
Generalised Species of Structures:
Cartesian Closed and Differential Structure

(Preliminary Notes)

Marcelo Fiore∗

Computer Laboratory
University of Cambridge

May and December 2003

Abstract

We generalise Joyal’s notion of species of struc-
tures and develop their combinatorial calculus. In
particular, we provide operations for their composi-
tion, addition, multiplication, pairing and projection,
abstraction and evaluation, and differentiation; devel-
oping both the cartesian closed and linear structures
of species.

Contents

1. Categorical background 2

2. The calculus of generalised species 3
2.1. The bicategory of species 3
2.2. Addition and multiplication 4
2.3. Linear structure 5
2.4. Differential structure 5
2.5. Cartesian closed structure 6
2.6. Graph models of the lambda calculus . 7
2.7. Higher-order differential structure . . . 7
2.8. Operators on generalised Fock space . 8

∗Research supported by an EPSRC Advanced Research Fel-
lowship.

Species of structures. Joyal species of structures [9]
are an abstract categorical formalisation of a type of
unlabelled combinatorial structures.

In its basic form, species are defined as functors
B // Set where B is the category of finite sets and
bijections, and Set is the category of sets and func-
tions. Such a species P is to be thought of as pro-
viding, for each finite set of tokens T , the set P(T) of
P-structures (i.e., structures of type P) built form to-
kens in T together with, for each bijective renaming
σ : T ���� // T � between sets of tokens, a bijective cor-
respondence () · � σ : P(T �) �� // P(T �) between the
respective sets of P-structures subject to the laws

() · � id � = id ���	��
 : P(T) // P(T)

and
(
() · � σ �) · � σ � = () · � (σ � ◦σ �) : P(T �) // P(T �)

for all T ∈ B and T ��
���� // T �
���� // T � in B.

An important aspect of the theory of species is that
it provides a calculus for the structural manipulation
of combinatorial structures. Indeed, Joyal provided a
calculus of species with operations such as composi-
tion, addition, multiplication, derivation, etc. subject
to the usual algebraic laws. Furthermore, he showed
that the calculus is a powerful tool for extracting com-
binatorial information by associating generating series
to species in such a way that the combinatorial opera-
tions on species correspond to the usual respective op-
erations on power series. (See [3] for a full treatment.)

1

Outline. We generalise the notion of species and in-
vestigate the resulting calculus.

The basis of the generalisation is the observation
that the category of finite sets and bijections B is equiv-
alent to the free symmetric strict monoidal category
on one generator !1 (i.e., the category of finite car-
dinals and bijections). In this view, a species is a
functor !1 // Set and we are naturally led to con-
sider A-species, for A a small category, as functors
!A // Set. More generally, for small categories
A and B, we introduce (A,B)-species as profunctors
!A � // B (i.e., functors !A // B̂), where !A is the
free symmetric strict monoidal completion of A (and
B̂ is the functor category [Bo,Set] of B-variable sets).
Such a species P provides, for each !A-object of to-
kens A (given by a finite sequence of A-objects), the
B-variable set P(A) of P-structures over A. This no-
tion of species encompasses many of the combinatorial
species considered in the literature, including permu-
tationals [9, 2] and partitionals [16]; see also [15].

From this standpoint, the calculus of generalised
species is developed within the framework of gener-
alised logic [11]. In particular, we provide operations
for the composition, addition, multiplication, pairing
and projection, abstraction and evaluation, and differ-
entiation of species. All these operations are shown to
satisfy the expected algebraic laws.

The treatment of differentiation necessarily calls for
the consideration of both linear and closed structure, as
differentiation operators are maps

hom [X, Y] // hom
[
X, lin [X, Y]

]

where hom and lin respectively represent the full and
linear function spaces. This development in the con-
text of generalised species is also included.

1. Categorical background

We recall the basic notions needed throughout the
paper.

