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Ladies and gentlemen, colleagues and friends,
Dear Tom

When [ was asked to present a laudation of my friend and mentor Tom
Spencer and his scientific work it was immediately clear to me that I could
not possibly decline this invitation, although I am notoriously reluctant to
travel far distances.

Let me begin my remarks by describing the times of Tom’s début in
science! In the late sixties, one of the central problems in theoretical and
mathematical physics was perceived to be whether quantum theory, local-
ity and the special theory of relativity are compatible with one another; in
other words, whether local, relativistic quantum field theories make sense
mathematically. There was overwhelming evidence that quantum electrody-
namics provides an astonishingly accurate description of processes involving
electrons, positrons and electromagnetic radiation. Until the late sixties,
this was really the only compelling example of a physically viable relativis-
tic quantum field theory. But it was studied purely perturbatively, and its
mathematical status remained very unclear. There was not a single model of
local relativistic quantum fields known that had been shown to be mathemat-
ically consistent. One of the leading promoters of the problem to rigorously
construct quantum field models was the late Arthur Wightman of Prince-
ton University, who had some very talented followers and students. One of
them was Arthur Jaffe, who, in the second half of the sixties, decided to join
forces with an eminent analyst, James Glimm, who had independently be-
gun to study models of relativistic quantum fields. Their declared goal was
to construct mathematically consistent models of local relativistic quantum
fields and to study their properties. Towards the end of the sixties, they had
made encouraging progress in constructing quantum field models on two-
dimensional Minkowski space following the Hamiltonian approach. At that



time, Jim attracted a very promising PhD student who would soon play an
important role in the Glimm-Jaffe endeavor.

Thomas Crawford Spencer was born on December 24, 1946, in the United
States of America. He went to school in the US and in Brazil. He studied
mathematics at Berkeley and then decided to return to the East Coast to
take up PhD studies in mathematics at the Courant Institute. Those were
difficult times for young Americans, because the war in Vietnam was raging,
and many of them were drafted into the United States armed forces — not few
of them to loose their future. Most fortunately, Tom succeeded to circum-
ambulate this fate and to start working on a PhD project on constructive
quantum field theory under the supervision of James Glimm. He earned his
doctorate in 1972 for a thesis entitled “Perturbations of the P(¢)s - Quantum
Field Hamiltonian”. He then continued to collaborate with Jim at Courant
until 1974. From 1974 to 1975, Tom was a postdoctoral researcher at Har-
vard University, in the group of Arthur Jaffe. I will never forget that, in the
fall of that year, my collaboration with Tom started. From 1975 till 1977,
he joined Jim at Rockefeller University in New York to serve as an associate
professor, until Rockefeller abolished its mathematics department. Between
1978 and 1980, he was a professor at the math department of Rutgers Uni-
versity. From there he returned to the Courant Institute, where he stayed
for six years. In 1986, he received an offer of a professorship in the School
of Mathematics of the Institute for Advanced Study at Princeton, where he
has been working ever since.

In 1983, Tom got married to Bridget Murphy. Bridget is an exceptionally
generous and understanding woman and furnishes a wonderful example of
how important it is for scientists to choose the right partners to share their
lives with. They have a daughter and a son.

But I fear Tom may think that I have already described somewhat too many
details of his biography. Thus, let’s proceed to highlight some of his main
scientific accomplishments.

It is characteristic of Tom’s scientific efforts that he always worked on
very concrete problems, but ones belonging to a major theme in theoretical
and mathematical physics. Here is a list of such themes:

1. Constructive quantum field theory
2. Phase transitions and spontaneous symmetry breaking
3. Critical phenomena and the idea of universality

