Appendix A: Sealed-Bid Uniform-Price Auction with Syner gies.
We derive the characterization for the three regionsidentified in the text.

ThereareYn + 1b > 2 biddersand m = 2 units auctioned, wherem < Yn + 1b. The Yn + 1p™ bidder, denoted by h (the
human), has a concave utility function ufp with u'¥”b > 0, isnormalized so that ufOp = 0 and u'Y0P = 1, where ”* represents
earnings net of cost of purchasing the units. h demands two units valuing each a ufVb. Bidders 1,2,...,n, demand only one unit
valuing it a Vy,V,,...,Vy, respectively. V,,V,, ..., V, and V are independent random variables from FY6> and F;,Y6b respectively, on
the common support 80, 1a. Vy, denotesthe k™ order statistic of Vq,Vs, ...,V and Fy its distribution function. Let vy, Va,...,Va,V
be the realizations of V4,V,,...,V,,V and without loss of generality, assumethat v; 3 v, 3,...,3 v,,. The good isavailable only in
integer units. We are interested in a sealed-bid uniform-price (highest losing bid) auction (SBUPA). Bidders 1,...,n, who demand
asingle unit have a dominant strategy to bid their value. Denote by p the price per unit h pays. Although the value of winning a
single unit for hisufv ? pb, there isasupper additive value for winning both units. If h wins both units her utility is
ui2v + givb ? 2pb, i.e., sheisgetting an extragve, where gY0p = 0 and g'Vvb > 0. In this experiment (and derivation) we employ,
gVwb = v. Without loss of generality assume that b, Vv 3 b,Ywb represents h's two (optimal) bids.

Lemma (a) byfvw 3 v. (b) byYw = bYw ifand onlyif by Ywb > v.

Proof (a) Suppose (a) does not hold. Thisimplies that there exists v° such that v° > b, YvPb 3 b,YvPp. But then, raising b, Yw
from by Yv°p < v° to biYvPp = v° makesh better off when it matters since in such events h will win one unit rather than zero
with strictly positive expected utility.

(b) Suppose the if part does not hold. Thisimpliesthat there exists v° such that b,YvPb > v® and b, YvPb > b,¥vPb. Case
1. b,YvPb 3 VP, In this case the pair ab5VvPb = b,VvPb, b, v ba dominates the alternative &b, Yv°b > b,YvPb,b,VvPb4, ie,
reducing b, Yv°p > b,VvPb, to b#vPp = b,Yv°P dominates. Here isthe reason: If h wins two or zero units, then reducing b, Yv°p
does not matter. However, if h wins one unit, then the price isat least v°, and strictly higher with positive probability, implying
that EBufvP ? ppa < 0. Thus, h cannot lose, and gains strictly positive expected utility by the proposed change. Case 2.
b,YvPb < VP, Using similar arguments we can show that the pair of bids &b, Yv°b > v°,b,¥vPb < VP4 isdominated by
abf¥vPp = VP, b3YvPp = vPb footnote .

Part 1: We start the analysis by assuming first that b, v = b,Yw and thus, b, Yvb = b,Ywb 3 v. Inthiscaseh's
maximization problem becomes:

YALb max axg NfYtbRFYtba"™uY3v ? 2thdt + nY1 ? FYbbbRFYbPa" ufv ? bba.
b3v

The integral represents h's expected utility from winning two units, an event where adl n rivals bid below b. The second part
represents h's expected utility from winning one unit, an event were v,, the highest rivals' bid, ishigher than b but all other bids
arebelow b. In dl other events h earns uf0b = 0. The first order condition for maximization (FOC) of YA1b after rearranging is

{A0 uf3v? 2bb 2 ufv 2 bb + Yn 2 Tbufy 2 bh 222 2 'Yy 2 ph 27 = 0,

Theleft hand side (LHS) of YA2 evaluated at b = vis

YA3D  uiw ? 1;51"” =: HYwb, and we harmlessly assume that H'Yw» > 0. footnote

Lemma There existsa uniquevalue, v = v, satisfying: (a) v = b;Yvcp = b,Yv b, that solvesthe FOC YA2b. (b) —v > v,
b = boYveh > v. () = v< v, by = v> b,Yvcb

