1 **Supplementary Material** 2

3 **Supplementary information to Section 7.2**

5 The burning embers diagrams (Figure 7.1, 7.2 and 7.3) outline risks associated with climate 6 change as a function of global warming, socio-economic development and mitigation choices. 7 Diagrams indicate transitions between undetectable, moderate, high, and very high risks to 8 humans and ecosystems. The method is based on a literature review of estimated impacts at 9 different global mean surface temperature levels (O'Neill et al. 2017) on different components of 10 desertification, land degradation and food security, including emerging literature on Shared 11 Socio-economic Pathways (SSPs) as well as literature from IPCC AR5 and SR15.

12

13 Most studies focus on changes in hazards as a function of climate change (e.g. as represented by 14 RCP scenarios or other climate change scenarios) or climate change superimposed on present-day 15 exposure. Only a limited number of studies focus on changes in risk as a function of both RCPs 16 and SSPs (climate and socio-economic change and adaptation decisions). This was addressed by 17 splitting the embers into different figures. Figure 7.1 focuses on the impact of climate change on 18 risk, under present-day exposure and vulnerability. Figure 7.2 examines the relationship between 19 climate change and risks under two SSPs (SSP1 and SSP3). Figure 7.3 depicts risks to humans 20 and ecosystems as a function of the land area employed for mitigation through bioenergy 21 plantations.

22

23 Further, a formal expert elicitation protocol, based on the modified-Delphi technique (Mukherjee 24 et al. 2015) and the Sheffield Elicitation Framework (Oakley and O'Hagan 2016; Gosling 2018), 25 was followed to develop threshold judgments on risk transitions. Specifically, experts participated 26 in a multi-round elicitation process, with feedback of group opinion provided after each round: 27 the first two rounds involved independent anonymous threshold judgment, and the final round 28 involved a group consensus discussion (von der Gracht 2012). To strengthen the rigor of 29 developing expert consensus on risk transitions (Hasson and Keeney 2011), the protocol pre-30 specified the following prior to beginning the elicitation exercise (Grant et al. 2018): the research 31 question, eligibility criteria and strategy to recruit experts, research materials, data collection 32 procedure, and analysis plan. This systematic process of developing expert consensus on 33 threshold judgments for risk transitions can better inform subsequent analytical approaches—an 34 approach that may be further developed for use in future IPCC cycles (Bojke et al. 2010; Sperber 35 et al. 2013). References for the current and past assessments are listed at the end of this document 36 and by the relevant tables.

37

U	<i>,</i>
3	8

Table SM7.1: literature considered in the expert judgement of risk transitions for figure 7.1

Reference	Risk	variable (unit)	Directio n of impact	climate scenario	Time fram e	D/A of current impact	Impact at 1 degree	Impac t at 2 degree	Impac t at 3 degree	ct at	Imp act at 4.5 degr ee	Adapta tion potenti al	(Includin
AVAILABILITY													
Rosenzweig, Cynthia,	Availabi	yield	Strong	NA		-	See	Maize	Maize	Maize	Maiz	Betwee	Use RCPs
Joshua Elliott, Delphine	lity		negative				Figure	- 20 to	about -	- +15	e is	n 3 and	so could
Deryng, Alex C. Ruane,	Yield		effect on				1. Maize	+5 %	20 to	to	now	4	examine
Christoph Müller, Almut			yields,				mid to	yeild	+5%	minus	all	degrees	yield

Arneth, Kenneth J. Boote, et al. 2014. "Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison." Proceedings of the National Academy of Sciences. https://doi.org/10.1073/p nas.1222463110.			especiall y at higher levels of warming and at lower latitudes,				hight latitude is -10 to +15 % yield change	change	yield change in mid latitud e and ALL negati ve in low latiude	20% yield chang e in mid latitud e. Catast rophic in low latitud e with - 10 to - 60 Perce nt chang e!	negat ive in mid latitu de	seems to me catstrop hic in low latitude s for maize, wheat also signific ant decline s around 4 degrees and same for size	according to different pathways.
Zscheischler, Jakob, Seth Westra, Bart J.J.M. Van Den Hurk, Sonia I. Seneviratne, Philip J. Ward, Andy Pitman, Amir Aghakouchak, et al. 2018. "Future Climate Risk from Compound Events." Nature Climate Change. https://doi.org/10.1038/s 41558-018-0156-3.	Availabi lity (crop failure)	crop yield	" increases the likelihoo d of such events consider ably, and may make events of the rarity of the Russian event foreseea ble and to some extent predictab le"	Review	2010	-	-	-	-	-	-	-	
IPCC Special Report on Global Warming of 1.5°C, 2018	Availabi lity (crop yields)	yield	Decrease to yields	NA		-	-	-	-	-	-	Limitin g global warmin g to 1.5°C compar ed to 2°C would result in a lower global reducti on in crop yields	
Medina, Angel, Asya Akbar, Alaa Baazeem, Alicia Rodriguez, and Naresh Magan. 2017. "Climate Change, Food Security and Mycotoxins: Do We Know Enough?" Fungal Biology Reviews. https://doi.org/10.1016/j. fbr.2017.04.002.	Availabi lity (increase d loss of crops and livestock ; increase d dpest burden, increase d disease burden; higher post- harvest losses due to mycotox ins)	infection of staple food commodi ties by fungal diseases pre- harvest and by spoilage fungi post- harvest	reduced availabili ty of food	NA		-	-	-	-	-	-	,	low to moderate

Paterson, R. R.M., and N. Lima. 2011. "Further Mycotoxin Effects from Climate Change." Food Research International. https://doi.org/10.1016/j. foodres.2011.05.038.	Availabi lity (increase d loss of crops and livestock ; increase d gest burden, increase d disease burden, increase d disease d di	crops after harvest	reduced availabili ty of food	NA	NA	-	-		-	-	-		unclear. "Crops introduce d to exploit altered climate may be subject to fewer mycotoxi n producing fungi (the "Parasites Lost" phenomen on). Increased mycotoxi ns and UV radiation may cause fungi to mutate on crops and produce different mycotoxi ns"
Magan, N., A. Medina, and D. Aldred. 2011. "Possible Climate- Change Effects on Mycotoxin Contamination of Food Crops Pre- and Postharvest." Plant Pathology. https://doi.org/10.1111/j. 1365- 3059.2010.02412.x.	Availabi lity (increase d loss of crops and livestock ; increase d dest burden, increase d disease burden, higher post- harvest losses due to mycotox ins)	crops after harvest	reduced availabili ty of food	NA	NA	-	-	-	-	-	-	from high risk to perman ent betwee n 3 and 5 degrees	low to moderate
Rivera-Ferre, M. G., M. Di Masso, I. Vara, M. Cuellar, A. Calle, M. Mailhos, F. López-i- Gelats, G. Bhatta, and D. Gallar. 2016. "Local Agriculture Traditional Knowledge to Ensure Food Availability in a Changing Climate: Revisiting Water Management Practices in the Indo-Gangetic Plains." Agroecology and Sustainable Food Systems. https://doi.org/10.1080/2 1683565.2016.1215368.	Availabi lity (increase d loss of crops and livestock ; increase d pest burden,	crop yield	reduced availabili ty of food	NA	NA	-	-		-	-	-	-	Local\ntra ditional knowledg e in agricultur e (LTKA) is proposed in this article\nas valid knowledg e to ensure food availabilit y under climate change,\n given its long experienc e in dealing with climate variability

