
Appendix A: Sealed-Bid Uniform-Price Auction with Synergies.

We derive the characterization for the three regions identified in the text.

There are Ýn + 1Þ > 2 bidders and m = 2 units auctioned, where m < Ýn + 1Þ. The Ýn + 1Þ th bidder, denoted by h (the
human), has a concave utility function uÝ^Þ with u vÝ^Þ > 0, is normalized so that uÝ0Þ = 0 and u vÝ0Þ = 1, where ^ represents
earnings net of cost of purchasing the units. h demands two units valuing each at uÝVÞ. Bidders 1,2,...,n, demand only one unit
valuing it at V1 ,V2 , ...,Vn , respectively. V1 ,V2 , ...,Vn and V are independent random variables from FÝ6Þ and FhÝ6Þ respectively, on
the common support ß0,1à. VÝkÞ denotes the k th order statistic of V1 ,V2 , ...,Vn and FÝkÞ its distribution function. Let v1 ,v2 , ...,vn ,v
be the realizations of V1 ,V2 , ...,Vn ,V and without loss of generality, assume that v1 ³ v2 ³, ...,³ vn . The good is available only in
integer units. We are interested in a sealed-bid uniform-price (highest losing bid) auction (SBUPA). Bidders 1,...,n, who demand
a single unit have a dominant strategy to bid their value. Denote by p the price per unit h pays. Although the value of winning a
single unit for h is uÝv ? pÞ, there is a supper additive value for winning both units. If h wins both units her utility is
uÝ2v + gÝvÞ ? 2pÞ, i.e., she is getting an extra gÝvÞ, where gÝ0Þ = 0 and g vÝvÞ > 0. In this experiment (and derivation) we employ,
gÝvÞ = v. Without loss of generality assume that b1ÝvÞ ³ b2ÝvÞ represents h’s two (optimal) bids.

Lemma (a) b1ÝvÞ ³ v. (b) b1ÝvÞ = b2ÝvÞ if and only if b1ÝvÞ > v.

Proof (a) Suppose (a) does not hold. This implies that there exists vD such that vD > b1ÝvDÞ ³ b2ÝvDÞ. But then, raising b1ÝvÞ
from b1ÝvDÞ < vD to b1

#ÝvDÞ = vD makes h better off when it matters since in such events h will win one unit rather than zero
with strictly positive expected utility.

(b) Suppose the if part does not hold. This implies that there exists vD such that b1ÝvDÞ > vD and b1ÝvDÞ > b2ÝvDÞ. Case
1. b2ÝvDÞ ³ vD. In this case the pair áb1

#ÝvDÞ = b2ÝvDÞ,b2ÝvDÞâ dominates the alternative áb1ÝvDÞ > b2ÝvDÞ,b2ÝvDÞâ, i.e.,
reducing b1ÝvDÞ > b2ÝvDÞ, to b1

#ÝvDÞ = b2ÝvDÞ dominates. Here is the reason: If h wins two or zero units, then reducing b1ÝvDÞ
does not matter. However, if h wins one unit, then the price is at least vD, and strictly higher with positive probability, implying
that EßuÝvD ? pÞà < 0. Thus, h cannot lose, and gains strictly positive expected utility by the proposed change. Case 2.
b2ÝvDÞ < vD. Using similar arguments we can show that the pair of bids áb1ÝvDÞ > vD,b2ÝvDÞ < vDâ is dominated by
áb1

#ÝvDÞ = vD,b2
#ÝvDÞ = vDÞ footnote .

Part 1: We start the analysis by assuming first that b1ÝvÞ = b2ÝvÞ and thus, b1ÝvÞ = b2ÝvÞ ³ v. In this case h’s
maximization problem becomes:

ÝA1Þ
b³v

max áX
0

b nfÝtÞßFÝtÞàn?1uÝ3v ? 2tÞdt + nÝ1 ? FÝbÞÞßFÝbÞàn?1uÝv ? bÞâ.