Proof (a) HYOP < 0 < HY1p and H'Ywb > 0. Thus, there exists aunique v, with by Yvcb = b,YvP = v, that solves FOC YA2b.
(b) Any b = v > v, impliesthat the LHS of YA2b isstrictly positive and the optimal bids are b, Yv0 = b,Ywb > v. () Any
b = v < v, impliesthat the LHS of YA2p isstrictly negative. But, Lemma 1 implies that we cannot have by Yvb = b,Ywb < v,
thus, b, Ywb > b,Ywb. By Lemmad, byYwb 3 v, but, if b, Ywb > v, then byYwb = b, isacontradiction. We conclude that when
Vv < Vg, then b, Yvwb = v> b,Vv.b. Note that we have now aso proved the only if part of Lemma 1. footnote

With arisk neutral (RN) h and after rearranging, equation YA2p becomes:

, , 7 12FVhb 12FYbp —
VAb Yv? bbbl +Yn? 2B, 4y 2 125 = g



Sincein our design, FY6b isauniform distribution, HYv.P = O impliesthat, v, = Y. Further, with FY6 being auniform
distribution, equation YA4b becomes:

YASD  b?%? ®Yn,wob + v = 0, where ®Yn,wb =: %
Differentiating the LHS of YASP with respect to b yields:
YABp  Lab®? ®n,wh+va = 2b? ®Yn,wb.

The second order condition for maximization (SOC) requires that YAGP evaluated at the optimal b YASb, isnegative. Thus,

VAT B <o,
We write the solution to the quadratic FOC YASD as
VA8 by, = &®Yn, w0 £ RY®Yn,wb? ? AaY24/2,

Note, that once B/®Yn,wwb?2 ? 4va < O, thereisno solution to equation YASD. It iseasy to verify that sincev 2 1,
W®Yn,wb? ? 4w isstrictly decreasinginvfor dl n 3 2. Let v, bethat value of v that solves:

VA%  BY®YN,ve,PP? ? dvgnd = 0.

Thus, =V > Vg, BY®Yn,vebb? ? 4vena < 0, and the LHS of YASD isstrictly positive implying that the optimal bid is
bYw = 1. Namely, for such (high) v's, h optimal strategy is“to go for it,” bidding (at least) 1, winning two units for sure, and
enjoying the synergy bonus, v. In what follows we restrict attention to v s that satisfy v 5 Yv¢,Vend = Y%, Vend.

The positive root of YASP yields, b? > Y®Yn,wb?/2? v = b + £4%/2 ? v, where the last equality is obtain by using YASp.
Thus, b2 ? v > 8b? + 2v+ Yv/bb? 2 4v/2 = Bb? ? 2v + Ywbb24/2 = Bb ? Ywbba2/2 > 0, which violates YA7p. On the other hand, by
using YA and YA8b it easy to verify that the negative root of YA8p yields, 2b ? ®Yn,w < 0 so that the SOC is satisfied. With
some additional tedious agebraone can verify that for v 5 Y44 vqd, the negative root also yields b > v, asrequired. Thus, the
negative root of YASP satisfiesthe FOC, SOC and b > v, v 5 Y%,v,4 and isrewritten as

YAI0P b= a®Yn,wp ? BV®Yn,wpb? ? 4a2a/2.