Webber, Jesse B. Naab, Dilys S. MacCarthy, (modele Myriam Adam, Frank d crop Ewert, John P.A. yield)in 1 and corp yield)moderate 2 with ("despite success intensif ication were the key always factor the key always factor the key always factor the key in the West African Sudan Savanna."n 1 and moderate 2.0 °c on Cereal Yields intensif the key always factor the key in the West African Sudan Savanna."n 1 and corp intensif the key always factor the key in the West African Sudan Savanna."Hutps://doi.org/10.1088/1 748-9326/aaab40.Image Savana intensific intensific n the key intensific intensific n the key intensific intensifi	Zimmermann, Andrea, Heidi Webber, Gang Zhao, Frank Ewert, Johannes Kros, Joost Wolf, Wolfgang Britz, and Wim de Vries. 2017. "Climate Change Impacts on Crop Yields, Land Use and Environment in Response to Crop Sowing Dates and Thermal Time Requirements." Agricultural Systems. https://doi.org/10.1016/j. agsy.2017.07.007.	Availabi lity (increase d yields if manage ment assumpti ons hold, thermal manage ment)	crop yields in Europe	increase d yields	three SRES climate change scenarios to 2050	three SRE S clima te chan ge scena rios to 2050	-	-	-	-	-	-		high
Testaye, Kindie, P. H. Zaidi, Sika Gbegbelegbe, Christian Boeber, Dil Bahadur Rahut, Fite Getaneh, K. Scetharam, Olaf Erenstein, and Clare Stirling 2017. "Climate Change Impacts and Potential Benefits of Heat-Tolerant Maize in South Asia." Theoretical and Asia." Theoretical and Asia." Theoretical nud Applied Climatology. https://doi.org/10.1007/s 00704-016-1931-6.Availabi yieldcrop yield and i.snegative and i.sNA"at and and i.sbetwee n 1.0 and 1.5low and 1.5Scheelbeek, Pauline F. D., Frances A. Bird, Hanna L. Tuomisto, Rosenary Green, Vieldba Chalabie Elizabeth Allen, And Haines, and Alan D. Dangour. 2018.Availabi yield sidecrop yield sidenegative sinNA"at and a piel sinnal 1.5NaScheelbeek, Pauline F. D., Frances A. Bird, Hanna L. Tuomisto, Rosenary Green, Advi Haines, and Alan D. Dangour. 2018.Availabi sin sidelcrop yield sidelnegative sinNAmean sin sin	Dilys S. MacCarthy, Myriam Adam, Frank Ewert, John P.A. Lamers, et al. 2018. "Impacts of 1.5 versus 2.0 °c on Cereal Yields in the West African Sudan Savanna." Environmental Research Letters. https://doi.org/10.1088/1	(modele d crop	crop yield	negative	NA				-		-		2 with success of intensif ication the key factor making the differen ce betwee n whether risk remains modera te or red to	yields were always two to three times higher with intensifica tion, irrespectiv
D., Frances A. Bird, lity yield ' Hanna L. Tuomisto, (modele Rosemary Green, d crop Francesca B. Harris, yield) es of Francesca B. Harris, yield) fruits Edward J. M. Joy, Zaid Chalabi, Elizabeth Allen, Andy Haines, and Alan D. Dangour. 2018. "Effect of Environmental Changes on Vegetable and Legume Yields and Nutritional Quality." Proceedings of the National Academy of Sciences. https://doi.org/10.1073/p	Zaidi, Sika Gbegbelegbe, Christian Boeber, Dil Bahadur Rahut, Fite Getaneh, K. Seetharam, Olaf Erenstein, and Clare Stirling. 2017. "Climate Change Impacts and Potential Benefits of Heat-Tolerant Maize in South Asia." Theoretical and Applied Climatology. https://doi.org/10.1007/s	lity (modele d crop yield)	yield	negative	NA		-	-	region al scale, they found maize yields decline s in 2050 of up to 12% to 14% in rainfed and irrigate d	-	-	-	betwee n 1.0	low
Rippke, Ulrike, Julian Availabi crop negative NA to "30 betwee low	D., Frances A. Bird, Hanna L. Tuomisto, Rosemary Green, Francesca B. Harris, Edward J. M. Joy, Zaid Chalabi, Elizabeth Allen, Andy Haines, and Alan D. Dangour. 2018. "Effect of Environmental Changes on Vegetable and Legume Yields and Nutritional Quality." Proceedings of the National Academy of Sciences. https://doi.org/10.1073/p nas.1800442115.	lity (modele d crop yield)	yield			to	-		- "30-	-	yield declin es of fruits -	-	betwee	low

Jarvis, Sonja J. Vermeulen, Louis Parker, Flora Mer, Bernd Diekkrüger, Andrew J. Challinor, and Mark Howden. 2016. "Timescales of Transformational Climate Change Adaptation in Sub- Saharan African Agriculture." Nature Climate Change. https://doi.org/10.1038/n climate2947.	(modele d crop yield)				of 21st centu ry			comm on bean growin g area and 20- 40% of banana growin g areas in Afria will lose viabilit y in 2078- 2098 with a global temper ature increas e of 2.6 and 4.0"				and 4.0 (""30- 60% of commo n bean growin banana growin g area and 20- 40% of banana growin g areas in Afria will lose viabilit y in 2078- 2098 with a global tempera ture increas e of 2.6 and 4.0")	
Bisbis, M. B., N. Gruda, and M. Blanke, 2018: Potential impacts of climate change on vegetable production and product quality - A review. J. Clean. Prod., 170, 1602–1620, doi:10.1016/j.jclepro.201 7.09.224.	Availabi lity (modele d fruit crop yield), and utilizatio n (reduced quality, more spoilage, reduced nutrition)	crop yield	negative	NA		-	-	-	-	-	-	betwee n 1.0 and 1.5	medium
Tebaldi, Claudia, and David Lobell. 2018. "Estimated Impacts of Emission Reductions on Wheat and Maize Crops." Climatic Change. https://doi.org/10.1007/s 10584-015-1537-5.	A vailabi lity (models relation between climate variables , CO2 concentr ations, and yields)	crop yield	negative	RCP4.5 and RCP8.5	short (2021 - 2040) , medi um (2041 - 2060) and long (2061 - 2080) time horiz ons	-	-	"critica l or "lethal " heat extrem e	-	-	-	modeli ng results in RCP8.5 (triplin g of lethal heat extreme s), modeli ng results in RCP4.5 (doubli ng of lethal heat extreme s) towards end of 21st century	low
Schleussner, Carl Friedrich, Delphine Deryng, Christoph Müller, Joshua Elliott, Fahad Saeed, Christian Folberth, Wenfeng Liu, et al. 2018. "Crop Productivity Changes in 1.5 °c and 2 °c Worlds under Climate Sensitivity Uncertainty."	Availabi lity (reduced yields and soil fertility and increase d land degradat ion for	yield	negative for half a degree additiona l warming (1.5 to 2)	HAPPI		-	-	"half a degree warmi ng will also lead to more extrem e low yields, in	-	-	-	century	

