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Abstract 
 
The present study provides a unified and consistent theory for the three types of linear waves 

of the Shallow Water Equations (SWE) on the β-plane – Kelvin, inertia-gravity (Poincare) 

and planetary (Rossby). The unified theory obtains by formulating the linearized SWE as an 

eigenvalue problem that is a variant of the classical Schrödinger equation. The results of the 

new theory show that Kelvin waves exist on the β-plane with vanishing meridional velocity, 

as is the case on the f-plane, without any change in the dispersion relation while the 

meridional structure of their height amplitude is trivially modified from Exponential on the f-

plane to a1-sided Gaussian on the β-plane. Similarly, inertia-gravity waves are only slightly 

modified in the new theory compared to their characteristics on the f-plane. However, for 

planetary (Rossby) waves (that exist only on the β-plane) the new theory yields similar 

dispersion relation to the classical theory only for large values of gravity waves' speed. On 

the other hand, for low gravity-wave phase speed, i.e. in equivalent-barotropic cases with 

small density jump at the interface, the dispersion relation of the new theory has phase speeds 

that are twice larger than in the classical theory for realistic widths and up to 3.3 times larger 

for wide channels. This faster phase propagation is consistent with recent observation of the 

westward propagation of crests and troughs of Sea Surface Height made by the altimeter 

aboard the Topex/Poseidon satellite. The unified theory also admits inertial waves, i.e. waves 

that oscillate at the local inertial frequency, as a consistent solution of the eigenvalue 

problem.         
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I. Introduction 
  
 The Shallow Water Equations (hereafter, SWE) provide the very fundamental 

description of the dynamics of an incompressible fluid that occupies a sufficiently thin layer 

such that the horizontal velocity is uniform across the layer's height. Mathematically, the 

SWE are nothing but Euler equations for a compressible gas in which the pressure is 

quadratic with the density but with the density of the gas replaced by the fluid height. Linear 

waves of the SWE in the presence of rotation fall traditionally into two categories: The first is 

high-frequency waves (Kelvin waves and inertia-gravity, or Poincaré, waves) that represent 

rotationally modified gravity waves of the non-rotating SWE. The second type is the low-

frequency, planetary (Rossby), waves that originate from the dependence of the Coriolis 

frequency on latitude: f(y). The derivation of the former type in the context of the SWE is 

done straightforwardly on the f-plane, where f(y) is replaced by a constant f0. In contrast, 

Rossby waves are derived on the β-plane by making additional simplifying assumptions on 

the flow, e.g., near non divergence or quasi-geostrophy, both of which are consistent with the 

smallness of f(y)-f0≡βy compared to f0 (Pedlosky, 1979; Gill, 1982; Cushman-Roisin, 1994).  

Although the dispersion relation of planetary (Rossby) waves can be derived directly 

from the linearized form of the conservation of potential vorticity the meridional structure of 

the velocity and height eigenfunctions are derived only from a perturbation expansion near a 

simple (steady, geosptrophic) state. The small expansion parameter used for evaluating the 

eigenfunctions is β but both the deviation of the velocity from geostrophy and the velocity 

field's divergence are assumed small to the same order. Both the dispersion relation of 

Rossby waves and the heuristic explanation for their westward propagation are based on 

vorticity conservation so changes in the relative vorticity are essential for their existence (see 

Fig. 3.16.1 in Pedlosky, 1979). However, the flow divergence in these waves is an essential 

physical element without which the velocity field is time-independent – geostrophic (see Sec. 

12.3 and Fig. 12.2 in Gill, 1982). Thus, while Kelvin and inertia-gravity, waves are derived 
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directly from the SWE without making any assumption on the form of the solutions, Rossby 

(planetary) waves can only be derived by making some assumptions on the solutions. These 

assumptions limit the generality of the solutions and imply that each type of waves originates 

from a different physical set-up, that translates into a different set of mathematical equations.    

In the present study we provide a canonical theory that yields the three types of 

waves: Kelvin, inertia-gravity (Poincaré) and planetary (Rossby), straightforwardly from the 

SWE without making any additional assumption. This theory yields the following theoretical 

advances: I) A derivation of the Kelvin and Poincaré wave solutions on the β-plane. II) A 

derivation of Rossby wave solution that includes the variation of f(y) everywhere and does 

not let f=f0 in some terms while β≠0. III) Faster phase speed of Rossby waves in the 

observationally relevant range of parameter values. The last result is in accordance with the 

altimeter observations made aboard the Topex/Poseidon satellite, which show that Rossby 

waves in the thermocline of the ocean propagate westward faster than predicted by the 

classical theory (Chelton and Schlax, 1996; Oschiny and Cornillon, 2004).  

2. Linear waves of the Shallow Water Equations and the eigenvalue equation  

In vectorial form the linearized SWE with rotation are given by: 

ˆ ,

.

V fk V g
t

H V
t

η

η

∂
+ × = − ∇

∂
∂

= − ∇ ⋅
∂

             (2.1) 

Here, f is the Coriolis frequency, H the unperturbed height (thickness) of the shallow layer of 

fluid and η is the deviation of height, h, from H (i.e. h=H+η); ∇ is the two dimensional nabla 

operator; V is the two-dimensional (horizontal) velocity vector; t is time and k̂ is a unit 

vector in the direction perpendicular to the velocity vector V; g is the gravitational constant in 

barotropic cases and the reduced gravity (i.e. g'=g∆ρ/ρ0 where ∆ρ/ρ0 is the relative density 

difference between the lower and upper layers) in equivalent-barotropic cases.  
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 In Cartesian (x, y) coordinates, where x (Rspct. y) is directed eastwards (Rspct. 

northwards), for V =(u, v), where u (Rspct. v) is the velocity components in the eastward 

(Rspct. northward) direction and for linearly varying Coriolis parameter f(y) = f0+βy = 

2Ω(sin(φ0) + [cos(φ0)/R]y) (where φ0 is a mean latitude and Ω and R are Earth's rotation 

frequency and radius, respectively) the scalar form of these vectorial equations is:  

0

0

( ) ,

( ) ,

.

u f y v g
t x
v f y u g
t y

u vH
t x y

ηβ

ηβ

η

∂ ∂
− + = −

∂ ∂
∂ ∂

+ + = −
∂ ∂

 ∂ ∂ ∂
= − + ∂ ∂ ∂ 

       (2.2)          

Since Earth's radius is the only length scale in the equations we take it to be the length scale 

in nondimensionalizing these equations. The time scale is (2Ω)-1 and these length and time 

scales imply the velocity scale 2ΩR. If, in addition, we scale the height, h and η=h-H by the 

mean height H then the nondimensional equations corresponding to system (2.2) are: 

 

( ) ( )( )

( ) ( )( )

0 0

0 0

sin cos ,

sin cos ,

,

u y v
t x
v y u
t y

u v
t x y

ηφ φ α

ηφ φ α

η

∂ ∂
− + = −

∂ ∂
∂ ∂

+ + = −
∂ ∂

 ∂ ∂ ∂
= − + ∂ ∂ ∂ 

     (2.3) 

where α=gH/(2ΩR)2 is the only parameter of the nondimensional model that augments the 

four dimensional parameters: g, H, Ω and R. The reader is reminded that although the 

variables in systems (2.2) and (2.3) are designated by the same symbols they are dimensional 

in the former and nondimensional in the latter and that the nondimensional y coordinate 

measures the latitudinal distance from φ0 in radians. For the rest of this work nondimensional 

parameters and variables will be used unless otherwise explicitly stated. System (2.3) applies 

to flows with length scales, L, satisfying H<<L<R the former condition is a general validity 

condition of the SWE and the latter originates from the β-plane assumption where higher 
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order terms in the Coriolis frequency are neglected. The time scale, T, for the validity of the 

system requires that T>>1/N where N is the frequency of oscillation due to the stratification 

i.e. Brunt-Vaisala frequency in a continuously stratified ocean and (g'/H')½ in a 2-layer ocean.        

