
The Language, Optimizer,
and Tools Mess

Erik Altman
April 4, 2011

2 CGO 2011-04-04

Outline

• The Mess
• Optimizing the Mess
• Fixing the Mess

Caveat: This presentation contains my opinions.
No endorsement by IBM of the views expressed herein should be inferred.

3 CGO 2011-04-04

Performance Mess: Slow Video Editing
YouTube Video Editor Brings Painfully Limited & Slo w Video Editing To Everyone

Jun 16th, 2010 | By James Lewin

YouTube has added a new cloud-based Video Editor that brings basic video editing everyone.

The YouTube Video Editor lets you do basic clip editing and also lets you swap the audio for a
selection of music tracks.

Unfortunately, it’s painfully limited and slow – to the point it’s
hard to imagine doing much more than trimming videos with it.

• Corel VideoStudio . Reviewed by: CNET Staff on February 27, 2009.

• Except for one drawback, Corel VideoStudio is an outstanding video creator and editor.

• Its main flaw is its lack of speed.
– It installs slowly.
– It loads slowly.
– It works slowly.

Caveat: I have never used these products and
neither endorse nor disparage their use.

4 CGO 2011-04-04

Slow Webpage Load Times

2000 2005 2009
0

1

2

3

4

5

6

7

8

9 How long a person will wait for webpage to
load before navigating away

0 8
0%

5%

10%

15%

20%

25% Users who look at a webpage slide
promotion, by load speed

Immediate � 20%

8 seconds � 1%

52% of online shoppers say quick page loading is important to their site loyalty.

http://www.gamingindustrywire.com/article41142.html

2009 Forester, Nielsen Norma, and Akamai Studies, Technology Review

5

$0 $1,500 $10,800 $21,600
$100,800

$864,000

0.25 0.5 1 2 4 8

Home Page Load Time (sec)

$0
$100

$200
$300

$400
$500

$600
$700

$800
$900

$1,000
T

ho
us

an
ds

R
ev

en
ue

 L
os

t v
s

0.
25

 s
ec

 L
oa

d
T

im
e

Impact of Webpage Load Time

• 1 million visits per month

• 3% of visits � Purchase

• $20 average purchase

• � $600K monthly revenue

http://www.compuware.com/fastcalc

Slow Webpage Load Times

6 CGO 2011-04-04

Optimizing Webpage Load Time

• Faster fiber

• Higher processor frequency?
• Co-locating all data on webpage

– Same datacenter

Issues magnified for smart phones

Reduce memory footprint
• Fewer things on webpage

• Simpler things on webpage

7 CGO 2011-04-04

Kumanan, Mitchell, Sevitsky, Schonberg

Because of software bloat, we need
some amount of software tuning

• 28% of instructions in DaCapo are copies
• 50% of all data copies came from a variety of

toString and append methods.

Xu et al

High Percentage of “Wasted” Memory in Many Workloads
Including large, commercial software

Non-Blue is “wasted” memory

8 CGO 2011-04-04

Prices Since 1970
Million transistors

Million DRAM bits

Million Intel
Instructions / second

Million Flash bits

MIPS Price

DRAM Price
= Constant

DRAM is growing part of
system cost � DRAM
demand growing faster
than MIPS demand
• Webpages
• Java
• Video Workloads
• VirtualizationMemory is part of the mess

9 CGO 2011-04-04

Shekhar Borkar

• Implication: Memory wall coming down
– Increasing ratio of memory / compute

• More scope for code optimization and VLIW
Memory Mess

10 CGO 2011-04-04

• Historically, new languages are used for each major new computing task
– Fortran: HPC
– C: OS, Database
– Java: App Servers
– Scripting: Web and Mashups

• � Hard to optimize across tiers developed at different times
– Database
– App Server
– Web Server

• Frequency slowdown means we have to do more merging
– Can’t just compose separate apps the way we did in the past

• Hard work:

• Starting from scratch attractive
– e.g. Amazon, EBay, Google, Facebook

• But expensive and not always possible
– Even startups need some inter-operability, eg. credit card authentication

New Languages for New Workloads
Memory is not the only performance problem.