The integral represents h’s expected utility from winning two units, an event where all n rivals bid below b. The second part
represents h’s expected utility from winning one unit, an event were v1 , the highest rivals’ bid, is higher than b but all other bids
are below b. In all other events h earns uÝ0Þ = 0. The first order condition for maximization (FOC) of ÝA1Þ after rearranging is:

ÝA2Þ uÝ3v ? 2bÞ ? uÝv ? bÞ + Ýn ? 1ÞuÝv ? bÞ 1?FÝbÞ
FÝbÞ ? u vÝv ? bÞ 1?FÝbÞ

fÝbÞ = 0.

The left hand side (LHS) of ÝA2Þ evaluated at b = v is:

ÝA3Þ uÝvÞ ? 1?FÝvÞ
fÝvÞ =: HÝvÞ, and we harmlessly assume that H vÝvÞ > 0. footnote 

Lemma There exists a unique value, v = vc , satisfying: (a) vc = b1Ývc Þ = b2Ývc Þ, that solves the FOC ÝA2Þ. (b) -v > vc ,
b1ÝvÞ = b2Ývc Þ > v. (c) - v < vc , b1ÝvÞ = v > b2Ývc Þ

Proof (a) HÝ0Þ < 0 < HÝ1Þ and H vÝvÞ > 0. Thus, there exists a unique vc , with b1Ývc Þ = b2Ývc Þ = vc that solves FOC ÝA2Þ.
(b) Any b = v > vc , implies that the LHS of ÝA2Þ is strictly positive and the optimal bids are b1ÝvÞ = b2ÝvÞ > v. (c) Any
b = v < vc , implies that the LHS of ÝA2Þ is strictly negative. But, Lemma 1 implies that we cannot have b1ÝvÞ = b2ÝvÞ < v,
thus, b1ÝvÞ > b2ÝvÞ. By Lemma 1, b1ÝvÞ ³ v, but, if b1ÝvÞ > v, then b1ÝvÞ = b2ÝvÞ is a contradiction. We conclude that when
v < vc , then b1ÝvÞ = v > b2Ývc Þ. Note that we have now also proved the only if part of Lemma 1. footnote 

With a risk neutral (RN) h and after rearranging, equation ÝA2Þ becomes:

ÝA4Þ Ýv ? bÞß1 + Ýn ? 1Þ 1?FÝbÞ
FÝbÞ à + v ? 1?FÝbÞ

fÝbÞ = 0.



Since in our design, FÝ6Þ is a uniform distribution, HÝvc Þ = 0 implies that, vc = ½. Further, with FÝ6Þ being a uniform
distribution, equation ÝA4Þ becomes:

ÝA5Þ b2 ? ®Ýn,vÞb + v = 0, where ®Ýn,vÞ =: n+Ýn?3Þv
n?1

.

Differentiating the LHS of ÝA5Þ with respect to b yields :

ÝA6Þ /
/b áb2 ? ®Ýn,vÞb + vâ = 2b ? ®Ýn,vÞ.

The second order condition for maximization (SOC) requires that ÝA6Þ evaluated at the optimal b ÝA5Þ, is negative. Thus,

ÝA7Þ b 2?v
b < 0.

We write the solution to the quadratic FOC ÝA5Þ as:

ÝA8Þ b1,2 = á®Ýn,vÞ ± ßÝ®Ýn,vÞÞ 2 ? 4và1/2â/2.

Note, that once ßÝ®Ýn,vÞÞ 2 ? 4và < 0, there is no solution to equation ÝA5Þ. It is easy to verify that since v ² 1,
ßÝ®Ýn,vÞÞ 2 ? 4và is strictly decreasing in v for all n ³ 2. Let vcn , be that value of v that solves:

ÝA9Þ ßÝ®Ýn,vcnÞÞ 2 ? 4vcn à = 0.

Thus, -v > vcn , ßÝ®Ýn,vcnÞÞ 2 ? 4vcn à < 0, and the LHS of ÝA5Þ is strictly positive implying that the optimal bid is
bÝvÞ = 1. Namely, for such (high) v’s, h optimal strategy is “to go for it,” bidding (at least) 1, winning two units for sure, and
enjoying the synergy bonus, v. In what follows we restrict attention to v’s that satisfy v 5 Ývc ,vcn à = Ý½,vcn à.