Anticipating linear wave solutions of system (2.3) we let that u, v and η vary with x 

and t as a zonally propagating wave with wavenumber k and phase speed C i.e. eik(x-Ct). For 

this form of (x, t) dependence in system (2.3), the u-equation yields u as a linear combination 

of V(y)=iv(y)/k and η(y): 

0 0sin( ) cos( ) .yu V
C C

φ φ α η+
= +       (2.4) 

Substituting this expression for u in the latter two equations of system (2.3) and rearranging 

the terms one gets the following two linear 1st-order ordinary differential equations: 

 0 0sin( ) cos( ) ( ) ,ydV V C
dy C C

φ φ α η+
= + −      (2.5a) 

 ( )22 2
0 0 0 0sin( ) cos( ) sin( ) cos( ) .

k C y yd V
dy C C

φ φ φ φη η
α

− + +
= −    (2.5b) 

Up to this point no assumption was made on the nature of the solutions, e.g. quasi-geostrophy 

near non-divergence, or the smallness of βy compared to f0 (the dimensional parameters f0 

and βy appear as sin(φ0) and cos(φ0)y, respectively in the nondimensional system 2.4-2.5). 

 We should point out an important difference between the present theory and the 

classical theory. For sufficiently small C (e.g. Rossby waves) Eq. (2.5a) implies that η/V~ 

O(f/α)~1 and Eq. (2.4) then yields u/V~O(1/C)>>1. In contrast, in the classical theory the 

ratio u/V is derived from the assumption of near non-divergence so u~dV/dy~lV (where l is 

the meridional wavenumber) i.e. u/V is order 1 instead of order C-1>>1.          

In order to solve system (2.5) one needs to specify appropriate boundary conditions. 

The most natural such conditions are that V(y) should vanish along two values of y, which 

implies that two zonal walls restrict the y-domain. Thus, the differential system (2.5) and the 
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associated boundary conditions constitute an eigenvalue problem for small amplitude waves 

that develop in a channel on the β-plane. The channel is centered at latitude φ0, which defines 

the mean Coriolis frequency sin(φ0) (dimensionally 2Ωsin(φ0)), and the channel walls are 

located at latitudes φwalls= φ0±δφ so the boundary conditions are V(y=±δφ)=0. The Coriolis 

frequency, sin(φ0)+cos(φ0)y (i.e. the nondimensional f(y)), varies linearly with y from a 

minimal value of sin(φ0)-cos(φ0)δφ in the south wall to a maximal value sin(φ0)+cos(φ0)δφ in 

the north wall. While system (2.5) can be formally applied to an infinite y-domain, the 

neglect of higher order terms in the expansion of sin(φ-φ0) and the neglect of the metric terms 

of the spherical Earth can not be justified for large values of y.  

One immediately notices that when C2=α in system (2.5) the coefficient of the η term 

in the V-equation, (2.5a), vanishes so V(y) solves independently of η(y) in Eq. (2.5b). Since 

the solution of the 1st order equation for V(y) is exponential (see the solution for η(y) below) 

the vanishing of V(y) at any point, y, (e.g. one of the channel walls) implies that V(y) has to 

vanish identically (a meridional velocity, V(y), of one sign is not a physically acceptable 

solution). The substitution V(y)=0 in Eq. (2.5b) yields a similar 1st order equation for η(y) 

(the equations differs only by the sign of C) that solves exactly into: 

( ) ( ) 2
0 0

0

sin cos
2 cos( )

0( ) .
y

Cy e
φ φ

φη η
 − + 

=       (2.6)    

Thus, for C=+(gH)½ the corresponding height amplitude, η(y), decreases monotonically with 

y, i.e. the maximal height amplitude of this eastward propagating wave is located on the 

channel's southern wall. In contrast, for C=-(gH)½ the height, η(y), increases monotonically 

with y, i.e. the maximal height amplitude of this eastward propagating wave is located on the 

channel's north wall. These are the, well-known, pair of Kelvin waves whose phase speed is 

that of non-rotating gravity waves, while rotation only determines the variation of the height 

profile with y: η(y). Eqs. (2.4) with V=0 and (2.6) imply that although the Coriolis frequency 
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is y-dependent in both positive and negative modes the zonal velocity, u(y), is in geostrophic 

balance with the slope of the height amplitude, dη/dy: 

 
0 0

( ) .
sin( ) cos( ) ( )

u y
C y y f y y
α α η α ηη

φ φ
∂ ∂

= = − = −
+ ∂ ∂

 

Another degenerate case is the steady state of system (2.3) which is easily studied 

directly from Eq. (2.3) by setting to zero all time derivatives there. However, this case is not 

lost in the transformation to Eq. (2.4, 2.5a, b) and multiplying each of these equations by C 

and setting C=0 yields V=-(α/f)η (with f=f(y)) in all 3 equations. This relation of V and η is 

nothing but the geostrophic relation, v(y)=(α/f(y))dη/dx, for V=iv/k and η=(-i/k)dη/dx. The 

geostrophic relation for u: u(y)=-(α/f(y))dη/dy, results from substituting of Eq. (2.4) in Eq. 

(2.5b) and setting k2C2=0. The degeneracy of C=0 is clear when system (2.5) is written as: 

2

2 2 2

y

f CV V
C k C f f

α

η η
α

 −
    =   − −    

 

 

so the degeneracy is given by the determinant of the matrix on the RHS: 

 
2 2 2

2 2 ,f k CC k
α α

 
− − + 
 

 

which vanishes for C=0, i.e. the 2-dimensional system (2.5) is degenerate in this case.       

For all values of C≠±(gH)½ and C≠0 system (2.5) is non-degenerate (i.e. its V(y) and 

η(y) solutions are coupled) so the two, 1st order equations can be transformed to a single, 

second order equation. Taking the y-derivative of Eq. (2.5a) and employing Eq. (2.5a) to 

eliminate η(y) and Eq. (2.5b) to eliminate dη/dy from the resulting equation yields: 

    ( ) ( )
22 2

0 020
2

sin( ) cos( )cos( ) (1 ) 0; 0.
yd V Ck V V y

dy C
φ φφ δφ

α α

 +
 − + − + = = ± =
 
 

 (2.7)   

A generalization of this equation to continuously stratified oceans for solutions that are not 

necessarily zonally propagating wave is given in Eq. 5.15 of LeBlond and Mysak (1978). 
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Due to its complexity the generalized equation is solved for its vertical modes only while the 

dispersion relation of its horizontal modes is derived only for the case f(y)=f0 (see below).      