– Need insight
– Need tools
– Need languages and programming models

Complexity is part of the mess

11 CGO 2011-04-04

Insight, Tools, and Languages

Philosophy: Gradual Path to Parallelism
– Write multi-threaded code under assumption of 2-way

• Improve (over time) as need more parallelism for performance

Start with tools to give insight

12 CGO 2011-04-04

Optimizing Webpage Load Time

• Faster fiber

• Higher processor frequency?
• Co-locating all data on page

– Same datacenter

• Fewer things on page

• Simpler things on page

How do I know where to start?

13 CGO 2011-04-04

Production Deployment Constraints

• Production Deployment Constraints

• Recompile the application? NO!
• Instrument the application? NON!
• Deploy a fancy monitoring agent? NEIN!
• Analyze the source code? ノーノーノーノー!
• Perturb the running system? yIntagh !

14 CGO 2011-04-04

Clues Available

• Basic operating system utilities (e.g. ps, vmstat)

• Log files
• Java apps, e.g WebSphere

JVM

Client

Caching
 Tier

Directory
Server

Database

Web
Server

signal

javacore dumpApp
Server

15 CGO 2011-04-04

2LKREGMON VM mem segment list lock (0x00324CD0): <unowned>

2LKREGMON MM_CopyScanCacheList::cache lock (0x00324D28): <unowned>

2LKREGMON MM_CopyScanCacheList::cache lock (0x00324D80): <unowned>

2LKREGMON FinalizeListManager lock (0x00324DD8): <unowned>

2LKREGMON Thread public flags mutex lock (0x00324E30): <unowned>

2LKREGMON Thread public flags mutex lock (0x00324E88): <unowned>
2LKREGMON &(slaveData->monitor) lock (0x00324EE0): <unowned>

3LKNOTIFYQ Waiting to be notified:

3LKWAITNOTIFY "Finalizer thread" (0x414B1B00)

2LKREGMON Thread public flags mutex lock (0x00324F38): <unowned>

2LKREGMON Thread public flags mutex lock (0x00325040): <unowned>

2LKREGMON Thread public flags mutex lock (0x00325098): <unowned>

…

ULL

NULL --

0SECTION THREADS subcomponent dump routine

NULL =================================

NULL
1XMCURTHDINFO Current Thread Details

NULL ----------------------

….

3XMTHREADINFO "Uncle Egad's VP Sender 2" (TID:0x47C4EF00, sys_thread_t:0x4C451C60, state:CW, native ID:0x00001160) prio=5

4XESTACKTRACE at java/lang/Object.wait(Native Method)

4XESTACKTRACE at java/lang/Object.wait(Bytecode PC:3)

4XESTACKTRACE at com/lotus/sametime/core/util/connection/Sender.run(Bytecode PC:44)

4XESTACKTRACE at java/lang/Thread.run(Bytecode PC:13)

3XMTHREADINFO "Worker-27" (TID:0x47C4F300, sys_thread_t:0x4C452108, state:CW, native ID:0x000013E8) prio=5

4XESTACKTRACE at java/lang/Object.wait(Native Method)

4XESTACKTRACE at java/lang/Object.wait(Bytecode PC:3)

4XESTACKTRACE at org/eclipse/core/internal/jobs/WorkerPool.sleep(Bytecode PC:52)
4XESTACKTRACE at org/eclipse/core/internal/jobs/WorkerPool.startJob(Bytecode PC:77)

4XESTACKTRACE at org/eclipse/core/internal/jobs/Worker.run(Bytecode PC:223)