4. Disordered systems



5. Chaotic dynamical systems

Let me mention some of Tom’s remarkable contributions to Theme 1. In

the very early seventies, under the influence of seminal work by Symanzik
and Nelson, it became customary to follow the euclidian functional integral
approach — based on the Wick rotation in the time variable to the imaginary
axis — rather than the Hamiltonian approach to construct relativistic quan-
tum field models, such as the P(¢)s - and the A@3 - models. This made the
quantum field problems look like problems in classical statistical mechanics.
Around the turn of the year from 1972 to 1973, Tom co-authored a paper
with James Glimm on the problem of removing the space-time cutoff in the
construction of a euclidian P(¢)s - model in two dimensions. They devised
a remarkable inductive construction to successively enlarge the space-time
domain where the interaction is turned on. Their ideas gave rise to the devel-
opment of cluster expansions for continuum systems, in particular quantum
field models, the first of which was the Glimm-Jaffe-Spencer cluster expan-
sion published in the celebrated volume 25 of the Springer Lecture Notes
in Physics that contains the proceedings of the 1973 Erice school. Glimm,
Jaffe and Spencer then went on to analyze the particle structure of two-
dimensional scalar quantum field models within the euclidian approach, thus
furnishing the basis for an application of Haag-Ruelle scattering theory to
those models. Tom then came up with an ingenious analysis of properties of
the Bethe-Salpeter kernel in P(¢), - models. In a joint paper with Francesco
Zirilli, he used those properties to prove asymptotic completeness for two-
particle scattering processes below the three-particle threshold. Their work
gave rise to many subsequent studies of scattering theory in quantum field
theory.
Glimm, Jaffe and Spencer were first to succeed in extending the Peierls ar-
gument and low-temperature expansions to one-component A¢* - theory in
two space-time dimensions, proving the existence of a phase transition, the
spontaneous breaking of the ¢ — —¢ symmetry and exponential decay of
connected Green functions.

This leads me to sketch some of Tom’s remarkable contributions to Theme
2: Towards the end of 1975, Barry Simon, Tom Spencer and I discovered a
method to analyze phase transitions and spontaneous symmetry breaking
in models with continuous symmetries and massless Goldstone modes, such
as the classical rotor- and Heisenberg models. The method was based on a
combination of an upper bound on the connected two-point correlation func-
tion derived from the Kallén-Lehmann representation of relativistic quan-
tum field theory with a lower bound on the two-point function expressing a
sum rule. Not surprisingly, our strategy was first applied to the continuum



)\|<;;]4 - euclidian field theory in three dimensions. Subsequently, an analogue
of the Kéallén-Lehmann representation was discovered for lattice models satis-
fying “reflection positivity”, leading to the method of “infrared bounds”, which,
as of today, remains the most successful method to study phase transitions
in models with continuous symmetries. This method was subsequently ex-
tended to certain quantum spin systems in work of Dyson, Lieb and Simon,
and others.
In work with Oliver McBryan, Tom proved a power-law decay estimate on
the spin-spin correlation in the 2D rotor model, using some clever contour
deformations in a statistical integral. This method became one among sev-
eral crucial technical ingredients in a subsequent study of the Berezinskii-
Kosterlitz-Thouless transition in 2D Coulomb gases, the 2D rotor model and
the 2D SOS model of interfaces. These systems can be represented as gases
of arbitrarily large neutral compounds of point-vortices whose free energies
are shown to tend to zero, as their diameter tends to infinity, provided the
temperature is small enough. Hence these gases are dilute at low enough
temperature. This work heralded the advent of a novel method called multi-
scale analysis. It was then applied — mutatis mutandis — to the analysis of
the phase transition in the one-dimensional Ising model with 1/r? - ferro-
magnetic spin-spin interactions, which had first appeared in an analysis of
the Kondo effect by Philip Anderson. Similar, simpler ideas yielded proofs of
existence of the phase transition in the 3D rotor model and of the deconfine-
ment transition in the 4D U(1) - lattice gauge theory; examples of systems
that can be represented as gases of vortex loops and -sheets.

Let’s speed up this review a little and proceed to talking about Theme
3, i.e., critical phenomena and the idea of universality. Tom was involved in
proving bounds on critical exponents characterizing continuous transitions
passing through a critical point. Among significant findings are bounds on
critical exponents for percolation and for disordered magnets and random
Schrédinger operators derived together with Jennifer and Lincoln Chayes and
Daniel Fisher. Most remarkable, however, is the result that, above dimen-
sion 4, the weakly self-avoiding walk behaves like simple random walk, which
David Brydges and Tom proved with the help of a new analytical tool called
lace expansion that involves an induction in the time-scale of the memory
of walks interpolating between simple and self-avoiding random walk. This
tool has later been successfully used in further work on self-avoiding walks
and on branched polymers by Brydges, Slade and their collaborators.
In the nineties, Tom became interested in understanding critical behavior and
universality in a family of 2D ferromagnetic Ising models (work with Pinson),
a large class of random surface models (with Naddaf, Conlon and Brydges)
and a 3D hyperbolic Sigma model (with Zirnbauer). The work on perturba-
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tions of the 2D Ising model had much impact on efforts by young Italians
around Gallavotti. These studies involved a mix of analytical methods that
are delights for courageous analysts, in particular rigorous renomalization
group methods, the Helffer-Sjostrand (-Witten) method exploiting convex-
ity, homogenization, the theory of singular integral operators, and new vari-
ants of central limit theorems, etc. Finally, in a very dedicated joint effort
with Disertori and Zirnbauer, Tom investigated the transition in a 3D su-
persymmetric hyperbolic Sigma model that mimics the Anderson transition
for random Schrédinger operators. In this work, the use of Ward identities
derived from supersymmetry was pioneered; ideas that, in the hands of Mas-
tropietro et al. have become an important tool. More recently, the DSZ
results have been extended to the edge-reinforced random walk by Disertori,
Sabot and Tarres, following suggestions by Gawedzki.