In classical linear wave theory the (nondimensional) Coriolis frequency in the last 

term on the Left Hand Side (LHS) of Eq. (2.7), f(y)=sin(φ0)+cos(φ0)y, is replaced by its value 

at the channel's center, f0=sin(φ0) (i.e. by omitting the cos(φ0)y term from f(y)), in which case 

no coefficient in this equation is y-dependent. In this (rather artificial) case, the solutions of 

the constant-coefficient equation satisfying the boundary conditions at y=±δφ are given 

simply by: Vn(y)=V0sin(π(n+1)(y+δφ)/(2δφ)) for n=0, 1, 2,… for an arbitrary V0. Since for 

this solution Vyy=-[(n+1)π/(2δφ)]2V  the phase speeds, C, are given by the roots of the cubic: 

 
( )22 2 2 2

020
2

sincos( ) ( 1) 0.
4( )

n k Ck
C

φφ π
δφ α α
+

+ + + − =     (2.8)  

The dispersion relation for the (slow) Rossby waves is obtained from Eq. (2.8) by assuming 

C-1>>α>>C2, while for the fast, inertia-gravity, (Poincaré) waves the dispersion relation 

obtains by assuming C2>>α>>C-1. The resulting expressions of C(k; α, δφ, φ0) for these two 

waves are precisely the nondimensional counterpart of the dimensional expressions found in 

any of the textbooks on the subject: Pedlosky (1979); Gill (1982) and Cushman-Roisin 

(1994). The dimensional form of Eq. (2.8) is given in Eq. 15.18 LeBlond and Mysak (1978). 

The goal of the present study is to extend the aforementioned classical theory to the 

case where the βy term (=cos(φ0)y) is not neglected compared to f0 (=sin(φ0)). In this case the 

coefficients of Eq. (2.7) are not constant and the solutions, V(y), are not harmonic oscillations 

across the channel. However, a solution of Eq. (2.7) satisfying the boundary conditions at the 

channel walls will still yield the dispersion relation C(k; α, δφ, φ0) but in a more complex 

expression than Eq. (2.8). 

The first step in solving Eq. (2.7) is to transform its independent variable, y, to 

z=y/(δφ) so as to introduce the parameter δφ (half the channel width) that appears in the 
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boundary conditions directly into the differential equation while the boundary conditions are 

applied at z=±1. After some trivial re-arranging Eq. (2.7) and the corresponding boundary 

conditions are written in terms of z as: 

( )( )
2

22
2 1 0;d V E bz V

dz
ε + − + =    V(z=±1)=0,  (2.9)  

where the new parameters are: 

 
( )0

,
sin

αε
φ δφ

=         (2.10a) 

 ( )
( )

0

0

cos
,

sin
b

φ δφ
φ

=         (2.10b) 

 
( )

( ) 2
0 2

2
0

cos
1 .

sin
CE k

C
φα

φ α
  

= − + −     
       (2.10c)  

The parameter ε in Eq. (2.9) (defined in Eq. 2.10a) is the ratio between the (nondimensional) 

radius of deformation, α½/sin(φ0), and the (nondimensional) channel half-width, δφ. Thus, the 

value of ε is unrestricted from a mathematical viewpoint but for typical values of α in the 

ocean and for wide channels (where the β-effect is important) it should be of order 0.05. The 

parameter b as defined in Eq. 2.10b is the maximal relative change in f(y) in the channel: 

δφcos(φ0)/sin(φ0), which is always less than π/4 (for φ0=π/4). A solution of the Schrödinger 

equation (2.9) yields the eigensolution, made up of the eigenfunction V(z) and the associated 

eigenvalue E(ε, b) (defined in Eq. 2.10c but calculated with no reference to the values of C 

and k) from which the dispersion relation, C(k), is determined by inverting Eq. (2.10c) to get 

a cubic C(E) relation (see Eq. 3.1 below). 

The general solution of the differential equation (2.9) can be expressed as a linear 

combination of the Parabolic Cylinder Functions (see Chapter 19 in Abramowitz and Stegun, 

1972). However, the eigenvalues are determined by applying the boundary conditions V=0 to 

a linear combination of these functions, which is as complicated as constructing the solution 
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by numerically integrating the equation. Below, we will solve the linear eigenvalue problem 

for E, Eq. (2.9), analytically for special values of b and numerically for general b and ε values 

and deduce from these solutions the sought dispersion relation C(E). Before doing so we 

draw some qualitative consequences of the unified formulation Eq. (2.9).  

3. Qualitative consequences of the unified formulation  

Since Eq. (2.9) is a Sturm-Liouville problem with p(z)=ε2, r(z)=1 and q(z)=-(1+bz)2 

(see section 1.8 in Bender and Orszag, 1978 for notation and for details of the following brief 

discussion) Sturm's theorem ensures that it has an infinite number of eigensolutions, (En, 

Vn(z), n=0, 1, 2,…). All its eigenvalues, En, are real positive with En→∞ when n→∞ and the 

associated eigenfunctions, Vn(z), have exactly n zeros between z=-1 and z=+1 (so V0(z) has 

one sign throughout -1< z <1). Each eigenvalue, E, yields three C(E) roots via Eq. 2.10c: 

 
( ) ( )

22
03 2

0

sin
cos 0.

Ek C k C
φ

φ
α α

 
− + − =  
 

     (3.1) 

This equation determines C(k; E, φ0, α) (where E=E(ε(δφ, φ0, α), b(δφ,φ0)) > 0 is the 

eigenvalue of Eq. 2.9) and is the counterpart of Eq. (2.8) of the classical, b=0, theory. The 

main difference between Eq. (2.8) and (3.1) is that the former results from the application of 

the boundary conditions to the analytic solution of the differential equation (2.7) when the β 

term is neglected, while the latter results from the general features of solutions of the exact 

eigenvalue problem (2.9) without solving it (as it can only be solved numerically; see Sec. 4).  

The dispersion relation for the slow (i.e. Rossby, Planetary) waves is given by the 

small C root of Eq. (3.1). An approximate value for this small-C root obtains by neglecting 

the k2C3/α term in Eq. (3.1) compared to the k2C term there (recall that C2<<α for Rossby 

waves). Solving for C one gets: 

( )
( )

0
2

02

cos
.

sin
Rossby
n

n

C
k E

φ
φ

α

−
≈

+
       (3.2)   
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From this expression for the phase speed and from the fact that En is an increasing series with 

n, it is clear that the first, n=0, mode has the largest (in absolute value) phase speed.  