NULL --

0SECTION CLASSES subcomponent dump routine

NULL =================================

1CLTEXTCLLOS Classloader summaries

1CLTEXTCLLSS 12345678: 1=primordial,2=extension,3=shareable,4=middleware,5=system,6=trusted,7=application,8=delegating

2CLTEXTCLLOADER p---st-- Loader *System*(0x004768A8)

3CLNMBRLOADEDLIB Number of loaded libraries 4

3CLNMBRLOADEDCL Number of loaded classes 1374

2CLTEXTCLLOADER -x--st-- Loader com/ibm/oti/vm/URLExtensionClassLoader(0x00479428), Parent *none*(0x00000000)

3CLNMBRLOADEDLIB Number of loaded libraries 0
3CLNMBRLOADEDCL Number of loaded classes 50

2CLTEXTCLLOADER -----ta- Loader com/ibm/oti/vm/URLAppClassLoader(0x004769C8), Parent com/ibm/oti/vm/URLExtensionClassLoader

Sample Javacore
Fragment

16 CGO 2011-04-04

Clues � WAIT Tool
• WAIT uses expert rules to interpret data

• WAIT focuses on primary bottlenecks
– Gives high-level, whole-system,

summary of performance inhibitors

• WAIT is zero install
– Leverages built-in data collectors

– Reports results in a browser

• WAIT is non-disruptive
– No special flags, no restart

– Use in any customer or development location

• WAIT is low-overhead
– Uses only infrequent samples of an already-running app

• WAIT does not capture sensitive user data
– No source code, personal ID numbers, credit card numbers

• WAIT uses centralized knowledge base
– Allows rules and knowledge base to grow over time

Customer A Customer B

17 CGO 2011-04-04

Example WAIT Report

What is the
CPU doing?

What Java work
is running?

What Java work
cannot run?

18 CGO 2011-04-04

WAIT Report: What is the main cause of delay?

Drill down by clicking on legend item

Where are those delays
coming from in the code?

19 CGO 2011-04-04

Physical and Logical Stacks

WAIT: Logical view of layers and frameworks

20 CGO 2011-04-04

Example Report: Lock Contention

21 CGO 2011-04-04

Filesystem Bottleneck

22 CGO 2011-04-04

Deadlock

23 CGO 2011-04-04

Memory Analysis

24 CGO 2011-04-04

Tooling in Software Lifecycle

Build
Use latest compiler
Turn on optimization
Enable parallelization*

Analyze
Static code analysis
Find “hot spots”
Identify performance bottlenecks
Identify scalability bottlenecks*

Code & Tune
Refine compiler options/directives
Use optimized libraries
Recode part of application
Introduce/increase parallelism*

Test & Debug
Run Application
Check correctness
Check concurrency issues*

Monitor
Measure performance
Collect execution stats
Validate performance gains
Gather stats on scalability*

* For parallel code

Entry Point

Entry PointExit Point

Performance
Tuning

WAIT applies everywhere in cycle.
– Key: Lightweight and simple

25 CGO 2011-04-04

Tuning ≠ Rewrite from Scratch

• Two in-depth case-studies with WAIT tool �
– 5x performance gain
– 60x performance gain

• Both cases:
– 30 sets of code changes
– Each change: 10 lines of code

26 CGO 2011-04-04

WAIT Summary
• WAIT enables high-level, end-to-end optimization of the mess

– Focus on identifying primary bottleneck
– Usable with any Java application

• Large scale or small
– Similar techniques can be applied to C/C++ and other “native” code
– Browser interface, agentless, simple to use � Very low barrier to entry

• Follows philosophy:
– Gradually increase parallelism via tuning at each generation

• Lots of opportunities for CGO community:
– Automate the manual optimizations done using WAIT data, e.g.

• Better data structures for concurrency
• Use of concurrent libraries
• Optimize across tiers, e.g. app server and database

– Caveat: Handle with care. Wholesale static changes often degrade performance.