Although the solution proposed in YA10p satisfies the FOC and the SOC, it assures only alocal maximization since the
objective function is not quasi-concave. Let ERYbYvbba denote the expected payoffs for hwho hasV = v 5 Y44 v¢,4 and isusing
bYwb as defined by YA10p. ERMbYwbba = dexpected gain of winning two unitsdaprobability of winning two unitsd + aexpected
gain of winning one unitdaprobability of winning one unita. Or

YA1lP  ERMYbYwbba = 43v? Zﬁb‘?vbééﬁbY'\/pa"é + &v ? bYwbaanil ? bYvbabivba"*ta

Let E3Yb 3 1ba denote the expected payoffs for h who hasV = W¥4,vna and usesb 3 1 on both units which assures
winning both of them:

YA12>  ERNYb 3 1,w03 = R3v? 214,

as 3visthe value of winning two units and Zan‘l isthe expected payment in such acase. Let V2, bethe v that equates
expressions YA11b and YA12b. It turns out that,

VAL &) VB 5 V1 ved, b) —v 5 Y15,vEb, the optimal bidis b = 4®Yn,vw ? BY®Yn,wb? ? 4wY?a/2 and c)
—v 5 V8,1 the optimal bidisb 3 1.

Part 2. Here, we solve for the region where v < v, implying by Lemma 1 and part (c) of Lemma2 that, byYvb = v > b,Yvb.
Simplify by concentrating on b, Y, denoting it by bYwb. Everything isthe same asin part 1 but, we first derive the results for any
m, m < Yn+ 1b, and summarize them for our experiment where m = 2 at the end.



There are three regions (events) to consider here: footnote
Region 1: Here, Vippp 2 b, thus, ERuYv,bba = Xg u¥3v ? 2pbdF o1 Y pb.

Region 2: Here, Vim 2 b < Vo, thus, EBUYv,bbd = ufv 2 bbRF s Ybb ? Fymom YDPA.

Region 3: Here, b < Vi < v, thus, EBuYv,bba = X‘; ufv ? ppdF s Ypb.

Region 1, isthe event that h wins both units and earns u/2v + v ? 2pb; region 2 isthe event that h wins only one unit, and her
bid, b, sets the price (which affects her gains on the unit won); region 3 isthe event that h wins only one unit and does not set the
price. We differentiate with respect to b and collect terms from the three region to obtain the following FOC for maximization:

/ERUYv, bba//b = RUY3v ? 2bbbfipy Yhba ? &u'YV 2 bbBFymYhb ? Fyppbbd +
uYv 2 b8y Ybb ? fimors YOPAA 2 RUYV 2 bbfyYbPd = BUY2YV 2 bbb 2 ufv ? bbd x
fomp1YOP 2 UV 2 bbBFYmDYbb ? FymorYbPa, where fy, 3 0isthe derivative of Fykp Findly, using
BFmpYbP ? Fyppbba = ¢ 1 812 FYbpa™ BFYbPA™™™, and fymp YbP = n{ ™ %812 FYbba™3F{bpa™ " f{bb, we obtain:

YA140  RUY3v? 20° ? Uy ? bPpa ? PRI 2

Ym?1pf{bPp
where b®, isthe solution to the problem with arisk averse (RA) h, and where strict inequality holds only if b® = 0

Fact 1. Whenm = 2, asin our experimental design, whenv < v, = %, b < v so that even with synergies there is demand
reduction on the second unit. To see why, consider the LHS of YA14p. At b® = v, itisequa to, ufb®p ? EF—YPD;’ < 0. The strict
inequality isdueto fact that Bufv b ? 1°FY"C 1Fveby = 0, bP = v < v, and H'Yw > 0. Note that b® isindependent of the number of
single unit demanders, n, for al (concave) u's, asurprising result that is reminiscent of optimal reservation price result in sngle
unit, IPV auctions.

For the risk neutral (RN) case YA14b becomes:

YAISP  Y2v? bp? LF_ 2
Ym?1pfVbb

with inequality only if the RN optimal bid isalready zero, b = 0. It iseasy to verify that asufficient condition to assure
quasi-concavity of the objective function for the RN case is

YAL6P Y17 FYbpbf Ybb ? Ym? 2pBfVbba® 2 0.
Weturn now to the effect of RA on bidding. Let uf6b be concave and assume that v > b® > 0. We obtain:

D D D D D
= fUY3v? 2bPp ? ufv ? bPpy 2 UIWALORIZFIO - p iy, 9 pPpY2y 2 bpy P ULWVACHIAZEYROM iy, o DRy 2y 2 pPp 2 _12FYbCe
Ym?1bfbPb Ym?1bfbPp Ym?1pfibPp