The dispersion relation for the fast (Poincaré, inertia-gravity) waves, with C2>α, 

obtains easily from Eq. (3.1) by dropping the cos(φ0) term and dividing the resulting equation 

through by C (≠0). One then gets the quadratic equation expression:  

 ( ) ( )2
2 0

2

sin
.Poincare

n nC E
k
φ

α≈ +       (3.3) 

Since the phase speed of the Poincaré waves is larger than α½ while that of Rossby waves is 

smaller (in absolute value) than α½ (these speeds are separated by the phase speed of the 

westward propagating Kelvin wave, C=-α½) Eqs. (3.2) and (3.3) provide fairly accurate 

approximations to the roots of the cubic equation (3.1).       

In addition to these two wave types there are two degenerate cases of the unified 

equation that were already highlighted in Sec. 2 – the steady, C=0, solution and the Kelvin 

wave solutions, C2=α. Both solutions appear as special cases of Eq. (3.1) when one lets:  

2
2 ( 1) 0.CCk
α

− =         (3.4) 

However, this equation also implies, according to Eq. (3.1) that: 

2
0

0
sin ( ) cos( ),CE φ φ

α
= −        (3.5) 

which can be satisfied for C=0 only on the f-plane (where β=cos(φ0)=0) and for C2=α only by 

the C=-α½ root (the negative Kelvin solution).   

A solution of Eq. (2.9) includes, in addition to the eigenvalues En, their associated 

eigenfunctions, Vn(z), so the eigensolution is independent of C (which is derived from En). 

Therefore, the eigenfunctions Vn(z) are identical in the two waves so for the same meridional 

wavenumber, n, the Vn(y) of Poincaré waves is precisely that of Rossby wave. On the other 

hand, the un(z) and ηn(z) eigenfunctions, are different for the two waves since they are related 
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to Vn(z) by the phase speed, C, which is different for the two waves (see Eqs. 2.4 and 2.5a). 

These qualitative consequences are valid even though no assumption was made on the 

smallness of either the β term or the divergence or the ageosptrophic velocity component. 

4. Eigenvalues of equation (2.9) and the corresponding phase speeds 

Although Eq. (2.9) is a Schrödinger equation, which has been studied extensively in 

theoretical physics it has no known solutions for any ε and b. The reason is that Eq. (2.9) 

applies on the finite interval -1<z<1, where the potential (1+bz)2 has no symmetry (Fig. 1), 

but at z=±1 the boundary condition is V=0 so an infinite potential well exists at z=±1. In the 

special cases b=0 and b=1 the potential is symmetric (Fig. 1) so analytic solutions can be 

found while for 0<b<1 Eq. (2.9) can be easily integrated numerically from z=-1 to z=+1 (no 

singular points exist) so the eigensolution can be found numerically. 

4.1. Analytic solution for b=0        

For b=0 the differential equation (2.9) has constant coefficients so its eigenfunctions 

can be solved exactly and the eigenvalues, En, can be determined from these (purely 

oscillatory) solutions by applying the boundary conditions. The eigensolutions are then: 

( )
( ) ( ) ( ) 2

1 12( ) sin 1 , 1 ,
1 2 2n n

n n
V z z E

n
π πε

π
   + +

= + = +   +    
     n=0,1,2… (4.1)      

so that En(ε, b=0)>1 for all n. Substituting the expression for En in Eq. (3.2) yields the known 

dispersion relation of planetary waves, derived in Rossby (1939): 

 
( )

( )
( )

0 0
2 22 2

0 02 2
2

cos( ) cos( ) .
sin sin( 1)

2

Rossby
n

n

C
nk E k

φ φ
φ φπ

α αδφ

− −
= =

+
+ + +

   (4.2) 

Likewise, Eq. (3.3) yields the dispersion relation for inertia-gravity (Poincaré) waves: 

 ( ) ( ) ( ) ( )
( )

22 2 2
2 0 0 2

22 2 2

sin sin 1
.

2
npoincare

n

E n
C k

k k k
φ φ παα

δφ

 +
 = + = + +
 
 

  (4.3)  
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The frequency associated with this phase speed, k2C2, is the Pythagorean sum of the inertial 

frequency, sin2(φ0), and the gravitational frequency, ακ2, where κ=( k2+(n+1)2π2/(2δφ)2)½ is 

the total (meridional and zonal) wavenumber.                                              

4.2. Power series solutions for b>0 

For b>0 the solution of Eq. (2.9) can be written in the form 
( )21

2( ) ( )
bz
bV z z e εθ

− +

=  

where θ(z) is a solution of the differential boundary value problem: 
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   
   (4.4) 

Since Eq. (4.4) is regular for all ε>0 it has a regular series expansion. The boundary condition 

θ(z=-1)=0 suggests the following series expansion (obtained by a change of variables x=1+z): 

 ( )
1

( ) 1 ,j
j

j
z a zθ

∞

=

= +∑          (4.5) 

where the series starts at j=1 (and not j=0) to ensure that θ(z=-1)=0. Substituting this series 

into Eq. (4.4) and equating like powers of (1+z) yields the recursion relation for {aj}: 
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    (4.6) 

From the series expansion it is clear that when two of its consecutive coefficients vanish the 

infinite series terminates at some j and becomes a polynomial in (1+z) (which is also a 

polynomial in z). The series can be employed for calculating the solution for θ(z) and the 

parameter E can then be varied to find those values at which θ(z=+1)=0, which is as efficient 

computationally as direct integration of the ODE (be it Eq. 4.4 or Eq. 2.9) with a standard 
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high accuracy integration algorithm. However, the series expansion is helpful in finding 

analytic expressions for the eigenvalue problem in the special b=1 case.      

4.3. Analytic solutions for b=1 

Although for oceanographic application on a sphere b has to be smaller than π/4≅0.79 

from a mathematical viewpoint, b=1 case is a valid special case on the β-plane. Since b=1 is 

the only other case (besides b=0) where analytic solution of the eigenvalue problem exists we 

derive this solution so as to substantiates our numerical solution for general b>0. For b=1 the 

parabolic potential in Eq. (2.9), (1+1⋅z)2, is symmetric about z=-1 on the -3≤ z ≤1 interval. 

The change of variables x=(1+z)/2, which maps the -3≤ z ≤1 interval to the -1≤ x ≤1 interval, 

yields a classical symmetric potential about x=0 where the eigenvalues are those of Hermite 

equation (see table 22.6 in Abramowitz and Stegun, 1972) Em=(2m+1)ε. Since we are 

looking for eigenfunctions that vanish at x=0 (i.e. z=-1) only odd eigenfunctions of the 

symmetric (Hermite) equation are also solutions of the eigenvalue problem (2.9). Therefore, 

setting m=2n+1 in the eigenvalues of Hermite equation, Em=(2m+1)ε yields the eigenvalues 

of our problem: En=(4n+3)ε.  