Monoidal categories. A monoidal category is a tu-
ple (C,⊗, I, a, l, r) where C is a category, ⊗
is a bifunctor C × C // C, I is an object of C,
and a, l, r are natural isomorphisms with components
a ��� ��� � : (A ⊗ B) ⊗ C // A ⊗ (B ⊗ C), l � :

I ⊗ A // A, r � : A ⊗ I // A subject to coher-
ence axioms [10]. We have a strict monoidal category

when these isomorphisms are equalities. A monoidal
functor F : (C,⊗, I, a, l, r) // (C ′,⊗ ′, I ′, a ′, l ′, r ′)
is a functor F : C // C ′ equipped with a morphism
I // F(I) and a natural transformation with compo-
nents F(A)⊗ ′ F(B) // F(A⊗B) subject to coherence
axioms [7, 11]. We have a strict monoidal functor if
these morphisms are identities.

A symmetric (strict) monoidal category is a (strict)
monoidal category equipped with a natural isomor-
phism c, called the symmetry, with components c ��� � :

A ⊗ B // B ⊗ A satisfying further coherence ax-
ioms [10]. A symmetric (strict) monoidal functor
between symmetric (strict) monoidal categories is a
(strict) monoidal functor that satisfies a further coher-
ence axiom associated to the symmetries [7, 11].

We write Cat for the category of small cate-
gories and functors, and SMCat for the category
of small symmetric strict monoidal categories and
strict monoidal functors. The forgetful functor
SMCat // Cat : (C,⊗, I) � // C has a left adjoint
!() : Cat // SMCat that maps a small category into
its symmetric strict monoidal completion. An explicit
description of !C is given by the category with objects
consisting of finite sequences 〈[c �]〉 ������� � (n ∈ N) of ob-
jects of C with !C

[
〈[c �]〉 ����� � ! , 〈[d "]〉 "#��� � $] = ∅ iff k 6= `

and morphisms 〈[c �]〉 ������� � // 〈[c ′�]〉 ������� � given by pairs(
σ, 〈[f �]〉 ���%��� �) consisting of a permutation σ ∈ S �

and a sequence of maps 〈[f � : c � // c ′& �]〉 ������� � in C.
(Composition is essentially given pointwise modulo
permutation

(
σ ′, 〈[f ′�]〉 ���%��� �)◦(σ, 〈[f �]〉 ����� � �) =

(
σ ′◦σ, 〈[f ′& � ◦ f �]〉 ���%��� �)

and identities are given pointwise.) The symmetric
strict monoidal structure of !C is given by concate-
nation with unit the empty sequence and the obvious
symmetry.

The symmetric strict monoidal completion comes
equipped with canonical natural coherent equivalences
as follows

1
'� // !0

() � // 〈[]〉

!C � × !C (⊕
'

// !(C � + C ()
(C � , C () � // !q � (C �)⊗ !q ((C ()

2

Presheaves. For a small category C, we write Ĉ for
the functor category [Co,Set] of presheaves on C and
natural transformations between them, and let y) de-
note the Yoneda embedding C � � // Ĉ : c � // C [, c].

For (C,⊗, I) a (symmetric) monoidal category, the
presheaf category Ĉ acquires a (symmetric) monoidal
structure via Day’s tensor product construction [5, 8]
given, for X * , X + ∈ Ĉ, as

X * ⊗̂X + =
∫ ,.-0/ ,21 ∈)

X * (c *)× X + (c +)× y) (c * ⊗ c +)
where

∫
is the coend construction whose definition and

basic properties can be found in [12, Chapter X]. The
unit for Day’s tensor product ⊗̂ is y) (I).

For small categories A and B, an (A,B)-profunctor,
indicated as A � // B, is a functor A // B̂. Small cat-
egories, profunctors, and natural transformations be-
tween them form a bicategory [1]. The profunctor
composition V ◦ U : A � // C of U : A � // B and
V : B � // C is given by

(V ◦ U)(a)(c) =
∫ 3 ∈ 4

V(b)(c)×U(a)(b) (1)

with identities y) : C � // C.
For more on the bicategory of profunctors see [1,

11, 4].

2. The calculus of generalised species

For small categories A and B, an (A,B)-species of
structures is a profunctor !A � // B. In particular,
(A, 1)-species are referred to as A-species. The no-
tation P : A 5 // B is used to indicate that P is an
(A,B)-species.