We conclude that, 82v? bP ? 120> 3 > g,
Ym?1pfYb°p

Fact 2: The effect of RA isto reduce the bid of h on the second unit, b°Yw < bYwb, unless bYwb isaready zero. That is, under
condition YA16p (quasi-concavity of the RN case), aRA h bids on the second unit no more than aRN bidder, and strictly less
when b > 0. Quasi-concavity and the fact that the FOC for aRN h evaluated at b isstrictly positive issufficient to establish
fact 2. Note that for our design with auniform distribution f'Ybb = 0, so that condition YA16p is satisfied for dl m 3 2.

Inthe RN casg, it is convenient to rewrite the optimal b (from YA15b as

v? 2% b5 00,
YAL7D biw = Ym?1pfiop ’ T ,

0, oterwise

which implicitly solves for (optimal) b. In our design FY6b isuniform on 80,14, so that YA17p reduceswhen m > 2to



Ym?1b2v?1 b 5 [0.\A
YA18  bfw = m2 o
0, oterwise

Whenm = 2andv < v, = 1/2 asin our design, the LHS of YA15p becomesf2v ? 14 < 0. Thus, establishing for aRN h, a
uniformdistribution, and m = 2 (asin our design):

YA19  bYw = 0, —v 5 R0, %4.



Appendix B: English-Clock Auctions (ECA) with Synergies.

Before we start note that we simplify by using v for v,,. Also recal that the synergy bonus was modeled as earning an extra
gfwp = Jv, if h obtains both units. The optimal strategy for, h, inthe ECA can be nicely described by partitioning the domain of
vauesto three regions:

VBl A =180,-Lb, B=R-L,2p C =82, 14
1+J 1+ 2+] 2+J

A. Optimal Behavior for hwhenV=v5 A = BO,l—iJD.
A.1 If v3 3 v, drop thefirst unit at any price, P 5 80,v3a. If v3 < v, drop the first unit a any price, P 5 80, mindv,v,aa .
A.2 Drop the second unit at price, P 5 v, maxav, vsaa.

Proofs and observations:

Step 1. Inregion A, h never wantsto stay IN long enough to win both units.

To win two units h must stay IN with both units beyond the clock price, P = v,. By dropping aunit a P = v, h stops the
auction, “wins one unit” (WOU) and earns, ~YWOUP = fv ? v,a. Suppose that h decidesto stay IN with both units an extraN
beyond P = v,, (aslongasP + N 2 1) anddropout & P = v, + N, if V; = v; doesnot drop by then. Recdl that giventhat V, = v,,
V1 |V1 3 vy, isdistributed uniformly on Bv,, 1a. With a probability %2 vy drops within the next N, h wins two units and earns:

Y2+ Jbv? 2ERV; v, + N 3 V; 3 v,d = BY2 + Jbv 2 2v, ? Na. With aprobability of 1i;27“, v; doesnot drop in that interval, h

stops the clock and wins one unit and earns Yv ? Yv, + Nbb. (Note that since we alow the possibility P = v, + N = 1, we arealso

allowing the strategy that assures winning two units.) Thus, expected profits from such a strategy, “possibly winning two units”

are \YWTUD = %BYZ +Jbv? 2va + %Z;WBV? vy ? Nbd = %ZB‘M +Jbv ? v,a + Bv ? v, ? Nba. However, sincev < %
N2 ? ? T

-J
aMYWTUP ? AYWOUbE = %B"{l +Jbv? v, 2 Y12 vohd = %BYl +Jbv? 12 < 0.
V2 N2

Step 2. Bidder h never wants to win one unit & aclock price, P > v, asit earns negative profits rather than zero profits with
no units won.

RulesA.1 and A.2 are the most genera rulesthat implement these conclusions. (Note that maxav,vs;a 3 v 3 minav,v,a. Also
note that the requirement P 5 80, minav, v,aa, rather than P 5 (0, Vv,a, which also assures winning no more than one unit, isto
avoid staying IN with two units beyond P = v when it isnot desirable to win even one unit.

