

1 Compiling Programs. Compile your pro-
grams using the –g option. For example:

gcc -g –o my_prog my_prog.c

2 Starting TotalView. Enter:
totalview my_prog –a arguments

Or, type totalview from the shell to open
the New Program dialog box to:
 Start a new process
 Attach to a running process
 Open a core file

3 Toolbar Buttons Defined

 Go: starts execution.
 Halt: stops execution, but you can restart

from where execution stopped.
 Kill: kills the executing program.
 Restart: does a Delete, then a Go.
 Next: executes all code on the current

line; program counter (PC) will be at the
next line.

 Step: executes line; if the line has a sub-
routine, PC moves into it.

 Out: executes remainder of current rou-
tine; PC is on the line that called this rou-
tine.

 Run To: After selecting a line (click on the
line, not the line number), press this
button to execute all instructions from the
PC until this line.

4 Setting a Breakpoint
 Line: click on a line number.
 Function: select Action Point > At Loca-

tion, and type a function name.
 Function: Use the View > Lookup

Function command, then click on the
line number.

Evaluating TotalView

 Search: Use the Edit > Find command,
then click on the line number.

5 Attaching to Already Running Programs
 Select the File > New Program command,

select Attach to process, click on the pro-
gram’s name, then press the OK button.

 If you don’t see the program, use the ps
command to determine its PID (Program
ID), and then select the PID within the
File > New Program dialog box.

Always attach to a program’s main thread.

6 Stopping at a Line When a Variable
Equals (or Doesn’t Equal) a Value
a Set a breakpoint within the loop.
b. Right click on the breakpoint icon and

select Properties.

c. Select Evaluate in the dialog box.
d. Type a condition; for example:

if (my_variable == 0) $stop

7 Seeing Variable Values
 If it’s a local variable, it’ll be in the Stack

Frame Pane. For a local or global variable,
double-click on it in the Source Pane to see
the value in a Variable Window, or hover
your mouse over it to see the value in a
tooltip.

 If it is not a complex variable (that is, it is not
an array or a structure), right-click on the
variable and select Add to Expression
List.

 For arrays and structures, double-click to
see all values in a Variable Window.

8 Chasing Pointer Values. If a variable’s type
is a pointer, double-click to see the value
being pointed to.

9 Seeing Many Variables at the Same Time.
You can send as many variables as you want
to the Expression List window. The values in
this window update every time your program
stops executing.
You can also send individual structure and
array elements to this window.

10 Seeing Just Some of an Array’s
Elements. The Slice area within the Variable
Window lets you tell TotalView which array

elements it should display. For example, typing
(31:60) in Fortran or [30:59] in C or C++
restricts the display to just 30 elements.
Type a condition within the Filter area to
restrict the display to certain values. For
example, typing > 64000 restricts the dis-
play to array elements with a value greater
than 64,000.
You can combine slices and filters.

11 Graphing Arrays. Seeing array data visually
is an easy way to detect outliers and pat-
terns. Display the data graphically by select-
ing the Tools > Visualize command within a
Variable Window.

12 Casting. You can change the way TotalView
interprets and displays variable data by edit-
ing the Type field of a variable window.
For example, if you have a pointer to an
array, you’ll want to change the datatype
from something like int * to int[100] * to see
array or pointer elements.

13 Changing Variable Values
 In the Expression List and Variable Win-

dows, click a value and edit it.
 In the Stack Frame Pane, double-click a

boldface number, then edit it.

14 STL Variables. TotalView provides auto-
matic STL type transformations to more
clearly display STL data without the underly-
ing structure. This can be toggled in the
preferences as preferred.

15 Searching For Variables. Select View >
Lookup Variable from the Process Window.
The variable displays in a Variable Window.

16 Stopping Execution When a Variable’s
Value Changes. Use the Tools > Create
Watchpoint command.
If the Variable Window is displaying an array or
a structure, you’ll need to dive on an element
so that only one of the variable’s elements is
displayed.

17 Seeing One Element in an Array of Struc-
tures as its own Array
a Select one element.
b. Right-click and select Dive in All.

The window now displays an array contain-
ing just those elements.

18 Seeing a Variable’s Value in Multiple
Threads or Processes. From the Variable
Window menu, select:

 View > Show Across > Thread if the
program is multi-threaded, or

 View > Show Across > Process if the
program is multi-process.

In the Stack Frame or Source Pane, right-
click on the variable and select Across
Processes or Across Threads.

19 CLI Command Entry. Select the Tools >
Command Line command. You can now
type TotalView CLI commands within this
window. Type dhelp for help.

20 Debugging with fork() and Execve()
Programs. In most cases you must link
your program with the libdbfork library
that we provide. See our reference guide
for more information

21 Debugging with ReplayEngine. Replay-
Engine is the TotalView add-on for reverse
debugging in Linux x86 and x86-64. Start
it before a debugging session either from:

 the New Program Dialog Box, by select-
ing Enable ReplayEngine.

 the Process Window, by selecting menu
option Debug > Enable ReplayEngine.

The ReplayEngine buttons on the toolbar
are as follows:

 GoBack: Runs backwards to the nearest
stop event.

 Prev: Moves execution in reverse, over
function calls; PC moves to previous line.

 UnStep: Moves execution in reverse,
through functions; PC moves into func-
tion calls.

 Caller: PC returns to the point before the
function was called.

 Back To: When a line is selected, moves
execution in reverse to the most previous
execution of the line.

 Live: Execution and the PC are returned
to current live execution location.