Structures in P(A)(b), for a species P : A 5 // B,
are pictorially represented as follows

P

A

b

Concrete examples of combinatorial species
abound in the literature.

• Joyal’s k-sorted species [9, 3] are
(∑ 67�8 * 1

)
-

species.

• Permutationals [9, 2] are CP-species for CP the
groupoid of finite cyclic permutations.

• Partitionals [16] are B∗-species for B∗ the groupoid
of non-empty finite sets.

Further examples that fit into generalised species are
coloured species and permutationals [14], and species
on graphs and digraphs [13].

Basic general examples of species follow.

• Presheaves on C are essentially species 0 5 // C,
whilst presheaves on !C also correspond to species
C 5 // 1.

• The Yoneda embedding y 5) is a C 5 // !C species.

• The species ε) : !C 5 // C is defined as ε) (C) =

!!C
[
〈[〈[]〉]〉, C

]
.

• The species S) : C 5 // C is defined as

S) (C) =
∑
, ∈ 9

y) (c) (2)

• The species E : / 4 : A 5 // B is defined by E : / 4 (A) =

1.

2.1. The bicategory of species

We introduce the bicategory ES (Espèces de Struc-
tures) of generalised species of structures.

Composition. For species P : A 5 // B and
Q : B 5 // C, the composition Q ◦ P : A 5 // C is de-
fined as

(Q ◦ P)(A)(c) =
∫ ; ∈ 5 4

Q(B)(c)× P#(A)(B)

where

P#(A)(B)

=
∫ <>= ∈ 5 :@? 3 ∈ ;BA (∏ 3 ∈ ; P(A 3)(b))× !A

[⊗ 3 ∈ ; A 3 , A]

One can visualise the structures in (Q ◦ P)(A)(c) as
follows

3

P

.
A C

· · · · · ·

Q

Q ◦ P
c

A

b

We give explicit descriptions of sample pre- and
post-compositions with a species P : A D // B.

• For b ∈ B, the composite species A
E
D // B

y F G 〈H C H〉D // 1
is isomorphic to the species P C : A D // 1 defined as

P C (A)() = P(A)(b) (3)

• For X ∈ Â, the composite 0
I
D // A

E
D // B, is as

follows

(P ◦ X)〈[]〉(b) ∼=
∫ J ∈ D K

P(A)(b) × Â
[
S K A,X〈[]〉]

where S K : !A // Â is as in (2).

Identities. The identity species I L : C D // C is defined
as

I L (C)(c) = !C
[
〈[c]〉, C

]

〈[•]〉

c

C

I

For P : A D // B, Q : B D // C, and R : C D // D,
we have canonical natural coherent isomorphisms as
follow

(R ◦Q) ◦ P ∼= R ◦ (Q ◦ P)
P ◦ I K ∼= P ∼= I M ◦ P

establishing the associativity of composition and the
unit laws of identities.

2.2. Addition and multiplication

Each hom-category ES [A,B] acquires a commuta-
tive rig (= ring without negatives) structure given by
the addition and multiplication of species.

Addition. For P,Q : A D // B, the addition P + Q :

A D // B is defined by

(P +Q)(A)(b) = P(A)(b) +Q(A)(b)

A

b b

A

Q

P +Q

P

P +Q

More generally, forX N ∈ B̂ and P N : A D // B (i ∈ I),
the linear combination

∑ N ∈ O X N P N : A D // B is defined
by
(∑ N ∈ O X N P N

)
(A)(b) =

∑ N ∈ O X N (b)× P N (A)(b)

Addition together with the species 0 : A D // B de-
fined as

0(A) = 0

satisfy commutative monoid laws:

(P +Q) + R ∼= P + (Q + R)

P + 0 ∼= P P +Q ∼= Q + P

for P,Q, R : A D // B. Further, for P,Q : A D // B and
R : C D // A, we have

(P +Q) ◦ R ∼= (P ◦ R) + (Q ◦ R)

Multiplication. For P,Q : A D // B, the multiplication
P ·Q : A D // B is defined by

(P ·Q)(A)(b)

=

∫ J�P.Q JSR ∈ D K
P(A T)(b)×Q(A U)(b)× !A [A T ⊗A U , A]

(4)

4

V W

X

Y[Z Y]\

V · W

Y

That is, using (3),

(P ·Q) ^ = P ^ ⊗̂Q ^
for b ∈ B.