Note that in region A, h's optimal strategy yields the same allocation and price asthe strategy: “Drop unit 1 at clock price,
P = 0 and stay IN with the second unit until the clock price reachesyour value, P = v.” Thus, theoretical predictionsin region A
for the allocation and price are identical to our previous work on multi-unit demand, clock auctions, with flat demand (Kagel and
Levin, in press). Further, in A, bidding yields the same alocations and prices asin a sealed-bid uniform price auction (see
Appendix A).

Behavior outside equilibrium in A: Dropping two units too early leaves no further action. Dropping the first unit early is
not an error. If h errs, stays with the first unit or both unitstoo latei.e, p > v, and realizesit, h ought to drop out right away.

B. Optimal Behavior for hwhenV =v5 B = -1 ,2p,
1+J " 2+4J

Let the clock price P® = §Y2 + Jbv ? 14. Sincev 5 8L, -Zbinregion B, PP2v=VY1+Jpv?2130>V2+Jpv?22=P° 21,
Thus,v2 P° < 1.

B.1 If v, < PP, “Go All The Way.”(ATW)

B.2 If v, 3 PP, drop both units at clock price P 5 §P°, maxaP®,v5aa.



Proofs and observations:

B.1 For any givenredlization V, = v, this strategy yields:
AATWP = Y2+ Jpv ? 2B8V3 |V, = Vod = Y2+ Jbv ? 21*2"2 =¥2+Jbv? 1?2 v, > Y2+ Jbv? 12 PP = 0. Winning one unit earns

profits of, \YWOUbP = v ? v,. (AYATWP 2 AYWOUbP = Y1+ Jbv? 13 0, sincev 3 -5, and strictly positive —v > _L-. Thus,
“Go All The Way,” dominates winning one unit or none.

B.2 Following the strategy prescribed in B.2, yields zero units with zero profits. Winning one unit earnsv? v, < 0 and
staying IN beyond the clock price, P = PP, to win two units earns,
Y2+ Jbv? 2ERV; v, 3 PPa < Y2+ Jbv? 2E8V,jv, = PPa = Y2+ Jbv? 1?2 PP = 0. It iseasy to show that staying aN > 0 beyond
P = PP, (aslong as PP + N < 1) and dropping out only if things don’t gowell also yields negative expected profits.

Behavior outside equilibrium in B: Case B.1. Dropping two units too early leaves no further action. If h dropped the
first unit too early h needsto stay with the second unit no longer than clock price P = maxav,vsa. Case B.2. (Thisisthe most
interesting out of equilibrium behavior.) If h realizesthat he stayed IN with both units too latei.e., athough P > maxaPP,v;a and
v, > PP then, if v, isstill IN Yv, 3 P, h must drop immediately (and nothing happens relative to the optimal policy). However,
if v, hasdropped OUT dready Yv, < Pb, then h should “Go All The Way,” in order to win both units.

C. Optimal Behavior for hwhenV=v5 C = 32_33,13.

Following the strategy prescribed in C yields two units and earns positive expected profits of: Y2 + Jbv ? 2E8V,4 > 0, since
v3 2_33 and E3V44 < 1. For any given realization V, = v, this strategy yields profits of AYATWp
= Y2+ Jbv? 2E8V; |V, = vpi = Y2+ Jbv 2 Y1+ v,b. On the other hand winning one unit earns "YWOUP = v ? v,. Thus,
&MATWP 2 AYWOUPA = 812+ Jbv 2 Y1+ vobd 2 Bv? vpda = a¥1+ Jbv? 18 3 a2297224 = 424> 0, v 5 b2, 1a.

Dropping early and winning zero units earn zero profits. Thus the prescribed strategy is optimal.
Behavior outside equilibrium in C: If h dropped both units there isnothing to do. If h erred and dropped one unit she

ought to stay IN with the second unit aslong asthe clock price, P < maxav,vsa, and drop the second unit immediately when
P 3 maxav,vsa.