The positive root of ÝA8Þ yields, b2 > Ý®Ýn,vÞÞ 2/2 ? v = ßb + v
b à

2/2 ? v, where the last equality is obtain by using ÝA5Þ.
Thus, b2 ? v > ßb2 + 2v + Ýv/bÞ 2 ? 4và/2 = ßb2 ? 2v + Ýv/bÞ 2à/2 = ßb ? Ýv/bÞà2/2 > 0, which violates ÝA7Þ. On the other hand, by
using ÝA6Þ and ÝA8Þ it easy to verify that the negative root of ÝA8Þ yields, 2b ? ®Ýn,vÞ < 0 so that the SOC is satisfied. With
some additional tedious algebra one can verify that for v 5 Ý½,vcn à, the negative root also yields b > v, as required. Thus, the
negative root of ÝA8Þ satisfies the FOC, SOC and b > v, v 5 Ý½,vcn à and is rewritten as:

ÝA10Þ b = á®Ýn,vÞ ? ßÝ®Ýn,vÞÞ 2 ? 4và1/2â/2.

Although the solution proposed in ÝA10Þ satisfies the FOC and the SOC, it assures only a local maximization since the
objective function is not quasi-concave. Let Eß^ÝbÝvÞÞà denote the expected payoffs for h who has V = v 5 Ý½,vcn à and is using
bÝvÞ as defined by ÝA10Þ. Eß^ÝbÝvÞÞà = áexpected gain of winning two unitsâáprobability of winning two unitsâ + áexpected
gain of winning one unitâáprobability of winning one unitâ. Or

ÝA11Þ Eß^ÝbÝvÞÞà = á3v ? 2 n
n+1

bÝvÞâáßbÝvÞànâ + áv ? bÝvÞâánß1 ? bÝvÞàßbÝvÞàn?1â

Let Eß^Ýb ³ 1Þà denote the expected payoffs for h who has V = vÝ½,vcn à and uses b ³ 1 on both units which assures
winning both of them:

ÝA12Þ Eß^Ýb ³ 1,vÞà = ß3v ? 2 n
n+1

à,

as 3v is the value of winning two units and 2 n
n+1

is the expected payment in such a case. Let vn
D, be the v that equates

expressions ÝA11Þ and ÝA12Þ. It turns out that,

ÝA13Þ a) vn
D 5 Ý½,vcn à, b) -v 5 Ý½,vn

DÞ, the optimal bid is, b = á®Ýn,vÞ ? ßÝ®Ýn,vÞÞ 2 ? 4và1/2â/2 and c)
-v 5 ßvn

D,1à the optimal bid is b ³ 1.

Part 2. Here, we solve for the region where v < vc , implying by Lemma 1 and part (c) of Lemma 2 that, b1ÝvÞ = v > b2ÝvÞ.
Simplify by concentrating on b2ÝvÞ, denoting it by bÝvÞ. Everything is the same as in part 1 but, we first derive the results for any
m, m < Ýn + 1Þ, and summarize them for our experiment where m = 2 at the end.



There are three regions (events) to consider here: footnote 

Region 1: Here, VÝm?1Þ ² b, thus, EßuÝv,bÞà = X
0

b uÝ3v ? 2pÞdFÝm?1ÞÝpÞ.

Region 2: Here, VÝmÞ ² b < VÝm?1Þ , thus, EßuÝv,bÞà = uÝv ? bÞßFÝmÞÝbÞ ? FÝm?1ÞÝbÞà.

Region 3: Here, b < VÝmÞ < v, thus, EßuÝv,bÞà = X
b

v uÝv ? pÞdFÝmÞÝpÞ.