Multiplication together with the species 1 : A _ // B
defined by

1(A)(b) = !A
[
〈[]〉, A

]

satisfy commutative monoid and distributive laws:

(P ·Q) · R ∼= P · (Q · R)
P · 1 ∼= P P ·Q ∼= Q · P

P · 0 ∼= 0 P · (Q + R) ∼= (P ·Q) + (P · R)

for P,Q, R : A _ // B. Further, for P,Q : A _ // B and
R : C _ // A, we have

(P ·Q) ◦ R ∼= (P ◦ R) · (Q ◦ R)

2.3. Linear structure

We refer to a C _ // Ao × B species as a
(C-parameterised) A×B-matrix. The transpose of an
A×B-matrix U : C _ // Ao×B is the Bo×Ao-matrix
Ut : C _ // (Bo)o × Ao defined as

Ut(C)(b, a) = U(C)(a, b)

More generally, for a species P : C _ //
∏ ` a�b�c

A
a

we
define the transposition P d : C _ //

∏̀a�b�c
A d

a
accord-

ing to the permutation σ ∈ S ` by

P d (C)(a
c
, . . . , a `) = P(C)(a d

c
, . . . , a d `)

Matrix multiplication. The matrix multiplication (or
linear composition) of the matrices U : K _ // Ao × B

and V : K _ // Bo × C is the matrix V •e U : K _ //

Ao × C defined by

(
V •e U)(K)(a, c)

=

∫ ^ ∈ f�gih Z g h \ ∈ j
V(K

c
)(b, c)×U(K k)(a, b) × !K [K

c
⊗ K k , K]

(Compare with the composition of profunctors (1) and
the multiplication of species (4).) Using (3), we obtain
the familiar formula for matrix multiplication

(
V •e U) l#m g n.o =

∫ ^ ∈ f
V
l ^ g n.o · U

l#m
g ^ o

for a ∈ A and c ∈ C.
The associativity of matrix multiplication and the

unit laws with respect to the identity matrix ∆ p : C _ //

Ao × A defined as

∆ p (C)(a ′, a) = !C
[
〈[]〉, C

]
× A [a, a ′]

hold

W •e (V •q U) ∼= (W •e V) •q U
U •q ∆ p ∼= U ∼= ∆f •e U

where U : K _ // Ao × B, V : K _ // Bo × C, and W :

K _ // Co×D. Further, for U
a
: K _ // Ao×B (i ∈ I),

and V r : K _ // Bo × C (j ∈ J), we have

(∑ r ∈ s V r) •e (∑ a
∈ t U

a)
∼=
∑ l r g a o ∈ s × t V r •e U

a

2.4. Differential structure

We introduce differentiation in the context of gen-
eralised species and establish its basic properties.
Higher-order differential operators are further consid-
ered in Subsection 2.7.

Differentiation. For P : A _ // B and a ∈ A, the
partial derivative uu

m
P : A _ // B is defined as

(uu
m
P
)
(A)(b) = P(A⊗ 〈[a]〉)(b)

Y
v

ww0x V
V

X

5

For all P,Q : A y // B and X ∈ B̂, we have the
following basic properties

zz|{ (zz|{ ′P) ∼=
zz|{ ′ (zz|{ P)zz|{ (P +Q) ∼= (

zz|{ P) + (
zz|{ Q)zz|{ (XP) = X

(zz|{ P)zz|{ (E) = E

and the Leibniz’s rule
zz|{ (P ·Q) ∼=

(zz|{ P) ·Q+ P ·
(zz|{ Q)

Further, for P : A y // B and Q : B y // C, we have the
chain rule
(zz|{ (Q ◦ P)

)
} ∼=

∫ ~ ∈ � (zz ~ (Q) ◦ P
)
} ·
(zz|{ P) ~

where a ∈ A and c ∈ C.