	1		1	1							
Environmental Research Letters. https://doi.org/10.1088/1 748-9326/aab63b.	some regions and crops)						particu lar over tropica 1 regions				
Ovalle-Rivera, Oriana, Peter Läderach, Christian Bunn, Michael Obersteiner, and Götz Schroth. 2015. "Projected Shifts in Coffea Arabica Suitability among Major Global Producing Regions Due to Climate Change." PLoS ONE. https://doi.org/10.1371/j ournal.pone.0124155.	Availabi lity (reduced yields and soil fertility and increase d land degradat ion for some regions and crops)	yield	Decrease in coffee yields	NA	-	-	-	-	-	-	
Bunn, Christian, Peter Läderach, Oriana Ovalle Rivera, and Dieter Kirschke. 2015. "A Bitter Cup: Climate Change Profile of Global Production of Arabica and Robusta Coffee." Climatic Change. https://doi.org/10.1007/s 10584-014-1306-x.	Availabi lity (reduced yields and soil fertility and increase d land degradat ion for some regions and crops)	yield	Decrease in coffee yields by 50%		-	-	-	-	-	-	
Roberts, Michael J., and Wolfram Schlenker. 2013. "Identifying Supply and Demand Elasticities of Agricultural Commodities: Implications for the US Ethanol Mandate." American Economic Review. https://doi.org/10.1257/a er.103.6.2265. 2009	Availabi lity (reduced yields and soil fertility and increase d land degradat ion for some regions and crops)	yield	producti vity of major crops will decline as a result of climate change, particula rly from increasin g warming	NA	-	-	-	-	-	-	
Peng, S., J. Huang, J. E. Sheehy, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeno, G. S. Khush, and K. G. Cassman. 2004. "Rice Yields Decline with Higher Night Temperature from Global Warming." Proceedings of the National Academy of Sciences. https://doi.org/10.1073/p nas.0403720101.	Availabi lity (reduced yields and soil fertility and increase d land degradat ion for some regions and crops)	grain yields	Grain yield of rice declined 10% for each 1°C increase in night- time temperat ure during the dry season	NA	-	-10%	-20%	-30%	-40%	-50%	
Asseng, S., F. Ewert, P. Martre, R. P. Rötter, D. B. Lobell, D. Cammarano, B. A. Kimball, et al. 2015. "Rising Temperatures Reduce Global Wheat Production." Nature Climate Change. https://doi.org/10.1038/n climate2470. et al., 2015	Availabi lity (reduced yields and soil fertility and increase d land degradat ion for some	soy bean & maize yields	while maize and soy bean yields are expected to decline by 6% for each day	NA	-	-6%/day above 30°C	- 12%/d ay above 30°C	- 18%/d ay above 30°C	- 24%/ day above 30°C	- 30%/ day abov e 30°C	

	regions and crops)		above 30°C.										
Asseng, Senthold, Davide Cammarano, Bruno Basso, Uran Chung, Phillip D. Alderman, Kai Sonder, Matthew Reynolds, and David B. Lobell. 2017. "Hot Spots of Wheat Yield Decline with Rising Temperatures." Global Change Biology. https://doi.org/10.1111/g cb.13530.	Availabi lity (reduced yields and soil fertility and increase d land degradat ion for some regions and	wheat yields	wheat yields are expected to decline by 6% for each 1°C increase;	NA		warmin g is already slowing yield gains at a majorit y of wheat- growin g location s.	-0.06	-0.12	-0.18	-0.24	-0.3	tiping point above 28 degrees C, no yield	medium
Porter, John R., Liyong Xie, Andrew J Challinor, Kevern Cochrane, S. Mark Howden, Muhammad Mohsin Iqbal, David B. Lobell, and Maria Isabel Travasso. 2014. "Food Security and Food Production Systems." In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 485–533. https://doi.org/10.1111/j. 1728-	crops) Availabi lity (reduced yields and soil fertility and increase d land degradat ion for some regions and crops)	crop yields all crops	If global temperat ure increases beyond 3°C it will have negative yield impacts on all crops	NA		-	-	-	negati ve yield impact	-	-		
Schleussner, Carl Friedrich, Tabea K. Lissner, Erich M. Fischer, Jan Wohland, Mahé Perrette, Antonius Golly, Joeri Rogelj, et al. 2016. "Differential Climate Impacts for Policy-Relevant Limits to Global Warming: The Case of 1.5 °c and 2 °c." Earth System Dynamics. https://doi.org/10.5194/e sd-7-327-2016.	Availabi lity (reduced yields and soil fertility and increase d land degradat ion for some regions and crops)	competiti on for land	increasin g competit ion for land from the expansio n of bioenerg y	NA		-	-	-	-	-	-		
Fischer, Günther, Mahendra Shah, Francesco N. Tubiello, and Harrij Van Velhuizen. 2005. "Socio- Economic and Climate Change Impacts on Agriculture: An Integrated Assessment, 1990-2080." In Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rs tb.2005.1744.	Availabi lity (reduced yields and soil fertility and increase d land degradat ion for some regions and		Decrease in yields	NA		-	10%	10- 20%	10-20%	10-20%			on-farm and via market mechanis ms
Smith, Pete, R. Stuart Haszeldine, and Stephen M. Smith. 2016. "Preliminary Assessment of the Potential for, and Limitations to, Terrestrial Negative	Availabi lity (reduced yields and soil fertility and	soil	reduced yields	NA	NA	-	-	-	-	-	-	-	moderate

Emission Technologies in the UK." Environmental Science: Processes and Impacts.	increase d land degradat ion for some												
https://doi.org/10.1039/c 6em00386a.	regions and crops)												
Challinor, A. J., J. Watson, D. B. Lobell, S. M. Howden, D. R. Smith, and N. Chhetri. 2014. "A Meta-Analysis of Crop Yield under Climate Change and Adaptation." Nature Climate Change. https://doi.org/10.1038/n climate2153.	Availabi lity (reduced yields and soil fertility and increase d land degradat ion for some regions and crops)	crop yield	reduced yields	NA	2050 to end of centu ry	-	-	-	-	-	-	likely betwee n 1.5 and 2.0	low to moderate
FAO 2018a	Availabi lity (reduced yields and soil fertility and increase d land degradat ion for some regions and crops)	crop yield	reduced yields	NA		-	-	-	-	-	-	likely betwee n 1.0 and 1.5	low to moderate
Roberts, Michael J., and Wolfram Schlenker. 2013. "Identifying Supply and Demand Elasticities of Agricultural Commodities: Implications for the US Ethanol Mandate." American Economic Review. https://doi.org/10.1257/a er.103.6.2265. 2009	Availabi lity (reduced yields and soil fertility and increase d land degradat ion for some regions and crops)(3 crops)		Decrease in yields			-	30-46%	30- 46%	63- 80%	63- 80%	-		
Richard A Betts, Lorenzo Alfieri, John Caesar, Luc Feyen, Laila Gohar, Aristeidis Koutroulis, et al. 2018. "Subject Areas : Author for Correspondence : Changes in Climate Extremes , Fresh Water Availability and Vulnerability to Food Insecurity Projected at 1 . 5 ° C and 2 ° C Global Warming with a Higher- Resolution Global Climate Model." et al, 2018	A vailabi lity (reduced yields and soil fertility and increase d land degradat ion for some regions and crops)(fo od crops)	yield	decreae	NA		-	-	-	-	-	-		
Tigchelaar, M, D Battisti, R.L Naylor, and D.K Ray. 2018. "Probability of Globally Synchronized Maize Production Shocks." Proceedings of the National Academy of	Availabi lity (reduced yields and soil fertility and increase		Decrease in yields	NA		-	-	7-10%	-	87%	-		