Region 1, is the event that h wins both units and earns uÝ2v + v ? 2pÞ; region 2 is the event that h wins only one unit, and her
bid, b, sets the price (which affects her gains on the unit won); region 3 is the event that h wins only one unit and does not set the
price. We differentiate with respect to b and collect terms from the three region to obtain the following FOC for maximization:

/EßuÝv,bÞà//b = ßuÝ3v ? 2bÞÞfÝm?1ÞÝbÞà ? áu vÝv ? bÞßFÝmÞÝbÞ ? FÝm?1ÞbÞà +
uÝv ? bÞßfÝmÞÝbÞ ? fÝm?1ÞÝbÞàâ ? ßuÝv ? bÞfÝmÞÝbÞà = ßuÝ2Ýv ? bÞÞ ? uÝv ? bÞà ×
fÝm?1ÞÝbÞ ? u vÝv ? bÞßFÝmÞÝbÞ ? FÝm?1ÞÝbÞà, where fÝkÞ ³ 0 is the derivative of FÝkÞ . Finally, using

ßFÝmÞÝbÞ ? FÝm?1ÞbÞà = n
n?1

ß1 ? FÝbÞàm?1ßFÝbÞàn+1?m , and fÝm?1ÞÝbÞ = n n?1
m?2

ß1 ? FÝbÞàm?2ßFÝbÞàn+1?m fÝbÞ, we obtain:

ÝA14Þ ßuÝ3v ? 2bDÞ ? uÝv ? bDÞà ? ßu v Ýv?b DÞÝ1?FÝb DÞÞà
Ým?1ÞfÝb DÞ

² 0,

where bD, is the solution to the problem with a risk averse (RA) h, and where strict inequality holds only if bD = 0.

Fact 1. When m = 2, as in our experimental design, when v < vc = ½, bD < v so that even with synergies there is demand
reduction on the second unit. To see why, consider the LHS of ÝA14Þ. At bD = v, it is equal to, uÝbDÞ ? 1?FÝb DÞ

fÝb DÞ
< 0. The strict

inequality is due to fact that ßuÝvc Þ ? 1?FÝv c Þ
fÝv c Þ

à = 0, bD = v < vc and H vÝvÞ > 0. Note that bD is independent of the number of

single unit demanders, n, for all (concave) u’s, a surprising result that is reminiscent of optimal reservation price result in single
unit, IPV auctions.

For the risk neutral (RN) case ÝA14Þ becomes:

ÝA15Þ Ý2v ? bÞ ? 1?FÝbÞ
Ým?1ÞfÝbÞ

² 0,

with inequality only if the RN optimal bid is already zero, b = 0. It is easy to verify that a sufficient condition to assure
quasi-concavity of the objective function for the RN case is:

ÝA16Þ Ý1 ? FÝbÞÞf
v
ÝbÞ ? Ým ? 2ÞßfÝbÞà2 ² 0.

We turn now to the effect of RA on bidding. Let uÝ6Þ be concave and assume that v > bD > 0. We obtain:

0 = ßuÝ3v ? 2bDÞ ? uÝv ? bDÞà ? u v Ýv?b DÞÝ1?FÝb DÞÞ
Ým?1ÞfÝb DÞ

< ßu vÝv ? bDÞÝ2v ? bÞà ? u v Ýv?b DÞÝ1?FÝb DÞÞ
Ým?1ÞfÝb DÞ

= u vÝv ? bDÞßÝ2v ? bDÞ ? 1?FÝb DÞ
Ým?1ÞfÝb DÞ

à

We conclude that, ßÝ2v ? bDÞ ? 1?FÝb DÞ
Ým?1ÞfÝb DÞ

à > 0.

Fact 2: The effect of RA is to reduce the bid of h on the second unit, bDÝvÞ < bÝvÞ, unless bÝvÞ is already zero. That is, under
condition ÝA16Þ (quasi-concavity of the RN case), a RA h bids on the second unit no more than a RN bidder, and strictly less
when bÝvÞ > 0. Quasi-concavity and the fact that the FOC for a RN h evaluated at bD is strictly positive is sufficient to establish
fact 2. Note that for our design with a uniform distribution f vÝbÞ = 0, so that condition ÝA16Þ is satisfied for all m ³ 2.