The differential application (or Jacobian matrix)
dP : A y // Ao × B of P : A y // B is defined as

(dP)(A)(a, b) =
(zz|{ P)(A)(b)

The basic properties of partial derivatives translate
in terms of differentials; in particular, the chain rule
amounts to the identity

d(Q ◦ P) ∼=
(
d(Q) ◦ P

)
•� dP

For a species P :
∑ �
∈ � A

� y // B, one may introduce
j-differentials d � P :

∑ �
∈ � A

� y // A � o × B (j ∈ I) as
follows

(d � P)(A)(a, b) =
(zz q ��� {�� P

)
(A)(b)

However, as we show below, these are derivable.

2.5. Cartesian closed structure

We describe the cartesian closed structure of
species.

Pairing and projections. There is exactly one species
C y // 0. More generally, for P

�
: C y // C

�
(i ∈ I), the

pairing 〈P
�
〉 � ∈ � : C y //

∑ �
∈ � C

�
is defined as

〈P
�
〉 � ∈ � (C)(c)

=
∑ �
∈ � ∫

}2� ∈ � �
P
�
(C)(c

�
)×

(∑ �
∈ � C

�)
[c,q

�
(c

�
)]

∼= P
�
(C)(c

�
) where c = q

�
(c

�
)

c �
q � (•)

C

c

P �

q � (•) 〈P � , P � 〉
c �

P �

For i ∈ I, the projection species π
�
:
∑ �
∈ � C

� y // C
�

is defined as

π
�
(C)(c) = !

(∑ �
∈ � C

�)[
〈[q

�
(c)]〉, C

]

〈[q
�
(•)]〉

c

C

π
�

The usual laws of pairing and projections are satisfied
up to isomorphism:

π � ◦ 〈P � 〉 � ∈ � ∼= P � : C y // C � (k ∈ I)
〈π

�
◦ P〉 � ∈ � ∼= P : C y //

∑ �
∈ � C

�

Note that in the presence of cartesian structure the
differentials d � P :

∑ �
∈ � A

� y // Ao� × B (k ∈ I)
are derivable from the differential dP :

∑ �
∈ � A

� y //∑ �
∈ � Ao� × B, as

d � (P) ∼= π � ◦ d(P) (k ∈ I)

for all P :
∑ �
∈ � A

� y // B.

Abstraction and evaluation. For P : C + A y // B,
the abstraction λ � P : C y // !Ao × B is defined as

(λ � P)(C)(A,b) = P(C ⊕A)(b)

b

P
λP

C

A

6

and the evaluation ε ��� � : (!Ao × B) + A � // B by

ε ��� � (M)(b)

=

∫ � ∈ ����� � o× ������� ∈ � �
!(!Ao × B)[〈[(A,b)]〉 , F]

× !
(
(!Ao × B) + A

)
[F⊕A,M]

(5)

〈[(•, •)]〉

A

M

• ⊕ •

b

F

ε

For P : C � // !Ao × B, we write υ � (P) for the
composite ε ◦ 〈P ◦ π � , π � 〉 : C + A � // B. The usual
laws of abstraction and evaluation are satisfied up to
isomorphism:

υ(λP) ∼= P : C+ A � // B
λ(υP) ∼= P : C � // !Ao × B

We further note the following interesting commuta-
tion property between abstraction and linear composi-
tion: for σ the permutation (12)(3),

(
(λ � Q) � • P) � ∼= λ � (Q • (P ◦ π �)) (6)

for all P : K � // Bo × C and Q : K+ A � // Co × D.

2.6. Graph models of the lambda calculus

It does not take much to construct models of the
lambda calculus. Indeed, for a small category C, the
free !()o×()-algebra C̃ on C in Cat yields

C̃
¡¢
C∼ C̃ in ES

Further, the final !()o×()-coalgebra U in Gpd yields
an equivalence

UU ' U in ES
Interestingly, U has the following explicit description:
the objects are given by the class of planar trees de-
scribed by ω-chains

{0} � � //⊥
oo

O � � � //⊥
oo · · · � � //⊥

oo
O £ � � //⊥

oo · · · (n ∈ N)

of reflections between finite ordinals, with morphisms
given by natural isomorphisms.