One can show this simple result directly from the power series expansion, Eq. (4.6), 

by noticing that for b=1 all even-indexed coefficients, {a2j+2}, vanish (which reflects the 

symmetry of Eq. 2.9 about z=-1) so the recursion relation for the odd-indexed coefficients is: 
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2 3 2 12

1;
1 3 ;

2 6 6
.
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E Ea

j E
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ε
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=
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= − =

+ −
= ≥

+

     (4.7) 

The eigenvalues, En, are determined by requiring that the infinite series in (4.7) becomes a 

polynomial of degree 2j+1 (j=0, 1, 2, ...) with odd powers of (1+z), which implies for En:  

En=(4n+3)ε,         (4.8) 
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when the mode index n is identified with the polynomial index j. In particular, for n=0: 

 E0=3ε.          (4.9)  

Substituting the solution for the eigenvalues, Eq. (4.8), into the dispersion relations of the two 

waves, Eqs. (3.2)-(3.3), yields the following approximate dispersion relations for b=1: 
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    (4.10) 

and 

 ( ) ( ) ( )( )
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2 0 0
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sin sin 4 3
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C E

k k
φ φ α

α α
δφ

+
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These dispersion relations for b=1 differ markedly from the corresponding relations for b=0, 

Eqs. (4.2)-(4.3): The b=0 eigenvalues, En(ε, 0), are all larger than 1.0 (Eq. 4.1) while those 

for b=1, En(ε, 1), are significantly smaller than 1.0 for sufficiently small ε (Eq. 4.8). What is 

still unclear at this point is whether this decrease of the eigenvalues En(ε, b) with b for fixed ε 

is monotonic with the increase in b form 0 to 1. This question can be answered by solving the 

eigenvalue problem (2.9) numerically for general b-values.  

4.4. Numerical calculation of the eigenvalues for general b 

A standard (shooting) method for solving the eigenvalue problem consists of 

integrating the differential equation from the south boundary at z=-1 (starting with V=0 and, 

say, dV/dz=1 there) to the north boundary at z=1 (we used a 5th order Runge-Kutta algorithm 

with 10-10 tolerance) and varying the values of the parameters so as to satisfy the V(z=+1) 

boundary condition. Except for ε=0 the solution is regular, as can be verified by the 

expansion in subsection 4.2, so the numerical integration yields a very accurate value of 

V(z=+1; E, ε, b) (namely, the value of V(z=+1) for given values of the three parameters). For 

fixed values of ε and b we find (numerically) the roots of the nonlinear equation 0 = F(E) = 

V(z=+1; E, ε, b). The resulting E0(ε, b) contours are shown in Fig. 2, from which it is easy to 
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verify that the numerical solutions along the b=0 and b=1 ordinates are exactly those given 

analytically in Eqs. (4.1) (with n=0) and (4.9), respectively. Two points should be now made 

with regard to the contours. The first point is that for large ε-values the eigenvalue E0 varies 

only slightly with b so E(ε, b) ≈ E(ε, 0) so that C, too, is close to its value in the classical 

theory. We have verified (results not shown) that for ε-values larger than 0.6 (ε=2, 10 and 25) 

the E-contours become even closer to horizontal (i.e. similar values of δE=E(ε,1)-E(ε,0) but 

for much larger values of E) so the near-independence of E on b for large ε is not limited to 

the small range of 0.3<ε<0.6 shown in Fig. 2. The second point is that at low values of ε the 

slopes of the E-contours are all positive, which implies that for small fixed ε an increase in b 

results in a decrease in E. This decrease of E(b) for fixed and small ε is quite drastic: At 

ε=0.05, for example: E(b=1)/E(b=0)≈0.2 and E(b=0.5)/E(b=0)≈0.5! 

A somewhat different view of the En(ε, b) relationship discussed up to this point is 

obtained by plotting En(b; ε), namely by regarding ε as a parameter in the En(b) relationship. 

Figure 3 shows the resulting E0(b) curves for the indicated values of ε in the interval 0≤b≤1. 

The three panels clearly demonstrate that for small values of ε≤0.6 (upper panel) the value of 

E0 decreases monotonically with b throughout the entire 0≤b≤1 interval while for large values 

of ε≥0.75 the value of E0 increases monotonically with b there. However, in the narrow 

intermediate region of ε near 0.7 the variation of E0(b) is not monotonic in the 0≤b≤1 range.  

4.5. Phase speed of Rossby waves 

The results obtained in the preceding subsection for the eigenvalues of Eq. (2.9) have 

to be translated into estimates for the phase speed of Rossby waves in order for them to be of 

any significance in physical oceanography. This requires that the 3 (nondimensional) 

parameters of system (2.9) – E, ε and b – be transformed to the 5 (nondimensional) 

parameters of system (2.7) – C, k, δφ, φ0 and α. To do so, we fix φ0 at some (midlatitude) 

value so according to Eqs. (2.10a, b) δφ=tan(φ0)b and α=(εbtan(φ0)sin(φ0))2. Any pair of 
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values of ε and b determines E0(ε, b) (via Fig. 2), α (via α=(εbtan(φ0)sin(φ0))2) and δφ (via 

δφ=tan(φ0)b) from which the dispersion relations, C(k), are determined by numerically 

finding the three roots of (3.1) (as was explained in the beginning of Sec. 3).  

The two panels in Fig. 4 compare the exact dispersion curves, C(k), of Rossby waves 

for indicated values of α, δφ and φ0 based on the same E0(ε, b) curves of Fig. 2. The point of 

these graphs is that the C values in the new theory can be over 3 times larger than those in 

Rossby's original theory for a wide channel (δφ=0.6~34.4°) centered at 45° (near k=5 in the 

upper panel). Even for a realistic "North Pacific" channel that occupies the range of latitudes 

between 11.5° and 51.5° (i.e. φ0 = 31.5° and δφ=20°; lower panel) the new theory yields a 

phase speed that is twice larger than the b=0 theory. 

4.6. Inertial waves 

A class of waves that exists in rotating fluids but is of lesser relevance to the ocean (or 

the atmosphere) is inertial (also called gyroscopic) waves. These waves exist even when the 

pressure gradient force vanishes identically due to the presence of the Coriolis force. Thus, on 

the f-plane the waves' frequency is the Coriolis frequency, i.e. k2C2=sin2(φ0) in the present 

study's notation. Since the phase speed is determined by the solutions of the 2nd-order 

homogenous differential equation it is impossible for these waves to satisfy two boundary 

conditions, which the reason for designating them as "spurious" in some textbooks (see e.g. 

Sec. 3.9.iii in Pedlosky, 1979).  

Since the pressure gradient force vanishes for g=0=α inertial motion prevails in the 

present theory for α~(εb)2→0 so setting k2C2=sin2(φ0) in Eq. (3.1) and rearranging yields: 

( ) ( )( )2 2 1
0 01 sin cos ,E k Cα φ φ− −= − +      (4.12) 

which implies E≤1 for α~(εb)2<<1. Our analytical solution for b=0 (Eq. 4.1) yields E=1 only 

at ε=0, for which value the only solution of Eq. (2.9) is V=0 while E<1 is not a solution of the 

eigenvalue problem. This explains the "spurious" nature of inertial waves in the traditional, 
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b=0, theory. On the other hand, our numerically calculated contours in Fig. 2 show that E<1 

contours exist in the large (ε<<1, 0<b<1) domain. Thus, inertial waves are solutions of the 

eigenvalue problem for b>0, a range that is completely inaccessible by the classical theory. 