0: 115 (20) (644	11 1		1	1	1		1	1	1			1	
Sciences 115 (26): 6644– 49.	d land degradat ion for some regions and crops)(
Leng, Guoyong, and Jim Hall. 2019. "Crop Yield Sensitivity of Global Major Agricultural Countries to Droughts and the Projected Changes in the Future." Science of the Total Environment. https://doi.org/10.1016/j. scitotenv.2018.10.434.	Maize) Availabi lity (reduced yields and soil fertility and increase d land degradat ion for some regions and crops)(si		Declinin g yield (but varies between crops and regions)	NA		-	-	-	-	-	-		Study doesn't consider adaptation s
Bocchiola, D., L. Brunetti, A. Soncini, F. Polinelli, and M. Gianinetto. 2019. "Impact of Climate Change on Agricultural Productivity and Food Security in the Himalayas: A Case Study in Nepal." Agricultural Systems. https://doi.org/10.1016/j. agsy.2019.01.008.	x crops) Availabi lity (reduced yields and soil fertility and increase d land degradat ion for some regions and crops)(w heat, rice, maize)		Declinin g	NA		-	-	-	-	-	-		Increasing altitude - increases yield for maize and rice slightly
Rozenzweig et al. 2017	Availabi lity (simulat ed wheat and maize yield changes)	crop yield	negative	AgMIP coordinate d global and regional assessment (CGRA)		-	-	-	-	-	-	betwee n 1.5 and 2.0	low
Parkes et al. 2017	Availabi lity (simulat ed wheat and maize yield changes)	crop yield	negative	NA		-	-	-	-	-	-	betwee n 1.0 and 1.5	low
Lombardozzi, Danica L., Nicholas G. Smith, Susan J. Cheng, Jeffrey S. Dukes, Thomas D. Sharkey, Alistair Rogers, Rosie Fisher, and Gordon B. Bonan. 2018. "Triose Phosphate Limitation in Photosynthesis Models Reduces Leaf Photosynthesis and Global Terrestrial Carbon Storage." Environmental Research Letters. https://doi.org/10.1088/1 748-9326/aacf68.	Availabi lity (Yield)	yield	positive effect of CO2 on future crop yields muted by negative impacts of climate	CESM/CL M4.5 under RCP8.5	2006-2100	-	-	-	-	Corn: -10 to +20% Whea t +40 to +100 %; Soy - 10 to +5 %; Rice +10 to +50%	-		
Chen, Y. et al. (2018) ESD Impacts of climate change and climate	Availabi lity (Yield)	yield	decrease in organic	NA		-	-	-	-	-	-		

	1	1			1	1						
extremes on major crops productivity in China at a global warming of 1.5			matter in soil, soil erosion									
and 2.0C Leng, G. (2018) SOTE Keeping global warming within 1.5C reduces future risk of yield loss in the United States: A probabilistic modeling approach	Availabi lity (Yield)	yield		NA	-	-	-	-	-	-		
Byers, Edward, Matthew Gidden, David Leclère, Juraj Balkovic, Peter Burek, Kristie Ebi, Peter Greve, et al. 2018. "Global Exposure and Vulnerability to Multi- Sector Development and Climate Change Hotspots." Environmental Research Letters 13 (5): 055012. https://doi.org/10.1088/1 748-9326/aabf45.	Availabi lity (Yield)	yield		NA	-	-	-	-	-	-		
Xie, Wei, Wei Xiong, Jie Pan, Tariq Ali, Qi Cui, Dabo Guan, Jing Meng, Nathaniel D. Mueller, Erda Lin, and Steven J. Davis. 2018. "Decreases in Global Beer Supply Due to Extreme Drought and Heat." Nature Plants. https://doi.org/10.1038/s 41477-018-0263-1.	Availabi lity barley yields (beer)	yield	Decrease in barley yield, consump tion (and hence global beer supply)	NA	-	-	-3%	-10%	-17%	-		
Leng, Guoyong, and Jim Hall. 2019. "Crop Yield Sensitivity of Global Major Agricultural Countries to Droughts and the Projected Changes in the Future." Science of the Total Environment. https://doi.org/10.1016/j. scitotenv.2018.10.434.	Availabi lity Corn Yields	yield	Decrease to yields.	NA	2.5% decreas e of corn yield for the historic al period, which is reduced to 1.8% if account ing for the effects of corn growin g pattern changes	Negativ e corn yield response to warmer growing season, largest yield reductio n up to 20% by 1° increase of temperat ure	majorit y of impact s will be driven by trends in temper ature rather than precipi tation	-	-	-	Negativ e corn yield respons e to warmer growin g season	Corn yield is predicted to decrease by 20~40% by 2050s
Leng, Guoyong. 2018. "Keeping Global Warming within 1.5 °C Reduces Future Risk of Yield Loss in the United States: A Probabilistic Modeling Approach." Science of the Total Environment. https://doi.org/10.1016/j. scitotenv.2018.06.344.	Availabi lity crop yields	yield	Decrease in yields	NA	-	-	-	-	-	-		
Su, B. et al. (2018) Drought losses in China might double between the 1.5C and 2.0C warming, PNAS	Availabi lity crop yields	yield	Decrease in yields	NA	-	-	-	-	-	-		
Zhao, Chuang, Bing Liu, Shilong Piao, Xuhui Wang, David B. Lobell, Yao Huang, Mengtian	Availabi lity maize yields	yield, productio n/ per hectare	Decrease in yield	NA	-	-	-	-	-	-		