1 Compiling Programs. Compile your pro-
grams using the –g option. For example:
gcc -g –o my_prog my_prog.c

2 Starting MemoryScape. One way is to
type

memscape my_prog –a arguments
on the command line.
Or, from the shell, type memscape to
open the MemoryScape window.
 Select Add new program.
 Use the Next buttons to move through

the screens to set up and start your
memory debugging session.

3 Checking for Errors. MemoryScape
stops program execution and raises an
event flag before events such as the fol-
lowing occur:
 Freeing memory that is already freed
 Freeing the wrong address
 Freeing an interior pointer
 Misaligning blocks
Click on the event flag for details.

4 Backtraces Defined. When your program
makes a memory request, MemoryScape
records the stack frames that existed
when the action occurred. This list of
frames is called a backtrace.

5 Showing Memory Leaks
 Press the Halt button to stop program

execution.
 Select the Memory Reports tab, then

Leak Detection.
 Within the Leak Detection page, select

either Source or Backtrace Report.
If there are leaks, MemoryScape summarizes
the number of leaks and how much memory
is associated with a backtrace or source line.

Evaluating MemoryScape

6 Displaying the Heap Graphically. Use the
Heap Status Graphical Report to see how
your program is using memory. Clicking on a
block in the top area displays information at
the bottom. Clicking on the Backtrace/
Source tab and selecting a backtrace high-
lights the related blocks.

7 Filtering Information. To reduce the
amount of data displayed, you can filter
information related to a process, library,
source file, class name, line number, etc.

 Select Tools > Filters... Menu Item, or
Manage Filters on the left.

 Select the Add button to create a filter. Cre-
ating a filter is similar to creating a message
filter within an email program.

 After creating the filter, generate a report by
clicking on the button.

8 Tracking Memory Usage. You can track
how much memory your program is using by
generating Memory Usage Reports.

9 Block Painting. Block painting helps you
locate problems caused by accessing allo-
cated memory before you initialize it, or
accessing deallocated memory.

Block painting writes a bit pattern into newly
allocated or deallocated blocks. When you
see this pattern, you know that a problem is
occurring.

Enable block painting by selecting Paint
Memory within the Memory Debugging
Options Page.

10 Tracking Deallocations
 On the Heap Status Graphical Report,

right-click on a selected block and select
Properties.

 Select Hide Backtrace Information, then
expand the block by clicking +.

 At the bottom of the expanded window,
select Notify when deallocated.

11 Tracking Memory Blocks. The Block Prop-
erties Window can contain information
about many memory blocks. After you place
a block in the window, it’s often hard to iden-
tify the allocation. Adding a comment lets
you remember why you’re tracking a block.

12 Comparing Memory Use. You can use the
Export Memory Data link on the left to write
memory information to disk. At a later time,
use the Add Memory Debugging File link on
the left of the Home page to bring the infor-
mation back into MemoryScape. You can
examine this information in exactly the same
way as normal memory information, or by
using the Memory Compare page.

13 Guarding Allocated Memory. Guards
detect when a program writes beyond the
limits of your memory block. To turn them on,
either select Medium from Basic Memory
Debugging Options or select Guard allo-
cated memory from Advanced Memory
Debugging Options.

With guards on, MemoryScape adds a small
segment of memory before and after each
block that you allocate. Here are two ways
to find corrupted memory blocks:

 When the program frees the memory, the
guards are checked for corruption. If a
corrupted guard is found, MemoryScape
stops program execution and raises an
event flag.

 Select Corrupted Memory Report from
the Memory Reports page.

14 Using Red Zones. Red Zones allow Memo-
ryScape to immediately notify you if your
program oversteps the bounds of your allo-
cated block. Turn them on by selecting High
from Basic Memory Debugging Options, or
by selecting Use Red Zones to find memory
access violations from Advanced Memory
Debugging Options.

With Red Zones on, a page of memory is
placed either before or after your allocated
block, and if your program tries to read or
write in this zone, MemoryScape stops pro-
gram execution and raises an event flag.
Click on the event flag to see the event
details.

15 If You Have Trouble Running Your Program
in MemoryScape.
 If you’re using AIX, read Chapter 4 of

“Debugging Memory Problems Using
MemoryScape” at www.roguewave.com/
support/product-documentation.aspx.

 If you’re running a program that spawns
processes, the problem may be that your
environment isn’t sending environment
variables to the process. If this happens,
you’ll need to explicitly add libraries that
we provide. See Chapter 4 of the Memo-
ryScape book.

Using MemoryScape from TotalView

1 Starting MemoryScape from TotalView
 Select the Debug > Enable Memory

Debugging command before you tell
your program to start executing.

If you don’t do this, memory debug-
ging won’t work.

 Let your program run, then stop it after it
allocates some memory.

 Select Debug > Open MemoryScape.

 Select a report, such as Leak Detection
or Heap Graphical Report.

If you make changes or run your program
to another breakpoint, you’ll need to
regenerate the report.

2 Identifying Dangling Pointers. When
memory debugging is enabled and
TotalView displays the value of a variable, it
tells you if memory is allocated or if you’re
looking at a dangling pointer.

3 Seeing Changes (Setting a Baseline)
 In a Process Window, select the Debug

> Heap Baseline > Set Heap Baseline
command.

 Run your program. After stopping exe-
cution, select Debug > Heap Baseline
> Heap Change Summary to see any
memory allocations or leaks that
occurred since you set the baseline.

4 Comparing Memory Use. If you created
a baseline, go to the MemoryScape
window and select your memory report.
You can select the option Relative to
Baseline, which shows you the informa-
tion relative to the baseline you set.

Copyright © 2012 by Rogue Wave Software, Inc.
All rights reserved.

http://www.roguewave.com/