In the RN case, it is convenient to rewrite the optimal b (from ÝA15Þ as:

ÝA17Þ bÝvÞ =
2v ? 1?FÝbÞ

Ým?1ÞfÝbÞ
, b 5 ß0,và,

0, oterwise.
,

which implicitly solves for (optimal) b. In our design FÝ6Þ is uniform on ß0,1à, so that ÝA17Þ reduces when m > 2 to



ÝA18Þ bÝvÞ =
Ým?1Þ2v?1

m?2
, b 5 ß0,và,

0, oterwise.

When m = 2 and v < vc = 1/2 as in our design, the LHS of ÝA15Þ becomes ß2v ? 1à < 0. Thus, establishing for a RN h, a
uniform distribution, and m = 2 (as in our design):

ÝA19Þ bÝvÞ = 0, -v 5 ß0,½Þ.



Appendix B: English-Clock Auctions (ECA) with Synergies.

Before we start note that we simplify by using v for vh . Also recall that the synergy bonus was modeled as earning an extra
gÝvÞ = Jv, if h obtains both units. The optimal strategy for, h, in the ECA can be nicely described by partitioning the domain of
values to three regions:

ÝB1Þ A = ß0, 1
1+J

Þ, B = ß 1
1+J

, 2
2+J

Þ, C = ß 2
2+J

,1à.

A. Optimal Behavior for h when V = v 5 A = ß0, 1
1+J

Þ.

A.1 If v3 ³ v, drop the first unit at any price, P 5 ß0,v3à. If v3 < v, drop the first unit at any price, P 5 ß0,mináv,v2âà .

A.2 Drop the second unit at price, P 5 ßv,maxáv,v3âà.

Proofs and observations:

Step 1. In region A, h never wants to stay IN long enough to win both units.

To win two units h must stay IN with both units beyond the clock price, P = v2 . By dropping a unit at P = v2 , h stops the
auction, “wins one unit” (WOU) and earns, ^ÝWOUÞ = ßv ? v2à. Suppose that h decides to stay IN with both units an extra N
beyond P = v2 , (as long as P + N ² 1) and drop out at P = v2 + N, if V1 = v1 does not drop by then. Recall that given that V2 = v2 ,
V1 |V1 ³ v2 , is distributed uniformly on ßv2 ,1à. With a probability N

1?v 2
, v1 drops within the next N, h wins two units and earns:

Ý2 + JÞv ? 2EßV1 |v2 + N ³ V1 ³ v2à = ßÝ2 + JÞv ? 2v2 ? Nà. With a probability of 1?v 2?N
1?v 2

, v1 does not drop in that interval, h

stops the clock and wins one unit and earns Ýv ? Ýv2 + NÞÞ. (Note that since we allow the possibility P = v2 + N = 1, we are also
allowing the strategy that assures winning two units.) Thus, expected profits from such a strategy, “possibly winning two units”
are: ^ÝWTUÞ = N

1?v 2
ßÝ2 + JÞv ? 2v2à + 1?v 2?N

1?v 2
ßv ? v2 ? NÞà = N

1?v 2
ßÝ1 + JÞv ? v2à + ßv ? v2 ? NÞà. However, since v < 1

1+J
,

á^ÝWTUÞ ? ^ÝWOUÞâ = N
1?v 2

ßÝ1 + JÞv ? v2 ? Ý1 ? v2Þà = N
1?v 2

ßÝ1 + JÞv ? 1à < 0.

Step 2. Bidder h never wants to win one unit at a clock price, P > v, as it earns negative profits rather than zero profits with
no units won.

Rules A.1 and A.2 are the most general rules that implement these conclusions. (Note that maxáv,v3â ³ v ³ mináv,v2â. Also
note that the requirement P 5 ß0,mináv,v2âà, rather than P 5 ß0,v2à, which also assures winning no more than one unit, is to
avoid staying IN with two units beyond P = v when it is not desirable to win even one unit.

Note that in region A, h’s optimal strategy yields the same allocation and price as the strategy: “Drop unit 1 at clock price,
P = 0 and stay IN with the second unit until the clock price reaches your value, P = v.” Thus, theoretical predictions in region A
for the allocation and price are identical to our previous work on multi-unit demand, clock auctions, with flat demand (Kagel and
Levin, in press). Further, in A, bidding yields the same allocations and prices as in a sealed-bid uniform price auction (see
Appendix A).