5. Eigenfunctions and the fields' divergence/vorticity  

Although the power series expansion in Eq. (4.5) (with the coefficients given in Eq. 

4.6) also provides a way for expressing the eigenfunction V(z) for given values of E the 

summation of a large number of terms is less efficient (from a numerical viewpoint) than a 

straightforward integration of the ODE in Eq. (2.9). This summation procedure also suffers 

from the convergence of the series at 1+z=2 (z=1) that is not guaranteed with a fixed number 

of terms in the series for all values of E, b and ε.  

In solving the eigenvalue problem Eq. (2.9) numerically we use the fact that the 

differential equation in and its associated boundary conditions are homogeneous so the 

amplitude of the eigenfunctions is undetermined and the normalization of the eigenfunctions 

is arbitrary. The eigenfunction that corresponds to an eigenvalue, En, is found by integrating 

the differential equation (2.9) from z=-1 with V=0 and dV/dz≠0 (the value is arbitrary) to 

z=+1 and the choice of En for E guarantees that V(z=+1) = 0. The accuracy of the 5th order 

Runge-Kutta scheme was determined a-priori to relative accuracy of 10-10. The corresponding 

height and zonal velocity eigenfunctions (i.e. η(z) and u(z)) are then easily obtained by 

substituting the numerically found solution for V(z) and dV(z)/dz into Eqs. (2.5a) and (2.4), 

respectively. One should only replace y in these expressions by zδφ and select the value of C 

that is relevant to the particular wave: planetary (Rossby) or inertia-gravity (Poincaré). As 

was noted above the Poincaré and Rossby waves share the same V(z) eigenfunctions.   

Based on the horizontal shape of the E-contours in Fig. 2 for sufficiently large ε one 

expects the classical, b=0, theory (Eq. 4.1 and Sec. 4.1) to provide an accurate approximation 

for the eigenfunctions for sufficiently small b. For Fixed values of k and φ0 (the results shown 
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below are for k=1.0=φ0) the parameters of the eigenvalue problem: E0, ε and b determine 

uniquely the values of C, α and δφ via the relations 2.10. For large ε (ε=2; b=0.1) where 

E0=10.871, Eq. (4.1) provides an excellent estimate for the eigenvalue: E0=1+π2= 10.870 so 

the relative error in E0 of the b=0 theory is only 10-5 and Crosbby=-0.00478, the same value (to 

3 significant digits) as in the classical theory.  

In accordance with this accurate estimate of the eigenvalue, the solution for the 

eigenfunctions shown in Fig. 5 demonstrates that the associated V(y) eigenfunction (upper 

left panel) is exactly the one predicted by the b=0 theory – a pure sinusoidal variation that 

vanishes at the boundaries. However, even in this case the u(y) and η(y) that vary across the 

channel in a nearly sinusoidal manner are not identical with their counterparts of the classical 

b=0 theory. For Rossby waves (upper right panel) η(y) does not vanish at the boundaries (in 

accordance with Eq. 2.5a) while u(y) is not exactly 90° out of phase relative to V(y) and, as 

anticipated in Sec. 2 its amplitude is O(1/C)~200 larger than the amplitude of V (instead of 

1/δφ~7). Similar changes occur for u(y) and η(y) of the Poincaré wave (lower left panel) 

where a close inspection shows that they are not exactly anti-symmetric with y. The quadratic 

exponent of the Kelvin wave (lower right panel) in the present theory differs from the linear 

exponent of the classical theory only slightly and most of the difference occurs in the center 

of the channel due to the η(y=-δφ)=1 normalization and the exponential decay of η(y) with 

distance from the wall.  

In contrast, for small ε (ε=0.055, b=0.15) where E0=0.862 (Crossby=-0.000103) the b=0 

theory yields (Eq. 4.1) E0=1+0.0552π2/4=1.0075, i.e. the eigenvalue is in significant error. It 

is, thus, not surprising that the structure of the associated eigenfunction, V(y), is also far from 

pure sinusoidal as anticipated by the classical, b=0, theory (upper left panel in Fig. 6). In fact, 

it is easy to show that the term E-(1+bZ)2 in Eq. (2.9) is negative for z > (E½-1)/b and positive 

for -1<z<(E½-1)/b. Therefore, for the present values of E (=0.862) and b (=0.15) V should 
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decay exponentially for z>-0.48 (i.e. y>-0.48*b*tan(1)=-0.11) and oscillate for -1<z <-0.48 

(i.e. -b*tan(1)<y<-0.11) so even near-symmetry about y=0 should not be expected. This 

asymmetry is expected in light of the expansion of Vn(z) in Sec. 4.2 into a symmetric 

Gaussian about 1+bz=0 times a power series in (1+z), neither of which is symmetric about 

z=0. The η(y) and u(y) functions of the Rossby (upper right panel) and Poincaré (lower left 

panel) waves follow from V(y) with the different values of C and α in Eq. (2.4, 2.5a). The 

exponent of the Kelvin wave (lower right panel) undergoes a much more drastic change 

across the channel than in Fig. 5 due to the small radius of deformation (α=0.000117 so 

α½/sin(1)=0.0129) compared to the, relatively, wide channel 2δφ=2btan(1)=0.46. 

In the classical linear wave theory Rossby waves can be derived from the vorticity 

equation and their existence relies upon the β-term so they have no counterpart in nonrotating 

fluids. In order to solve the problem the divergence field is assumed small (but not zero) and 

this wave is therefore considered non-divergent. To compare our theory that derives from the 

SWE without imposing any assumption on the fields' divergence with the classical theory we 

need to calculate the divergence (δ) and vorticity (ζ) associated with the velocity fields that 

obtain in our theory. The definitions of these variables and the relation v=-ikV imply:  

2
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= + = −

= − = −
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      (5.1)  

(f=sin(φ0)+cos(φ0)y; β=cos(φ0)). Upon substituting δ/(ik) into ζ, PV conservation yields: 

 0.ikC v fζ β δ− − =         (5.2) 



 22

The divergence and vorticity curves shown in Fig. 7 and Fig. 8 correspond to the parameters 

and eigensolutions of Fig. 5 and Fig. 6, respectively. It is evident that for both large (Fig. 7) 

and small (Fig. 8) values of α the divergence field of Rossby waves is nearly everywhere 

negligible compared to the vorticity field of these waves. This is a result of the low C value 

of these waves, which according to the continuity equation makes the divergence field small 

to order C, or equivalently Eq. (5.2) implies that  δ/ζ~C. As is evident from Eq. (5.1) δ(y) is 

approximated by Cfv(y)/α + O(C2) for Rossby waves, which supports the numerical results in 

the upper panels of Figures 7 and 8. Since for n=0 the V(y) does not vanish inside the channel 

it is clear that near internal points where the vorticity vanishes (for example when it changes 

sign) the divergence has to be larger than the vorticity so the smallness of δ/ζ is not uniform 

throughout the entire channel. 