Let’s turn to Theme 4, disordered systems. Here, Tom’s most significant

results concern a proof of Anderson localization for a class of discrete ran-
dom Schroédinger operators in any dimension, for large disorder or in the band
tails, and for some 1D quasi-periodic Schrodinger operators. These results
represent subtle applications of multi-scale analysis combined with estimates
that may be called “large-deviation estimates with spatial structure”. The
analysis of localization for 1D quasi-periodic Schrodinger operators turned
out to be particularly tricky and might well be worth more than ten Martinis.
Interesting results on average Green functions and smoothness of the den-
sity of states of random band matrices were contributed by Disertori, Pinson
and Spencer, using a supersymmetric formalism. As far as I know, Tom was
instrumental in reviving interest in random matrix theory, where, in recent
years, spectacular advances have been made by various groups of researchers,
including Erdds and Yau and their collaborators.
Using a coarse-graining technique, partial success was scored in understand-
ing the phase transition in the 3D random-field Ising model, which subse-
quently was understood completely by Imbrie and by Bricmont and Kupi-
ainen. Finally, there was work by Imbrie and Spencer on various lattice
models of disordered systems.

The work on 1D quasi-periodic Schrodinger operators stimulated efforts
to understand the chaotic properties of the Chirikov standard map. A project
in this direction was courageously pursued by Lenart Carleson and Tom and
led to presumably hundreds of pages of unpublished work. A little part of
their program was recently brought to fruition by Mira Shamis and Tom.
They have proven bounds on the Lyapunov exponent of the standard map
based on the Thouless formula and estimates on the density of states of an
associated random Schrodinger operator.

Clearly, these remarks do not do justice to Tom’s efforts in studying chaotic



dynamical systems.

I would like to take another minute to talk about Tom’s outstanding qual-
ities as a colleague and friend. I first met Tom in the fall of 1973. Jim had
invited me to visit New York and give a seminar at the Courant Institute.
I thought I had proven the global Markov property for P(¢)s - models and
was looking forward to expose this exciting result. But when I arrived at
Courant, Ola Bratteli pointed out a serious gap in my proof. I felt utterly
discouraged and had to change the topic of my seminar. I decided to explain
my proof of exponential ¢ - bounds, besides a new proof of the local Markov
property. At the end of my talk, Tom qualified my results as interesting,
and, in his paper on the Bethe-Salpeter kernel, he generously quoted my ex-
ponential bounds. This experience made it clear for me that Tom was truly
a gentleman scientist!

Tom and I enjoyed a ten-year period of intense collaboration — from 1975 till
1985 — that, on all counts, was a great success. It is possible that without
Barry Simon, who first proposed that the three of us collaborate on phase
transitions, my collaboration with Tom might not have started. I am happy
to acknowledge on today’s occasion that the success Tom and I scored is
most essentially due to all his wonderful and sometimes quite magical math-
ematical ideas that enabled us to climb some major peaks in the landscape
of mathematical physics. Tom was my mountain guide in these endeavors
and my mathematical mentor.

Our collaboration ended, because we live far apart from each other, geo-
graphically, and because we started to have ever heavier duties as professors
and to raise families. But our friendship has lasted to this day. In fairly
frequent visits at the Institute for Advanced Study, I could witness Tom’s
exceptional generosity towards young colleagues. It is not rare that visitors
at the IAS get discouraged; for example, because success in a project is more
elusive than hoped. Sooner or later, most visitors of the School of Mathe-
matics end up in Tom’s office, telling him what they are trying to accomplish
and seeking his advice. One of Tom’s great qualities is that he has very di-
verse interests and broad experience and, hence, is often able to suggest to
his visitors a new perspective or some simplifying ideas. In discussions he
shows admirable patience. He is genuinely modest and kind.

Dear Tom: I feel very lucky to have had you as a mentor and partner for
scientific endeavors and adventures and, most importantly, as a close friend.
I congratulate you on today’s highly deserved recognition, and I wish you all
the best for the future!

Thank you!