2.7. Higher-order differential structure

We relate the linear and cartesian closed structures,
and introduce an operator which is shown to satisfy the
basic properties of differentiation.

Linear and cartesian closed structure. For a matrix
U : C � // Ao × B we define the species Ũ : C+A � //

B as

Ũ(M)(b)

=

∫ ¤ ∈ �¥�0¦ ∈ � ¢ �§� ∈ � �
U(C)(a, b) × !A

[
〈[a]〉, A

]
× !(C+ A) [C⊕A,M]

This construction internalises as an embedding of ma-
trices into exponentials as

ı �¨� � = λ � (Ĩ � o× �) : Ao × B � // !Ao × B

given explicitly by

ı ��� � (U)(A,b)

∼=
∫ ¤ ∈ �

!(Ao × B)
[
〈[(a, b)]〉, U

]
× !A

[
〈[a]〉, A

]

Indeed, for all P : C � // Ao × B, we have that

ı ��� � ◦ P ∼= λ � (P̃) : C � // !Ao × B

Further, the embedding commutes with identities and
composition; since, for

` ��� �B� ¢ = π � •© π � : (Bo × C) + (Ao × B) � // Ao × C

we have that

` ◦ 〈P,Q〉 ∼= P •© Q
for all P : K � // Ao × B and Q : K � // Bo × C, and

ı ��� � ◦ ∆ � ∼= λ � (I �) : 0 � // !Ao × A
ı ��� � ◦ ` ��� �B� ¢ ∼= 〈ı �ª� ¢ ◦ π � , ı �¨� � ◦ π � 〉 ◦m ��� �B� ¢

for m ��� �B� ¢ = λ � (ε �ª� ¢ ◦ 〈π � , ε �¨� � ◦ π � 〉) the internal
composition (!Bo ×C) + (!Ao × B) � // !Ao × C.

Differentiation operator. We introduce the differenti-
ation operator D ��� � : !Ao × B � // !Ao × Ao × B as
follows

D ��� � (F)(A,a, b) = !(!Ao × B)
[
〈[(A⊗ 〈[a]〉, b)]〉, F

]

7

This operator is linear, as

D ∼= δ̃

for δ the (!Ao×B)× (!Ao×Ao×B)-matrix given by

δ(U, (A,a, b)) = !Ao × B
[
(A⊗ 〈[a]〉, b), U

]

and internalises differential application since

d « P ∼= υ ¬ (D ◦ λ ¬ P) : C+ A ­ // Ao × B (7)

for all P : C+ A ­ // B.
Further, it is constant on linear maps, as

D ◦ ı ¬�® ¯ ∼= λ ¬ (π °) : Ao × B ­ // !Ao ×Ao × B

It follows that

d(I ¬) ∼= ∆ ¬ : A ­ // Ao × A

and we have from (6) and (7) above that, for σ the
permutation (12)(3),

((
D ◦ λ ¬ P) ± •² U) ± ∼= λ ¬ (d « (P) •² (U ◦ π °))

for all P : C + A ­ // B and U : C ­ // Do × A. This
identity corresponds to the β-rule of the differential
lambda calculus [6].

2.8. Operators on generalised Fock space

Annihilation and creation. For a ∈ A define the an-
nihilation and creation operators as the (!Ao × B) ×
(!Ao × B)-matrices α ³ and γ ³ given by

α ³ (U, (A,b)) = δ(U, (A,a, b))

and

γ ³ (U, (A,b))
=
∫ ´ ′∈ ­ ¬

!Ao × B [(A ′, b), U]× !A
[
A ′ ⊗ 〈[a]〉, A

]

Further, let α and γ be the (!Ao × B) × (!Ao × B)-
matrices

α(U,V) =
∫ ³ ∈ ¬

α ³ (U,V)

and
γ(U,V) =

∫ ³ ∈ ¬
γ ³ (U,V)