For Poincaré waves (the bottom two panels in Figs. 7 and 8), where C is O(1) so δ and ζ 

are of the same order so these waves can not be considered non-rotational (as are gravity 

waves in non-rotating systems). The vorticity and divergence of Kelvin waves, where v(y)=0, 

vary across the channel as u(y) and du/dy, respectively.       

6. Concluding remarks and Summary 

The consistent formulation for all linear waves on the mid-latitude β-plane suggested 

in this study was first suggested in the b=0 case and for Rossby waves only by Lindzen 

(1967). It was also applied to the equatorial β-plane by Erlick and Paldor (2006) with slight 

modifications of the eigenvalue problem Eq. (2.9). The equation on the equator can be 

obtained from Eq. (2.9) by multiplying it through with sin2(φ0) (=0 on the equator) and 

replacing the cos(φ0) factor in E and b by 1.0. As a result the sin(φ0) factors in E, ε and b 

disappear and the potential (1+bz)2 becomes (δz)2 when the equation is divided through by ε2 

(with δ=(δφ)2/α½. The entire problem now rests upon solving the 1-parameter Schrödinger 

eigenvalue equation E*(δ) (where E* is the modified eigenvalue). It turns out that the 
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analysis of the equatorial case is much simpler compared to the present, mid-latitude, case. 

The interested reader is referred to Erlick and Paldor (2006) for more details on the 

application of the Schördinger equation approach to the equatorial β-plane. 

In the mid-latitude GFD theory both Kelvin and Poincaré (i.e. inertia-gravity) waves 

are obtained on the f-plane while Rossby waves are derived on the β-plane. Since the former 

two waves exist even when for constant planetary vorticity, f, they are classified as non-

rotational while Rossby waves, that exist only on the β-plane are classified as non-divergent. 

The present study alters this traditional view by deriving, for the first time, all three types of 

waves in a consistent unified theory based on the same physical set-up and governing 

differential equations. The non-divergence of Rossby waves result from the small C there that 

according to the continuity equation (where the LHS is -ikCη) ∇⋅V (on its RHS) is order C.  

For Kelvin waves, with V(y)=0, are traditionally derived on the f-plane the present 

study shows that they exist also on the β-plane and that their dispersion relation, C=±(gH)½, 

is identical to that on the f-plane. This result can be anticipated since f does not appear in the 

dispersion relation in the f-plane theory. The height eigenfunctions of Kelvin waves, η(y), is 

trivially modified on the β-plane compared to its counterpart on the f-plane with f0 (i.e. 

sin(φ0)) replaced by f0+βy (i.e. sin(φ0)+ cos(φ0)y) in the first order equation (2.5b with V=0). 

This leads to a Gaussian decay of η(y) with distance from the channel walls – Eq. (2.6) – 

whereas on the f-plane this decay is exponential with the distance – η(y)~e-sin(φ
0

)y/C. 

inertia-gravity (Poincaré) waves are also classically developed only on the f-plane and 

the present study both shows that they also exist on the β-plane and that they originate from 

the exact same equations that as Rossby waves. This new unified derivation of inertia-gravity 

waves and planetary (Rossby) waves, where both waves originate from the same solution of 

the linear eigenvalue equation, (2.9), places the rotational and divergence arguments of their 

physical origin as a consequence of their different dispersion relations rather than its cause. In 
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the high frequency inertia-gravity waves where the phase speeds are given by the large C 

roots of Eq. (3.1) the continuity equation yields fast temporal variations of η so the velocity 

divergence has to be large as well. The opposite holds for the low frequency planetary waves 

(where C is the smallest root of Eq. 3.1) where the velocity divergence required to balance 

the temporal changes in η is small i.e. the flow is nearly non-divergent.  

Perhaps the most significant result of the new derivation proposed in this study has to 

do with Rossby waves. Previously, these waves were only derived in perturbation expansion 

procedures in which β=df/dy was treated as a small parameter that is retained in the 

governing equations (whether the SWE or the vorticity equation) while, at the same time, f(y) 

is replaced by f0 (i.e. βy is neglected compared to f0) everywhere else in these equations. 

These two conflicting assumptions are made so as to include the β-effect in the equations but, 

at the same time, leave the coefficients in these equations constant to ensure that they can be 

solved analytically. In the present theory f(y)=f0+βy is assumed everywhere and both Rossby 

waves and inertia-gravity waves from different roots of the same eigenvalue equation. The 

V(y) eigenfunctions in the classical perturbation theory are all pure trigonometric functions 

that vanish on the boundaries while in the new theory these functions have a much more 

complex form (e.g. Hermite functions) that changes with the values of the model parameters. 

The analysis presented in this study focuses on the first eigenvalue, E0, but applies also to the 

higher eigenvalues, i.e. En(ε, b>0) > En(ε, b=0) nearly everywhere. However, since Cn
rossby 

decreases with n (see Eq. 3.2) the effect of letting b>0 is strongest for the n=0 mode. 

A somewhat surprising result that is evident in the contours of Fig. 2 is that the 

classical theory is significantly modified in the present theory even at low values of b. Even 

for b=0.3 (i.e. δφ=0.17 at φ0=π/6) and ε=0.05 (radius of deformation α½/sin(φ0)R of about 55 

km in a channel of half-width δφR of 1100 km, where the β term is important) the eigenvalue 

in the present  theory is about E0=0.7 while the classical theory (Eq. 4.1) has E0>1. For k<< 
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103 (so k2<<sin2(φ0)E/α in Eq. 4.2) the phase speed of Rossby waves is well approximated by 

C~-cos(φ0)α/(sin2(φ0)E) so the relative error in C equals that in E0, i.e. both are about 50%              

Inertial waves, whose frequency of oscillation equals f0, appear in the present theory 

as the regular solutions of the eigenvalue problem in the range α~εb→0 and E ≤ 1. This is in 

contrast to the classical theory where their dispersion relation is that of inertia-gravity waves 

in the limit g=0 but the corresponding eigenfunction can not satisfy the boundary conditions.      

The last point we wish to make regards the application of the present theory's results 

to observation such as the estimate of the westward motion of SSH features by the altimeter 

aboard the Topex/Poseidon satellite. Based on the structure of the η(φ) (upper-right panel of 

Fig. 6) one can argue that the phase speeds of the present theory should be compared with 

those of the classical theory with β evaluated at a latitude closer to the South wall and not at 

the center of the channel since this is where the SSH signal (i.e. η(φ)) is maximal. Even if one 

changes the pertinent latitude for determining β from the channel center (φ0=0.55 Rad.≈31.5° 

in the North Pacific case of Fig. 4) all the way to the South wall (φ0-δφ=0.2 Rad.≈11.5°) the 

corresponding change in β, and with it the increase in phase speed, is only cos(0.2)/cos(0.55) 

= 1.15. This will increase C, as measured by the slope of the dotted curve in the bottom panel 

of Fig. 4, (6.15⋅10-4/20=3.08⋅10-5) by 15% to 3.54⋅10-5, which leaves the value of C in the 

present theory (1.35⋅10-3/20=6.8⋅10-4) about 92% larger than that of the classical theory even 

when the latter is calculated at the South wall.      
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Figure caption 

Fig. 1. The potential in the Schrödinger equation (2.9) – (1+bz)2 – on the -1≤ z ≤1 interval for 

the indicated values of b. For 0<b<1 the potential has no symmetry in this z-interval so that 

analytical solutions of the problem do not exist. 