Behavior outside equilibrium in A: Dropping two units too early leaves no further action. Dropping the first unit early is
not an error. If h errs, stays with the first unit or both units too late i.e., p > v, and realizes it, h ought to drop out right away.

B. Optimal Behavior for h when V = v 5 B = ß 1
1+J

, 2
2+J

Þ.

Let the clock price PD = ßÝ2 + JÞv ? 1à. Since v 5 ß 1
1+J

, 2
2+J

Þ in region B, PD ? v = Ý1 + JÞv ? 1 ³ 0 > Ý2 + JÞv ? 2 = PD ? 1.

Thus, v ² PD < 1.

B.1 If v2 < PD, “Go All The Way.”(ATW)

B.2 If v2 ³ PD, drop both units at clock price P 5 ßPD,maxáPD,v3âà.



Proofs and observations:

B.1 For any given realization V2 = v2 , this strategy yields:
^ÝATWÞ = Ý2 + JÞv ? 2EßV1 |V2 = v2à = Ý2 + JÞv ? 2 1+v 2

2
= Ý2 + JÞv ? 1 ? v2 > Ý2 + JÞv ? 1 ? PD = 0. Winning one unit earns

profits of, ^ÝWOUÞ = v ? v2 . ß^ÝATWÞ ? ^ÝWOUÞà = Ý1 + JÞv ? 1 ³ 0, since v ³ 1
1+J

, and strictly positive -v > 1
1+J

. Thus,

“Go All The Way,” dominates winning one unit or none.

B.2 Following the strategy prescribed in B.2, yields zero units with zero profits. Winning one unit earns v ? v2 < 0 and
staying IN beyond the clock price, P = PD, to win two units earns,
Ý2 + JÞv ? 2EßV1 |v2 ³ PDà < Ý2 + JÞv ? 2EßV1 |v2 = PDà = Ý2 + JÞv ? 1 ? PD = 0. It is easy to show that staying a N > 0 beyond
P = PD, (as long as PD + N < 1) and dropping out only if things don’t go well also yields negative expected profits.

Behavior outside equilibrium in B: Case B.1. Dropping two units too early leaves no further action. If h dropped the
first unit too early h needs to stay with the second unit no longer than clock price P = maxáv,v3â. Case B.2. (This is the most
interesting out of equilibrium behavior.) If h realizes that he stayed IN with both units too late i.e., although P > maxáPD,v3â and
v2 > PD then, if v2 is still IN Ýv2 ³ PÞ, h must drop immediately (and nothing happens relative to the optimal policy). However,
if v2 has dropped OUT already Ýv2 < PÞ, then h should “Go All The Way,” in order to win both units.

C. Optimal Behavior for h when V = v 5 C = ß 2
2+J

,1à.

Following the strategy prescribed in C yields two units and earns positive expected profits of: Ý2 + JÞv ? 2EßV1à > 0, since
v ³ 2

2+J
and EßV1à < 1. For any given realization V2 = v2 , this strategy yields profits of ^ÝATWÞ

= Ý2 + JÞv ? 2EßV1 |V2 = v2à = Ý2 + JÞv ? Ý1 + v2Þ. On the other hand winning one unit earns ^ÝWOUÞ = v ? v2 . Thus,
á^ÝATWÞ ? ^ÝWOUÞâ = áßÝ2 + JÞv ? Ý1 + v2Þà ? ßv ? v2àâ = áÝ1 + JÞv ? 1â ³ á 2Ý1+JÞ?Ý2+JÞ

2+J
â = á J

2+J
â > 0, v 5 ß 2

2+J
,1à.

Dropping early and winning zero units earn zero profits. Thus the prescribed strategy is optimal.

Behavior outside equilibrium in C: If h dropped both units there is nothing to do. If h erred and dropped one unit she
ought to stay IN with the second unit as long as the clock price, P < maxáv,v3â, and drop the second unit immediately when
P ³ maxáv,v3â.