Schmidhuber, J., and F. N. Tubiello. 2007.	Access Price	Price	increase in price	NA	-	-	-	80%	170%	-	current period	
ACCESS	Access	Drico	inorman	NA				800/	170%		ourroat	
Shinichiro Fujimori, Petr Havlík, Hugo Valin, Benjamin Leon Bodirsky, Jonathan C. Doelman, Thomas Fellmann, et al. 2018. "Risk of Increased Food Insecurity under Stringent Global Climate Change Mitigation Policy." Nature Climate Change 8 (8): 699–703. https://doi.org/10.1038/s 41558-018-0230-x.	Mitigati on policy combine d with climate effect on yields	available land		NA	-	-	-	-	-	-		
Wyers, S.S.; M. R. Smith, S. Guth, C. D. Golden, B. Vaitla, N. D. Mueller, A. D. Dangour, and P. Huybers, 2017: Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annu. Rev. Public Health, 38, 259–277, doi:10.1146/annurev- publhealth-031816- 044356. http://www.annualreview s.org/doi/10.1146/annure v-publhealth-031816- 044356. Hasegawa, Tomoko,	Availabi lity yield declines	yield		NA	-	-	-	-	-	-		adaptation could lead to crop yields that are 7-15% dains will be highest in temperate areas but will be unlikely to help tropical maize and wheat productio n
Grassini, Patricio, Kent M. Eskridge, and Kenneth G. Cassman. 2013. "Distinguishing between Yield Advances and Yield Plateaus in Historical Crop Production Trends." Nature Communications. https://doi.org/10.1038/n comms3918.	Availabi lity Yield	yield	yield losses/pl ateauing	NA	-	-	-	-	-	-		
Lin, M., and P. Huybers. 2012. "Reckoning Wheat Yield Trends." Environmental Research Letters. https://doi.org/10.1088/1 748-9326/7/2/024016.	Availabi lity Yield	yield	yield losses/pl ateauing	NA	-	-	-	-	-	-		
National Academy of Sciences. https://doi.org/10.1073/p nas.1701762114. Brisson, Nadine, Philippe Gate, David Gouache, Gilles Charmet, François Xavier Oury, and Frédéric Huard. 2010. "Why Are Wheat Yields Stagnating in Europe? A Comprehensive Data Analysis for France." Field Crops Research. https://doi.org/10.1016/j. fcr.2010.07.012.	Availabi lity Yield	yield	yield losses/pl ateauing	NA	-	-	-	-	-	-		
Huang, et al. 2017. "Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates." Proceedings of the National Academy of												

"Global Food Security under Climate Change." Proceedings of the National Academy of Sciences.	(cereal)										(timewi se)	
https://doi.org/10.1073/p nas.0701976104., 2007 IPCC AR4 (Easterling et	Access	price	increase	NA	 -	10-30%	10-	10-	10-	10-		
al, 2007)	Price (cereal)		in price				30%	40%	40%	40%		
Parry, M. L., C. Rosenzweig, A. Iglesias, M. Livermore, and G. Fischer. 2004. "Effects of Climate Change on Global Food Production under SRES Emissions and Socio-Economic Scenarios." Global Environmental Change. https://doi.org/10.1016/j. gloenvcha.2003.10.008.	Access Price (food crops)	Price	increase in price	NA	-	-	5-35%	-	-	-		Increase fertiliser and pesticide applicatio n, irrigation
Fujimori, Shinichiro, Tomoko Hasegawa, Joeri Rogelj, Xuanming Su, Petr Havlik, Volker Krey, Kiyoshi Takahashi, and Keywan Riahi. 2018. "Inclusive Climate Change Mitigation and Food Security Policy under 1.5 °C Climate Goal." Environmental Research Letters 13 (7): 074033. https://doi.org/10.1088/1 748-9326/aad0f7.	Access Price (food crops)	price	increase in price	NA	-	-	-	-	-	-		food policy scenarios (internatio nal aid, domestic reallocatio n, bioenergy tax)
Hertel, Thomas W., Marshall B. Burke, and David B. Lobell. 2010. "The Poverty Implications of Climate- Induced Crop Yield Changes by 2030." Global Environmental Change. https://doi.org/10.1016/j. gloenvcha.2010.07.001.	Access Price (major staples)	Price	increase in price	NA	3.60%	10-15%	-	-	-	-		new crop varieties, significant expansion of irrigation Infrastruct ure
UNCCD 2017	Access (disprop ortionate impact on low- income consume rs, in particula particula lack of resource s to purchase food)	soil health	negative	NA	-	-	-	-	-	-		low (soil health provides key adaptation option, without which lit reviewed by UNCCD points towards low adaptation potential)
Vermeulen, Sonja J., Bruce Campbell, and John S. Ingram. 2012. "Climate Change and Food Systems." SSRN. https://doi.org/10.1146/a nnurev-environ-020411- 130608.	Access (inability to invest in adaptatio n and diversifi cation measure s to endure price rises)	agricultur al yields and earnings, food prices, reliability of delivery, food quality, and, notably,	reduced access to food	NA	-	-	-	-	-	-		low

		food safety										
Morris, George Paterson, Stefan Reis, Sheila Anne Beck, Lora Elderkin Fleming, William Neil Adger, Timothy Guy Benton, and Michael Harold Depledge. 2017. "Scoping the Proximal and Distal Dimensions of Climate Change on Health and Wellbeing." Environmental Health: A Global Access Science Source. https://doi.org/10.1186/s 12940-017-0329-y.	Access (indirect impacts due to spatial dislocati on of consupti on from producti on for many societies)	crop yield	reduced access to food	GGCMs	-	-	-	-	-	-	strong negativ e effects of climate change, especial ly at higher levels of warmin g and at low latitude s	
FAO 2016a	Access (loss of agricultu ral income due to reduced yields and higher costs of producti on inputs, such as water, limits ability to buy food)	crop yield	negative	NA	-	-	-	-	-	-	likely 1.0 and 1.5	low to moderate
Abid, Muhammad, Uwe A. Schneider, and Jürgen Scheffran. 2016. "Adaptation to Climate Change and Its Impacts on Food Productivity and Crop Income: Perspectives of Farmers in Rural Pakistan." Journal of Rural Studies. https://doi.org/10.1016/j. jrurstud.2016.08.005.	Access (loss of agricultu ral income	farm income	negative	NA	-	-	-	-	-	-	likely 1.0 and 1.5	low
Harvey, Celia A., Zo Lalaina Rakotobe, Nalini S. Rao, Radhika Dave, Hery Razafimahatratra, Rivo Hasinandrianina Rabarijohn, Haingo Rajaofara, and James L. MacKinnon. 2014. "Extreme Vulnerability of Smallholder Farmers to Agricultural Risks and Climate Change in Madagascar." Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rs tb.2013.0089.	Access (loss of agricultu ral income due to reduced yields and higher costs of producti on inputs, such as water, limits ability to buy food)	farm income	negative	NA	-	-	-	-	-	-	likely 1.0 and 1.5	low