Fig. 2. The E0(ε, b) contours of the first eigenvalue of the Schrödinger equation (2.9). Along 

the b=0 and b=1 ordinates the numerically calculated values are exactly those anticipated 

analytically in Eqs. (4.1, for n=0) and (4.9), respectively: E0(ε, 0)=1+(επ/2)2; E0(ε, 1)=3ε. 

Fig. 3. The variation of E0(b) in the interval 0≤b≤1 for the indicated (constant) values of ε. The 

upper panel describes the small ε regime, where E0 decreases monotonically with b and the 

lower panel describes the large ε regime, where E0 increases monotonically with b. In the 

narrow intermediate regime near ε=0.7 the slight variation of E0(b) is not monotonic 

throughout the entire 0≤b≤1 interval. 

Fig. 4. The dispersion relation, σ(k)=kC(k), of Rossby waves in the new, b>0 theory and in the 

classical b=0 theory for the indicated values of δφ (=half the channel width divided by R) 

and α (=gH/(2ΩR)2) and φ0. The top panel compares the results of the two theories for a 

wide midlatitude channel while the bottom panel does the same for a realistic channel in the 

North Pacific spanning the latitudinal range of 11.5° – 51.5°.    

Fig. 5. The eigenfunctions in the large ε case: ε=2; b=0.1 and E0=10.871. The V(y) field in the 

upper left tile is common to the Rossby and (positive) Poincaré waves, whose u(y) and η(y) 

are shown in the upper right and lower left panels. The linear exponent of the Kelvin wave 

in the f-plane theory and the quadratic exponent of present theory differ only slightly as a 

result of the identical η(y=-δφ)=1 normalization. The amplitude of the Kelvin wave decays 

with distance from the south wall, y=-δφ, at a rate given by the radius of deformation 

α½/sin(1)=0.31 so that at the north wall (located 2δφ=0.312 from the south wall) the 

amplitude of the Kelvin wave is e-1. 
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Fig. 6. As in Fig. 5 but for the small ε case: ε=0.055; b=0.15 and E0=0.862. These results 

should be compared with the classical, b=0, theory that yield E0 = 1.00187 and purely 

sinusoidal V(y), u(y) and η(y) eigenfunctions. In new theory E0 is less than 1.0 and the 

eigenfunctions are very poor approximated by a simple sinusoidal variation. 

Fig. 7. The divergence (δ/ik) and vorticity (ζ) fields for Rossby wave (upper panel) and 

(positive) Poincaré wave (lower panel) in the large ε case of Fig. 5. The inset in the upper 

panel shows the divergence at higher resolution from which it is clear that δ(y) is 

approximated by V(y). Crossby=-0.00478; Cpoincaré=2.789. 

Fig. 8. The divergence (δ/ik) and vorticity (ζ) fields for Rossby wave (upper panel) and 

(positive) Poincaré wave (lower panel) in the small ε case of Fig. 6. The inset in the upper 

panel shows the divergence at higher resolution from which it is clear that δ(y) is 

approximated by V(y). Crossby=-0.000103; Cpoincaré=0.781.    
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Fig. 1. The potential in the Schrödinger equation (2.9) – (1+bz)2 – on the -1≤ z ≤1 interval 
for the indicated values of b. For 0<b<1 the potential has no symmetry in this z-interval 
so that analytical solutions of the problem do not exist. 
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Fig. 2. The E0(ε, b) contours of the first eigenvalue of the Schrödinger equation (2.9). Along 
the b=0 and b=1 ordinates the numerically calculated values are exactly those anticipated 
analytically in Eqs. (4.1, for n=0) and (4.9), respectively: E0(ε, 0)=1+(επ/2)2; E0(ε, 1)=3ε. 
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Fig. 3. The variation of E0(b) in the interval 0≤b≤1 for the indicated (constant) values of ε. The 
upper panel describes the small ε regime, where E0 decreases monotonically with b and the 
lower panel describes the large ε regime, where E0 increases monotonically with b. In the 
narrow intermediate regime near ε=0.7 the slight variation of E0(b) is not monotonic 
throughout the entire 0≤b≤1 interval. 
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Fig. 4. The dispersion relation, σ(k)=kC(k), of Rossby waves in the new, b>0 theory and 

in the classical b=0 theory for the indicated values of δφ (=half the channel width 
divided by R) and α (=gH/(2ΩR)2) and φ0. The top panel compares the results of the 
two theories for a wide midlatitude channel while the bottom panel does the same for 
a realistic channel in the North Pacific spanning the latitudinal range of 11.5° – 51.5°.     
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Fig 5. The eigenfunctions in the large ε case: ε=2; b=0.1 and E0=10.871. The V(y) field in 

the upper left tile is common to the Rossby and (positive) Poincaré waves, whose u(y) 
and η(y) are shown in the upper right and lower left panels. The linear exponent of 
the Kelvin wave in the f-plane theory and the quadratic exponent of present theory 
differ only slightly as a result of the identical η(y=-δφ)=1 normalization. The 
amplitude of the Kelvin wave decays with distance from the south wall, y=-δφ, at a 
rate given by the radius of deformation α½/sin(1)=0.31 so that at the north wall 
(located 2δφ=0.312 from the south wall) the amplitude of the Kelvin wave is e-1.     
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Fig. 6. As in Fig. 5 but for the small ε case: ε=0.055; b=0.15 and E0=0.862. These results 

should be compared with the classical, b=0, theory that yield E0 = 1.00187 and purely 
sinusoidal V(y), u(y) and η(y) eigenfunctions. In new theory E0 is less than 1.0 and the 
eigenfunctions are very poor approximated by a simple sinusoidal variation.  
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Fig. 7. The divergence (δ/ik) and vorticity (ζ) fields for Rossby wave (upper panel) and 

(positive) Poincaré wave (lower panel) in the large ε case of Fig. 5. The inset in the 
upper panel shows the divergence at higher resolution from which it is clear that δ(y) 
is approximated by V(y). Crossby=-0.00478; Cpoincaré=2.789.    
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Fig. 8. The divergence (δ/ik) and vorticity (ζ) fields for Rossby wave (upper panel) and 

(positive) Poincaré wave (lower panel) in the small ε case of Fig. 6. The inset in the 
upper panel shows the divergence at higher resolution from which it is clear that δ(y) 
is approximated by V(y). Crossby=-0.000103; Cpoincaré=0.781.     