Clean the mess

27 CGO 2011-04-04

Limitations of General Purpose CPU

• Appliance : Instrument, apparatus, or device for a particular purpose or use.
• Claim: To succeed, general purpose products must implement all functions –

including price – nearly as well as standalone appliances.

Starting with System 360, we have been lucky to have a general purpose
model in computing.
• But that era may be ending.
• Appliance era beginning:

Desktop Laptop Tablet Cellphone

Storage

CPU GPU FPGA

Gamebox

RouterRack

What is the new ISA?
• To manage all these things in a

common, portable way.

Key Drivers:
• Need more performance
• Need more performance per watt

� General purpose is the anomaly

28 CGO 2011-04-04

Appliances vs General Purpose
Cooking Appliances
• Stove
• Microwave
• Oven
• Toasters

� General purpose failure

Claim: To succeed, general purpose products must implement all functions –
including price – nearly as well as standalone appliances.

Knives
• Appliance:

– Butter knife
– Table knife
– Carving knife
– Bread knife
– Paring knife

• General Purpose:
– Swiss army knife
– Amazing Ginsu knife

� General purpose failure

Multi-function Vehicles:
• Car-Boat, Car-Plane, Car-Chair

� General purpose failure

Wristwatch:
• Simple Analog �

• Analog with Date �
• Multi-function Digital �

• Multi-function Digital with Calculator

� General purpose is the anomaly

� General purpose failure

29 CGO 2011-04-04

Can we afford the appliance software?

• App store has 400,000 apps in 3 years.

• Software grows exponentially
– Slower than Moore’s Law.
– But doubling every 0.6 - 6 years.
– � Equivalent of rewriting all current software over 0.6 - 6 years.

Desktop Laptop Tablet Cellphone

Storage

CPU GPU FPGA

Gamebox

RouterRack We have to, until there is a new ISA
• Economic / productivity gains from

new ISA � There will be attempts.

• Even in this talk ☺

Yes!

30 CGO 2011-04-04

Lines of Code: Windows

1000000

10000000

100000000

7/15/92 1/31/93 8/19/93 3/7/94 9/23/94 4/11/95 10/28/95 5/15/96 12/1/96 6/19/97

Doubling time 866 daysDoubling time 866 days

Growth rate 33.9% per yearGrowth rate 33.9% per year

31 CGO 2011-04-04

Lines of Code: Linux

2 – 3 year doubling

32 CGO 2011-04-04

Lines of Code: BSD

6 year doubling

33 CGO 2011-04-04

Lines of Code: Browser

1000

10000

100000

1/1/95 4/11/95 7/20/95 10/28/95 2/5/96 5/15/96 8/23/96 12/1/96 3/11/97 6/19/97

Doubling time 216 daysDoubling time 216 days

Growth rate 221% per yearGrowth rate 221% per year

34 CGO 2011-04-04

Lines of Code: NASA

10000

100

1000

10

1

1960 95908580757065

GEMINI 3

GEMINI 12

APOLLO 7
APOLLO 17

SKYLAB 2

MISSION CONTROL: GROUND STATION

MERCURY 3
F-111

P-3A

AWACS

APOLLO 7

P-3A

B-1A

B-1BSHUTTLE/OFT

SHUTTLE/OPERATIONAL

F-15E
B-2

GEMINI 2

APOLLO 11
S-3A

SHUTTLE/OFT MANNED SYSTEMS

C-5A

F-111

F-15

F-16 C/D

A-7D/E

GEMINI 3

PERSHING 1

TITAN

E-2C

SKYLAB 2
TITAN 34D (IUS)

PERSHING 11(ED)

VIKING

C-17
PROJECTED

GALILEO

PERSHING 11(AD)

MISSILE

TRIDENT C4

VOYAGERTITAN IIIC

PERSHING 1A
POSEIDON C3

SURVEYOR
MARINER
VENUS MERCURY

UNMANNED

UNMANNED INTERPLANETARY

MANNED A/C

MANNED SPACE

MANNED SPACE CONTROL

UNMANNED SYSTEMS

ATF
PROJECTED

Source: USAF Software Technology Support Center

P
ro

gr
am

 S
iz

e
(K

S
LO

C
)