			1		1							
Calvin, Katherine, Marshall Wise, Page Kyle, Pralit Patel, Leon Clarke, and Jae Edmonds. 2014. "Trade- Offs of Different Land and Bioenergy Policies on the Path to Achieving Climate Targets." Climatic Change 123 (3– 4): 691–704. https://doi.org/10.1007/s 10584-013-0897-y.	Access (Price)	Price	increase in price	NA	-	-	-	-	320%	-		
Kreidenweis, Ulrich, Florian Humpenöder, Miodrag Stevanović, Benjamin Leon Bodirsky, Elmar Kriegler, Hermann Lotze-Campen, and Alexander Popp. 2016. "Afforestation to Mitigate Climate Change: Impacts on Food Prices under Consideration of Albedo Effects." Environmental Research Letters 11 (8): 085001. https://doi.org/10.1088/1 748-9326/11/8/085001.	Access (Price)	Price	increase in price	NA	-	-	60- 80%	-	-	-		Increase investmen t in R&D, etc
Tilman, David, and Michael Clark. 2014. "Global Diets Link Environmental Sustainability and Human Health." Nature. https://doi.org/10.1038/n ature13959.	Access demand	demand	doubling of demands by 2050	NA	-	-	-	-	-	-		
Chatzopoulos, Thomas, Ignacio Pérez Domínguez, Matteo Zampieri, and Andrea Toreti. 2019. "Climate Extremes and Agricultural Commodity Markets: A Global Economic Analysis of Regionally Simulated Events." Weather and Climate Extremes. https://doi.org/10.1016/j. wace.2019.100193. et al., 2019	Access	Economi c impacts			negativ e. Large- scale events will 'very likely' occur more frequen tly, more intensel y, and last longer	-6% (US and	"Besid es Austral ia, three more regions exceed a reducti on of - 20%: Canad a, Russia, and Kazak hstan."	scale harves t failure s may deplet e grain stocks and thus render	-	-	unspeci fied in the modeli ng approac h based on extreme events, implied 1.5GM ST	governme nts trapped in risk- averse or risk- taking behavior, difficult to achieve and sustain crop stocks to buffer
UTILIZATION												
Müller, Christoph, Joshua Elliott, and Anders Levermann. 2014. "Food Security: Fertilizing Hidden Hunger." Nature Climate Change. https://doi.org/10.1038/n climate2290.	Utilizati on (decline in nutrition al quality resulting from increasin g	human migration	negative (heat stress induced long- term migratio n of people)	NA	-	-	-	-	-	-	likely betwee n 1.0 and 1.5 due to heat stress peaks	low (unless long term migration is considere d an acceptable form of migration)

	atmosph eric												
Myers, Samuel S., Antonella Zanobetti, Itai Kloog, Peter Huybers, Andrew D.B. Leakey, Arnold J. Bloom, Eli Carlisle, et al. 2014. "Increasing CO2 Threatens Human Nutrition." Nature. https://doi.org/10.1038/n ature13179.	CO2) Utilizati on (decline in nutrition al quality resulting from increasin g atmosph eric CO2)	zinc and iron	reduced nutrition	NA	2050 or 550p pm	-	-	-	-	-	-	550pp m	Low/Mod erate. Differenc es between cultivars of a single crop suggest that breeding for decreased sensitivity to atmospher ic CO2 concentrat ion could partly address these new challenges to global health.
Smith, M. R., C. D. Golden, and S. S. Myers. 2017. "Potential Rise in Iron Deficiency Due to Future Anthropogenic Carbon Dioxide Emissions." GeoHealth. https://doi.org/10.1002/2 016gh000018.	Utilizati on (decline in nutrition al quality resulting from increasin g atmosph eric CO2)	iron	negative (iron deficienc y)	NA		-	-	550 ppm	-	-	-	likely betwee n 1.0 and 1.5 due to heat stress peaks	low to moderate
Myers, Samuel S., K. Ryan Wessells, Itai Kloog, Antonella Zanobetti, and Joel Schwartz. 2015. "Effect of Increased Concentrations of Atmospheric Carbon Dioxide on the Global Threat of Zinc Deficiency: A Modelling Study." The Lancet Global Health. https://doi.org/10.1016/S 2214-109X(15)00093-5.	Utilizati on (decline in nutrition al quality resulting from increasin g atmosph eric CO2)	zinc deficienc y under different CO2 concentra tions	negative (zinc deficienc y)	NA	2050	-	-	The total numbe r of people estimat ed to be placed at new trisk of zinc deficie ncy by 2050 was 138 million (95% CI 120- 156).	-	-	-		moderate
Moretti, Antonio, Michelangelo Pascale, and Antonio F. Logrieco. 2019. "Mycotoxin Risks under a Climate Change Scenario in Europe." Trends in Food Science and Technology. https://doi.org/10.1016/j. tifs.2018.03.008.	Utilizati on (higher post- harvest losses due to mycotox ins)	crops after harvest	reduced availabili ty of food	NA	curre nt to 2050	-	-	-	-	-	-	possibl y betwee n 1.0 and 1.5	low to moderate
Fels-Klerx, H.J. Van der, C. Liu, and P. Battilani. 2016. "Modelling Climate Change Impacts on Mycotoxin	Utilizati on (negativ e impact on food	crops after harvest	reduced utilizatio n of food	NA		-	-	-	-	-	-	likely betwee n 1.0 and 1.5	not yet clear

Contamination." World Mycotoxin Journal. https://doi.org/10.3920/w mj2016.2066.	safety due to effect of increase d temperat ures on microorg anisms, includin g increase d mycotox ins in food and feed)												
Tirado, Maria Cristina, and Janice Meerman. 2012. "Climate Change and Food and Nutrition Security." In The Impact of Climate Change and Bioenergy on Nutrition. https://doi.org/10.1007/9 78-94-007-0110-6-4.	Utilizati on (negativ e impact on food safety due to effect of increase d temperat ures on microorg anisms, includin g increase d mycotox ins in food and feed)		reduced utilizatio n of food	NA	to midc entur y	-	-	-	-	_	-		moderate
Aberman, Noora Lisa, and Cristina Tirado. 2014. "Impacts of Climate Change on Food Utilization." In Global Environmental Change. https://doi.org/10.1007/9 78-94-007-5784-4_124.	Utilizati on (negativ e impact on nutrition resulting from reduced water quantity and quality used to prepare food)	food availabili ty, utilizatio n, access	negative	NA	2020- end of centu ry	-	-	-	-	-	-	likely betwee n 1.0 and 1.5	low (water availabilit y)
Thompson, Brian, and Marc J. Cohen. 2012. The Impact of Climate Change and Bioenergy on Nutrition. The Impact of Climate Change and Bioenergy on Nutrition. https://doi.org/10.1007/9 78-94-007-0110-6.	Utilizati on (negativ e impact on nutrition resulting from reduced water quantity and quality used to prepare food)	nutrition, distributi on of food	negative	NA		-	-	-	-	-	-		low
Special Report on Global Warming of 1.5°C Summary for Policymakers, 2018	Utilizati on (nutritio n)	nutrients	Decrease in nutrition al content	NA		at 0.87, yellow - associat ed impacts are both detecta	associat ed impacts are both detectab le and attributa ble to	indicat es closer to severe and widesp read	-	-	-	Limitin g global warmin g to 1.5°C compar ed to 2°C	

					ble and attribut able to climate change with at least medium confide nce.	climate change with at least medium confiden ce.	impact s.		would result in a lower global reducti on innutriti onal quality	
Bahrami, Helale, Luit J. De Kok, Roger Armstrong, Glenn J. Fitzgerald, Maryse Bourgault, Samuel Henty, Michael Tausz, and Sabine Tausz-Posch. 2017. "The Proportion of Nitrate in Leaf Nitrogen, but Not Changes in Root Growth, Are Associated with Decreased Grain Protein in Wheat under Elevated [CO2]." Journal of Plant Physiology. https://doi.org/10.1016/j. jplph.2017.05.011.	Utilizati on Nutrient s	nutrients	above ground biomass producti on and yield will typically increase by 17– 20% while concentr ations of nutrients such as N will decrease by 9– 15% in plant tissues. Here they found - The 12% loss in grain grain grain e[CO2]	NA						Grain yield per plant was greater under e[CO2]. Irrigation treatment significant ly enhanced grain yield by 128%. Grain protein concentrat ion (%) decreased by 12% in e[CO2] grown wheat compared to a[CO2]. Grain e[CO2]. Grain e[CO2]. Grain e[CO2]. Grain sourcentrat ion (%) was 15% higher in rain-fed than well- watered treatments but did not differ between the two wheat cultivars. Continuin g favourabl e water supply conditions for photosynt hesis during grain filling can protein carbohydr ate deirease grain filling can protoin carbohydr ate deiress grain protein, which is consistent with greater

