0.1-1% of its
original size to fit a 1970 computer

Curiously, while EOFs are maximally efficient for
data compression, it is very costly (CPU, Memory) to
calculate EOFs, but, keep in mind: you have to do
this only once.

Curiously, data compression is as desirable now as it
was in 1970.



Almost everybodly ..... has calculated EOF

My guess: They all did it by first calculating the
covariance matrix Q or Q3.

Evaluating the elements of the covariance matrix
requiresn, *n.*n, (Q) or n,*n.* n. (Q3)
multiplications where n_.and n, are the number of
points in space and time.

Example (CFSR) Reanalysis full resolution data:
space =1152*576 =663552 points, and
time=32*365*24 =280320

(n,* n,=1.86 * 10!is one unit)

=>» It would take 5.22*10%° (1.23*10'/) multiplications
to fill Q2 (Q) (for one variable). That is before any
EOFs are calculated.!! {CPU cost is n, units)



Help from Bob Kistler:

Rearranged the do loops

Applied both methods of multi-tasking: MPI
(message passing) and OPENMP (threading)

George vandenBerghe helped to configure batch
jobs for power 6 machine so as to use all 64 logical
cpu’s on each physical node

Even so, it is hard in terms of CPU to fill Q (mind
you: this is only for a single variable at one level).



The good news:

* We can find EOFs without first filling
the covariance matrix.

* This advance addresses CPU problems,
not so much memory problems (which
are also an obstacle, but 2"9 to CPU).

e So we can calculate EOFs from CFSR ?



Lay-out talk

* The new(?) method

* Examples to show that it actually
works and yields the expected
results

* Why does it work?
* Origin of the method



Basics: f (s, t) =2, a (t) e (s) (O)

* Multiply Ihs and rhs of (0) by o (t) and sum over
all times t (n is a specific mode number). Result:

en(s) =2, a,(t)f(s, t) /3>, as(t) (1)

. Multiply Ihs and rhs side of (0) by e (s) and sum
over all space s. Result:

am(t) = ZS w(s) em(s) f (S, t) / ZS w(s) ezm(s) (2)
where w(s) are spatial weights, not shown below.



en(s) =2 a,(t)f(s, t) />, a2 (t) (1)
o, (t) =2, en(s) f(s, t) />, e (s) (2)

 The above are orthogonality relationships. If we
know a,(t) and f(s,t), e ,(s) can be calculated trivially.
If we know e_(s) and f(s,t), a.,(t) can be calculated
trivially. This is the basis of the iteration.

* Randomly pick (or make) a time series a°(t), and stick
into (1). This yields e%(t). Stick e°(t) into (2). This
vields al(t). This is one iteration. Etc. This generally
converges to the first EOF a,(t), e,(s). CPU cost 2
units per iteration.

o freduced(s t) = f(s,t) - a,(t) e,(s) and repeat. One finds
mode#2. Etc.



Example to show it works

* This is a lowres example when the cov matrix
can be calculated.

e 1948-2011 JFM seasonal Z500 mean at 2.5
degree grid. 64 time levels

* Domain 20N-pole (144*29=4176 gridpoints)
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EOF for JFM 1948-2011 HGT 500 mb(iter)

EOF1 {23.0 %EV) (sead=guess) EOF2 {19.4 %EU} {seed—guen}(pwhd 1)

Example using an
iterative method
(100 iterations)
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The route to EOF#1 taken by the
iteration from a guess



Path to EOF1 for JFM 1948-2011 Z500mb

queaa EOF1  {ter=0.5) towards EOF1  (iber=1.5}

The route to EOF1 from a guess
field (pick: (1948+2010)/2)
lterations 1-4
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Path to EOF1 for JFM 1948-2011 Z500mb

towards EOF1  (iber=5.5)

: g

The route to EOF1 from a guess
field (pick: (1948+2010)/2)
lterations 5-8
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An example of the difficulties with
convergence:



Path to EOF1 for JFM 1948-2011 Z500mb

queas EOF1  {jtar=0.5) towards EDFI (nber—l .5}

The route to EOF1 from a very

different guess field (pick: 1964)
lterations 1-4
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Path to EOF1 for JFM 1948-2011 Z500mb

towards EOF1  {itar=98.5) tawarda EOF1  {jtar=97.5)

The route to EOF1 from a very
different guess field (pick: 1964)
Iterations 97-100!

4 Where

we go to
EOF for JFM 1948-2011 HGT 500 mb(iter)

EOF1 {23.0 %EV) (ssad=guess)
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Path to EOF1 for JFM 1948-2011 Z500mb

queaa EOF1  {ter=0.5) towards EOF1  (iber=1.5}

P ? \

The route to EOF1 from a
ridiculous guess field
Iterations 1-4
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Path to EOF1 for JFM 1948-2011 Z500mb

towards EOF1  (iber=1.5}

queaa EOF1  {ter=0.5)

The route to EOF1 from a

another ridiculous guess field
Iterations 1-4
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Savings in CPU?

* None (to write home about) fOr @ small problem
e |teration is factor 30 faster for ns=nt=4000

* When ns and nt go higher (10,000 or 100,000)
the cov matrix method quickly becomes
‘impossible’ (depending on computer and
smarts of programmer), while iteration is still
possible (although not inexpensive).