Year

2 – 3 year doubling

35 CGO 2011-04-04

FPGA GPU Intel
0

10

20

30

40

50

B
ill

io
ns

 o
f D

ol
la

rs

Market Size

Computing Devices

Why has CPU dominated?
• Broad applicability
• Easy to program

Why are FPGA and GPU gaining?
• Better performance
• Better performance / watt
• Programmability improving

What is the new ISA?
• To manage all computing devices in

a common, portable way.

Xilinx Revenue by End Market

36 CGO 2011-04-04

Language for Task

• We tend to develop new languages for each major
new computing task:
– Fortran: HPC

– C: OS, Database
– Java: App Servers
– Scripting: Web and Mashups

– Lime / Liquid Metal : FPGAs, GPUs, and CPUs
• The new ISA?

Fixing the mess

37 CGO 2011-04-04

Liquid Metal Goal and Vision Summary

GPU graphics processor

FPGA field programmable gate array

ASIC application specific processor

Problems
• Impractical growth of power and cooling
• Explosion of diverse architectures

with massive parallelism
• Absence of a uniform abstraction
• Large productivity gap

Liquid Metal Approach:
• Lime : A unified language for

programming diverse architectures
• Run in a standard JVM, or compile to GPU and FPGA
• Automatically partition programs and execute each part where it runs best.
• Over time, make program placement more adaptive and dynamic

– Until we can “JIT the hardware”
• Eclipse-based development environment

– Emphasis: Programmer experience in the face of architectural diversity – the new ISA?
• Standard libraries analogous to Java Development Kit
• Demos: http://www.research.ibm.com/liquidmetal

38 CGO 2011-04-04

Java

C/C++

…

CUDA

OpenCL

CG

…

Verilog

VHDL

SystemC

Library

(API)

Library

(API)

binary binary bitfile stub stub

flexible hot easy custom cool difficult

How do we Program a
Heterogeneous Architecture?

GPU XML

ASIC
FPGACPU Other

ASIC

39 CGO 2011-04-04

Java

C/C++

…

CUDA

OpenCL

CG

…

Verilog

VHDL

SystemC

Library

(API)

Library

(API)

How do we Program a Heterogeneous Architecture?

Lime Program

(one common programming language)

Lime Program

(one common programming language)

flexible hot easy custom cool difficult

binary binary bitfile stub stub

GPU XML

ASIC
FPGACPU Other

ASIC

40 CGO 2011-04-04

Lime Program

(one common programming language)

Lime Program

(one common programming language)

Compiling Lime to Heterogeneous System

preprocess and partition based on program structure only

binary binary bitfile stub stub

GPU XML

ASIC
FPGACPU Other

ASIC

41 CGO 2011-04-04

single-source program

(one common programming language)

single-source program

(one common programming language)

Compiling Lime to a Heterogeneous System
preprocess and partition

postprocess and link

“fat” executable

GPU XML

ASIC
FPGACPU Other

ASIC

Many
to
many

42 CGO 2011-04-04

Dynamic Artifact Selection and Replacement

Accelerator (e.g., GPU)

Configurable

Fabric or FPGA

Software

e.g., JVM on x86

Lime

Application

• Select among multiple (functionally equivalent) artifacts
– Depending on runtime scenario and conditions

43 CGO 2011-04-04

Queue Append
Verilog Lime

end else if (n_state == terminate_con_state) begin
free_ll_mem_en_A <= 1'b1 ;
free_ll_mem_BE_A <= 2'b01 ;
free_ll_mem_adr_A <= con_free_tail ;
free_ll_mem_wr_data_A <= {8'h00, 2'b00, current_connection_ID_int} ;

free_ll_mem_en_B <= 1'b1 ;
free_ll_mem_BE_B <= 2'b11 ;
free_ll_mem_adr_B <= current_connection_ID_int ;
free_ll_mem_wr_data_B <= {2'b00, con_free_tail, 2'b00, current_connection_ID_int} ;