												grain yield and lower grain protein concentrat ions in wellwater ed compar ed to rain- fed crops in our study
Medek, Danielle E., Joel Schwartz, and Samuel S. Myers. 2017. "Estimated Effects of Future Atmospheric Co2concentrations on Protein Intake and the Risk of Protein Deficiency by Country and Region." Environmental Health Perspectives. https://doi.org/10.1289/E HP41.	Utilizati on nutrition	protein content	Decrease Under eCO2, rice, wheat ,barley, and potein contents decrease d by 7.6% ,7.8% ,7.8% ,r.8% ,and 6.4%,res pectively	NA		-	-	-	-	-	-	suuy
Smith, M. R., C. D. Golden, and S. S. Myers. 2017. "Potential Rise in Iron Deficiency Due to Future Anthropogenic Carbon Dioxide Emissions." GeoHealth. https://doi.org/10.1002/2 016gh000018.	Utilizati on nutrition	nutrients	CO22con Centratio ns of 550 ppm can lead to 3–11% decrease s of zinc and iron concentr ations in cereal grains and legumes and 5– 10% reductio ns in the concentr ation of phosphor us, potassiu m, calcium, sulfur, magnesi um, iron, zinc, copper, and mangane se across a wide range of crops under more extreme conditio ns of 690 ppmCO2	NA							-	
Puma, Michael J., Satyajit Bose, So Young Chon, and Benjamin I. Cook. 2015. "Assessing the Evolving Fragility of	Utlilizati on (disrupti ons to food	crops after harvest	reduced utilizatio n of food	NA	1992- 2009	moderat e risk at present	increase d connecti vity and flows	-	-	-	-	low

Transportation Business and	 the Global Food System." Environmental Research Letters. https://doi.org/10.1088/1 748-9326/10/2/024007. Wellesley, 10/2/024007. Wellesley, Laura, Felix Preston, Johanna Lehne, and Rob Bailey. 2017. "Chokepoints in Global Food Trade: Assessing the Risk." Research in Transportation Business 	storage and transport ation networks)))))))))))))))))))	food	reduced utilizatio n of food	NA		within global trade network s suggest that the global food system is vulnerab le to systemic disrupti ons, especiall y consider ing tendenc y for exportin g countrie s to switch to non- exportin g states during times of food scarcity in the global markets.		-			likely 1.0 and 1.5	moderate
	STABILITY)											
/	Schmidhuber, J., and F. N. Tubiello. 2007. "Global Food Security under Climate Change." Proceedings of the National Academy of Sciences. https://doi.org/10.1073/p nas.0701976104., 2007	Stability		High Fluctuati on (price, supply, yields)	NA	negativ e. increase d fluctuat ions in crop yields and local food supplies and higher risks of landslid es and erosion damage , they can adverse ly affect the stability of food supplies and	droughts can dramatic ally reduce crop yields and livestoc k numbers and producti vity (most in sub- Saharan Africa and parts of South Asia) poorest	-	-	-	•		Food import, freer trade, investmen t (storage, irrigation, transport, communic ation)

						food security	chronic underno urishme nt will also be exposed to the highest degree of instabilit y in food producti					
Zheng, Jingyun, Lingbo Xiao, Xiuqi Fang, Zhixin Hao, Quansheng Ge, and Beibei Li. 2014. "How Climate Change Impacted the Collapse of the Ming Dynasty." Climatic Change. https://doi.org/10.1007/s 10584-014-1244-7.	Stability (civil disturba nce, social tension)	social tension	disruptio n food supply			-	1. Extreme events will sev erely disrupt the food supply 2. Extreme events will escalate popular unrest, rebellio ns and wars 2. Extreme events will supply 2. Extreme events supply S	-	-	-	•	
Diffenbaugh, Noah S., Thomas W. Hertel, Martin Scherer, and Monika Verma. 2012. "Response of Corn Markets to Climate Volatility under Alternative Energy Futures." Nature Climate Change. https://doi.org/10.1038/n climate1491.	Stability (impacts on world market export prices that carry through to domestic consume r prices due to climate shocks)	price of corn	negative	NA		-	-	-	-	-	-	low
Verma, Monika, Thomas Hertel, and Noah Diffenbaugh. 2014. "Market-Oriented Ethanol and Corn-Trade Policies Can Reduce Climate-Induced US Corn Price Volatility." Environmental Research Letters. https://doi.org/10.1088/1 748-9326/9/6/064028.	Stability (impacts on world market export prices that carry through to domestic consume r prices due to climate shocks)	price of corn	likely negative	NA		-	-	-	-	-	-	low
Willenbockel, Dirk. 2012. Extreme Weather Events and Crop Price Spikes in a Changing	Stability (impacts on world market	food price	negative (potentia 1 food price	NA	2030	-	1. Extreme events, such as	-	-	-	-	moderate

Climate. Illustrative	export		impacts				flooding					
Global Simulation Scenarios. Oxfam	prices that		of a number				, can wipe out					
Research Reports.	carry		of				economi					
	through to		extreme weather				c infrastru					
	domestic		event				cture; 2.					
	consume		scenarios				Agricult					
	r prices due to		in 2030 for each				ural infrastru					
	climate		of the				cture					
	shocks)		main				will be					
			exportin g regions				affected 3.					
			for rice,				weather-					
			maize and				related yield					
			wheat)				shocks					
							occurred					
							will occur 4.					
							Global					
							crop producti					
							on will					
							drop					
Salmon, J.Meghan, Mark A. Friedl, Steve	stability (political	rainfall, temperat	disruptio n food	NA		-	-	-	-	-	-	agricultur al
Frolking, Dominik	and	ure	supply,									intensifica
Wisser, and Ellen M.	economi		price fluctuati									tion,
Douglas. 2015. "Global Rain-Fed, Irrigated, and	c)		on,									ghanges in land
Paddy Croplands: A			decrease									use
New High Resolution Map Derived from			in producti									practices
Remote Sensing, Crop			on									
Inventories and Climate												
Data." International Journal of Applied Earth												
Observation and												
Geoinformation.												
https://doi.org/10.1016/j. jag.2015.01.014.												
Medina-Elizalde, Martín,		rainfall	Low	NA		-	-	-	-	-	-	
and Eelco J. Rohling. 2012. "Collapse of	(political and		yields									
Classic Maya	economi											
Civilization Related to	c)											
Modest Reduction in Precipitation." Science.												
https://doi.org/10.1126/s												
cience.1216629.	Ctobility	0.000	negativa	NA								madanata
Challinor, Andy J., W. Neil Adger, Tim G.	Stability (widespr	crop failure	negative	NA		-	-	-	-	-	-	moderate
Benton, Declan Conway,	ead crop											
Manoj Joshi, and Dave Frame. 2018.	failure contribut											
"Transmission of	ing to											
Climate Risks across	migratio											
Sectors and Borders." Philosophical	n and conflict)											
Transactions of the												
Royal Society A: Mathematical, Physical												
and Engineering												
Sciences. https://doi.org/10.1098/rs												
https://doi.org/10.1098/rs ta.2017.0301.												
Hendrix, Cullen S. 2018.	Stability	crop	negative	NA	curre	-	-	-	-	-	-	 moderate
"Searching for Climate-	(widespr	failure			nt							
conflict Links." Nature Climate Change.	ead crop failure											
https://doi.org/10.1038/s	contribut											
41558-018-0083-3.	ing to migratio											
	n and											
	conflict)		1		1	1		1	1	1		
Kelley, Colin, Shahrzad	Stability	crop	negative	NA	curre	negativ	"Multiy	-	-	-	-	 low to