Other comments
* The calculation is simple (shorter code)
* No issues of space-time reversal apply
* You can start with a guess in space or in
time
* Does it always work? (give me an
example where it does NOT)

* Double precision issues



Application to highres CFSR daily
data

 Something entirely impossible via the cov matrix
can actually be done via the iteration method.
e Daily T2m 1979-2010. nt=11688, ns=663552

* It works well, but, but and but
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20 22 022
( 23 022

24 019

70 25 0.2
26 019

60 27 018
28 0.19

29 0.17

>0 30 0.16
31 016

40 32 0.15
33 015
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Application to highres CFSR daily
data

Something entirely impossible via the cov matrix
can actually be done via the iteration method.

Daily T2m 1979-2010. nt=11688, ns=663552

It works well, but, but and but

lteration at low spatial res (Cost=2X30X200 units)
Convergence issues (or are these the real EOFs?)
Pulling teeth on T2m

Even with 200 modes only 96%EV (residual error
1.15K). Compressibility of data set not good.



As eigenvalues become smaller the spectrum becomes flatter.
One has to iterate more and more to achieve convergence to the next EOF.

The smaller the added EV the longer the iteration. Not a desirable situation.
Not (yet?) a good approach when ‘all’ modes are needed.



Compressibility

* Regardless of our ability to calculate EOFs, do
EOFs compress data sets enough? An example

for a presumably very compressible data set:
/500 (daily, 1979-2012, daily climo, iter=100).

originl reconstr res EV  mode#

93.65 93.28 8.29 99.22 197
93.65 93.28 8.23 99.23 198
93.65 93.29 8.18 99.24 199
93.65 93.29 8.12 99.25 200 (wrt daily climo)

5621.55621.5 8.14 100.00 200 (absolute)
148.05 147.83 8.14 99.70 200 (wrt annual mean)



Why does iteration work?
Understand the Power Method

* |[n applied math the power method is used to
calculate the largest eigenvalue (and
associated eigenvector) of matrix A.

e Bad press (method gives you only one mode)
does not apply to us

e Why&How it works?



Power Method

A guess e%(s) can always be written as a linear
combination of projections onto the unknown
EOFs: e%(s) =2 a. e (s)

Qe =A, e, bydefinition

Execution of Q e° (which is done for the power
method) thus yields: Z_ A o e_(s).

Continue, kt" iteration: Q e* .One can see the next
highest A emerge.

Method is ‘slow’ (i.e. many iterations required,
depending on the separation of next highest
eigenvalues. ‘luck’ with initial oroiection...



 What is the connection between power
method and the iteration? Acknowledge Chris
Bretherton (Jan 2000).

en(s) =2, a.,(t) f(s, t) />, a2, (t) (1)
o, (t) =2, e(s) f(s, t) />, e (s) (2)

e (s)=2,a.(t)f(s,t)
a.(t) =2 e,(s)f(s,t)

In essence:
lteration k+1: ekl =ffT ek



Baldwin, Mark P., David B. Stephenson, lan T. Jolliffe, 2009: Spatial Weighting
and Iterative Projection Methods for EOFs. J. Climate, 22, 234-243

“Another method involving iteration between a spatial pattern and a time series was proposed
by Clint and Jennings (1970).

Van den Dool et al. (2000) used a similar approach to find the leading EOF beginning from
the leading empirical orthogonal teleconnection (EOT) pattern.

Iteration between a time series and spatial pattern to calculate the leading EOF was discovered
independently by G. Hegerl (2008, personal communication).”

Class Notes Kalnay



Appendix (adapted from Wiki)

Formally, the singular value decomposition of an m X n real
matrix M is a factorization of the formM=U X VT,

where U is an m X m real matrix, 2 is an m X n diagonal matrix
with nonnegative real numbers on the diagonal, and V' (the
conjugate transpose of V) is an n X n matrix. The diagonal
entries 2;; of 2 are known as the singular values of M. The m
columns of U and the n columns of V are called the left
singular vectors and right singular vectors of M, respectively.

Singular value decomposition and eigendecomposition are
closely related. Namely:

The left singular vectors of M are eigenvectors of MM .
The right singular vectors of M are eigenvectors of MTM.

The non-zero singular values of 2 are the square roots of the
non-zero eigenvalues of MM or MMT



Toumazou, Vincent, Jean-Francois Cretaux, 2001: Using a Lanczos Eigensolver
in the Computation of Empirical Orthogonal Functions. Mon. Wea. Rev., 129,
1243-1250.

The computation of the singular values can be achieved through three different strategies
in terms of linear algebra.

The first one is called the SVD strategy
and is based on the singular value decomposition (SVD) algorithm.

The two others (QR and Lanczos) strategies are based on the formulation
as an eigenvalue problem.

Acknowledge Michael Tippett at IR/



General conclusions

* |teration methods allows calculation of a
limited # of EOFs, where the covariance matrix
method would nearly be impossible (large
data sets)

e How limited?

* Using EOF for storage and transmission
nindered by fundamental “compressibility”
issues. (I would prefer # of modes <= 1% of n,
to explain ‘enough’)




Other comments

The method works for the same reason as the power method
(when applied to the cov matrix)

The calculation is simple (shorter code)

No issues of space-time reversal apply

You can start with a guess in space or in time

Does it always work? (give me an example where it does NOT)

A convergence criterion? (to save on iterations when not
needed)

What guess to use?
Double precision issues
Iterative EOT?

Swarming a bunch of guess fields simultaneously (Tippett)