…

always @(posedge clk or posedge reset) begin
if (reset)

con_free_tail <= 6'd63 ;

else if (p_state_r == terminate_con_state)
con_free_tail <= current_connection_ID_int ;

end

44 CGO 2011-04-04

Liquid Metal Perspective
• Current situation reminiscent of CISC vs RISC

– Hardware primitives too complex for compiler to target from high level language
• � Low-level languages like VHDL, Verilog, CUDA
• Less productive: More lines of code for same function

• Could have library blocks of “RISC” from which efficient compilation performed.
– Problem: Software variations and fine grain interactions

• Blocks don’t do the function I want
• Can’t compose blocks to efficiently perform function I want

– � Difficult for this approach to succeed on a broad scale

• Semantic gap is hard to bridge
– Key: Identify properties to help bridge the gap, e.g.

• Streaming
• Value types

• Lots of opportunities for CGO community. Optimize:
– Loop transformations
– Minimize hardware logic levels per FPGA clock cycle
– Minimize communication between CPU, GPU, FPGA
– Determine type of computing device best suited for each code fragment

• Localness
• Bounded arrays

45 CGO 2011-04-04

Combining Liquid Metal and WAIT

Identify workloads that may benefit from acceleration:

• SSDs, FPGAs, GPUs, Infiniband

Need auto-characterization

46 CGO 2011-04-04

Incremental Refinements over Time

WAIT

Lime

Java

WAIT

Lime

WAIT

Lime

Time

Performance

(Log Scale)

Philosophy: Gradual Path to Parallelism

Software enablement to maintain Moore’s Law (for performance)

47 CGO 2011-04-04

Making All of This Come to Fruition

• More uncertainty about future computing platforms than
has been case during most of last 50 years.

�

1. Important to be flexible.
2. Important to have access to lots of data.

– In new era of efficiency and heterogeneity, systems are much
less well understood.

– Understanding and optimization will happen much faster with
Cloud / SaaS (Software as a Service)

48 CGO 2011-04-04

Thread Level Parallelism in
Enterprise Workloads

Important to have access to lots of data.

0.0 20. 40. 60. 80.

Percentage of 2514 Workloads

0.01

0.1

1

10

100

1000

10000

N
um

be
r

of
 J

av
a

T
hr

ea
ds

Blocked Runnable

Thread Level Parallelism in Enterprise IBM Workload sStats from WAIT Cloud / SaaS Approach

Lots of opportunity for
additional parallelism

100.

49 CGO 2011-04-04

Benefits to Users of Cloud Tools
• More efficient / Better performance

• Lower cost

• Faster performance improvement over time

• Easier management of complex systems

• Better customer service:
– Agent can see customer problem.
– Developers can quickly see problems hitting many customers.

$€ ¥ £

50 CGO 2011-04-04

Conclusion

• Unless clock frequency starts improving, the need for new approaches is
independent of Moore’s Law.

– Need to take advantage of increasing amounts of stuff.
– Need to take advantage of increasingly heterogeneous stuff.

• Cellphones to Servers
– Need a new ISA.

• Optimize: Lots of opportunities for CGO community:
– Loop transformations
– Minimize hardware logic levels per FPGA clock cycle
– Minimize communication between CPU, GPU, FPGA
– Determine type of computing device best suited for each code fragment
– Automate the manual optimizations done using WAIT data

• A gradual path to parallelism can be used for many technology generations.
– Start with multi-threaded code under assumption of 2-way.
– Tune (over time) as need more parallelism.
– Cloud-based tooling.

Fix the mess

Clean the mess

51 CGO 2011-04-04

The End