For u, v ∈ A the following hold

α µ • γ¶ ∼= γ¶ • α µ + A[v, u] ∆ ­ ¬ o× ¯
α µ • α¶ ∼= α¶ • α µ γ µ • γ¶ ∼= γ¶ • γ µ

Further, for non-empty A, we also have that

α • γ ∼= γ • α+ ∆ ­ ¬ o ×̄

Let A ³ = α̃ ³ , C ³ = γ̃ ³ and A = α̃, C = γ̃.
For A ³ ,C ³ : !Ao × B ­ // !Ao × B, we have that

A ³ (F)(A,b) ∼= (·· ³ F)(A)(b)

and

C ³ (F)(A,b) ∼=
(
F · χ ³)(A)(b)

where F(A)(b) = ε ¬�® ¯ (F ⊕ A)(b) and χ ³ (A)(b) =

I ¬ (A)(a).
Further, for u, v ∈ A the following hold

A µ ◦ C¶ ∼= C¶ ◦ A µ + A[v, u] I ­ ¬ o ×̄

A µ ◦ A¶ ∼= A¶ ◦ A µ C µ ◦ C¶ ∼= C¶ ◦ C µ
and, for non-empty A, we also have that

A ◦ C ∼= C ◦ A + I ­ ¬ o× ¯

Acknowledgements. I am grateful to Nicola Gambino
and Martin Hyland for discussions and joint work on
the cartesian closed structure of analytic functors be-
tween groupoids. I am also grateful to Prakash Panan-
gaden and Jon Wolf for conversations.

References

[1] J. Bénabou. Distributors at work. Lecture notes
of a course given at TU Darmstadt (available from
http://www.mathematik.tu-darmstadt.
de/˜streicher/), 2000.

[2] F. Bergeron. Une combinatoire du pléthysme. Jour-
nal of Combinatorial Theory (Series A), 46:291–305,
1987.

8

[3] F. Bergeron, G. Labelle, and P. Leroux. Combina-
torial Species and Tree-Like Structures. Cambridge
University Press, 1998.

[4] G. Cattani and G. Winskel. Profunctors, open maps
and bisimulation. Available from http://www.
cl.cam.ac.uk/˜gw104, 2003.

[5] B. Day. On closed categories of functors. In Reports
of the Midwest Category Seminar IV, volume 137 of
Lecture Notes in Mathematics, pages 1–38. Springer-
Verlag, 1970.

[6] T. Ehrhard and L. Reigner. The differential lambda
calculus. Theoretical Computer Science, 309(1–3):1–
41, 2003.

[7] S. Eilenberg and G. Kelly. Closed categories. In Pro-
ceedings of La Jolla Conference on Categorical Alge-
bra, pages 421–562. Springer-Verlag, 1966.

[8] G. B. Im and G. Kelly. A universal property of the
convolution monoidal structure. Journal of Pure and
Applied Algebra, 43:75–88, 1986.

[9] A. Joyal. Une théorie combinatoire des séries
formelles. Advances in Mathematics, 42:1–82, 1981.

[10] G. M. Kelly. Basic Concepts of Enriched Category
Theory. Cambridge University Press, 1982.

[11] F. W. Lawvere. Metric spaces, generalized logic, and
closed categories. Rend. del Sem. Mat. e Fis. di Mi-
lano, 43:135–166, 1973. (Also in Reprints in Theory
and Applications of Categories, 1:1–37, 2002.).

[12] S. MacLane. Categories for the working mathemati-
cian. Springer-Verlag, 1971. (Revised edition 1998).

[13] M. Méndez. Species on digraphs. Advances in Math-
ematics, 123:243–275, 1996.

[14] M. Méndez and O. Nava. Colored species, c-monoids
and plethysm, I. Journal of Combinatorial Theory,
Series A, 64:102–129, 1993.

[15] M. Menni. Symmetric monoidal completions and the
exponential principle among labeled combinatorial
structures. Theory and Applications of Categories,
11(18):397–419, 2003.

[16] O. Nava and G.-C. Rota. Plethysm, categories, and
combinatorics. Advances in Mathematics, 58:61–88,
1985.

9