Richard Seager, and Yochanan Kushnir. 2017. "Commentary on the Syria Case: Climate as a Contributing Factor." Political Geography. https://doi.org/10.1016/j. polgeo.2017.06.013.	ead crop failure contribut ing to migratio n and conflict)					drought 2006/20 07 caused northea stern "breadb asket" region to collapse (zero or near- zero product ion, livestoc k herds lost).	episodes in the late 1950s, 1980s, and 1990s, the total populati on of Syria (Fig. 1D) grew from 4 million in the 1950s to 22 million in recent years; (ii) decline ground water supply (iii) drought occurred shortly after the 1990s drought						
Kelley, Colin P., Shahrzad Mohtadi, Mark A. Cane, Richard Seager, and Yochanan Kushnir. 2015. "Climate Change in the Fertile Crescent and Implications of the Recent Syrian Drought." Proceedings of the National Academy of Sciences 112 (11): 3241– 46. https://doi.org/10.1073/p nas.1421533112.	Stability (widespr ead crop failure contribut ing to migratio n and conflict)	crop failure	negative, low yields and price increase	NA	curre nt	-	1.Extre me events will lead to unprece dented rise in food prices 2. Extreme events will obiltrate livestoc k	-	-	-	-		low
Schmidhuber, J., and F. N. Tubiello. 2007. "Global Food Security under Climate Change." Proceedings of the National Academy of Sciences. https://doi.org/10.1073/p nas.0701976104.	Stability (producti on, supply chain, extreme events)	extreme events	Fluctuati on (yield and supply), Reductio n (labour, producti vity), Increase (disease burden)	NA		-	I. droughts can dramatic ally reduce crop yields and jivestoc k producti vity 2. exposed to the highest degree of instabilit y in food producti on	-	-	-	-		Food imports, Freer trade, Investmen t (storage, irrigation, transport, communic ation
Chatzopoulos, Thomas, Ignacio Pérez Domínguez, Matteo Zampieri, and Andrea Toreti. 2019. "Climate Extremes and	stability(variabilit y in supply, price)	yield, market, price	Fluctuati on (yield, market and price)	NA		negativ e. climate extreme s collide	key wheat- growing regions display	Beside s Austral ia, three more	The transm ission of domes tic		-	unspeci fied in the modeli ng approac	buffer stock schemes for stabilizing supply

Agricultural Commodity Markets: A Global Economic Analysis of Regionally Simulated Events." Weather and Climate Extremes. https://doi.org/10.1016/j. wace.2019.100193. et al., 2019						with major drivers (popula tion growth, dietary shifts, environ mental degrada tion, andtrad e interdep endence	reductio ns -28% (Austral ia) to -6% (US and Ukraine).	regions exceed a reducti on of - 20%: Canad a, Russia, and Kazak hstan. The highest absolut e drops, corresp onding to -0.9 t/ha and -0.7 t/ha, were found in Canad a and Russia.	prices to global market s is visible in most scenari os with large shocks in key export ers and import ers being respon sible for the most pronou nced effects			h based on extreme events, implied ST. "Econo mic simulati on models typicall y operate under the assump dunder the assump growin g conditi ons, conditi ons, conditi ons, conditi ans, conditi assump gramet erizatio n of ciparamet erizatio n of ciparamet explicit paramet erizatio n of ciparamet explicit paramet explicit paramet erizatio n of ciparamet erizatio n of ciparamet erizatio n of ciparamet explicit paramet explicit paramet erizatio n of ciparamet erizatio n of ciparamet erizatio n of ciparamet explicit paramet erizatio n of ciparamet erizatio n of ciparamet erizatio n of ciparamet erizatio n of ciparamet erizatio n of ciparamet erizatio n of ciparamet erizatio n of conditi anomali es on the supply side, and confou multifar ion in harvest- failure scenari	and prices of major staple commodit ies in food- insecure regions may mitigate some of the induced price volatility but are generally difficult to achieve and sustain in practice
Bellemare, Marc F. "Rising Food Prices, Food Price Volatility, and Social Unrest." American Journal of Agricultural Economics, 2015, doi:10.1093/ajae/aau038.	Stability (trade)	trade, supply, price	negative, trade in situation s where global grain producti on is reduced does not distribut e world food stocks / inadequa te and counter to modelin g results (in reality producin g countries protect domestic grain grain	NA	2007-2010	negativ e.	990- 2011 food price s led to increase s in social unrest, food price volatilit y has not been associat ed with increase s in social unrest	-	-	-	-		medium in SSP1- like world

			onika										
			spike upwards in times of reduced yields but do not fall as much in times of normal or increase d yields)										
Zampieri, M., A. Ceglar, F. Dentener, and A. Toreti. 2017. "Wheat Yield Loss Attributable to Heat Waves, Drought and Water Excess at the Global, National and Subnational Scales." Environmental Research Letters. https://doi.org/10.1088/1 748-9326/aa723b.	stability(variabilit y in supply, price)	yield, market, price	Fluctuati on (yield, market and price)	NA		negativ e.	-	-	-	-	-		
Donati, Michele, et al. "The Impact of Investors in Agricultural Commodity Derivative Markets." Outlook on Agriculture, 2016, doi:10.5367/oa.2016.023 3.	Stability (trade)	trade, supply, price	negative, trade in situation s where global grain producti on is reduced does not distribut e world food stocks / inadequa te and counter to modelin g results (in reality producin g countries protect domestic grain reserves; prices spike upwards in times of reduced yields but do not fall as much in times of normal or increase d yields)		2007-2010	negativ e.	open trade helps improve access to food at lower prices, combine d with observat ions in other articles about impact of market speculat ion (US) combine d with export restraint s (Russia, Ukraine, India, Vietnam) in 2007- 2011 drought periods.						
Gilbert, C. L., and C. W. Morgan. "Food Price Volatility." Philosophical Transactions of the Royal Society B: Biological Sciences, 2010,	Stability (trade)	trade, supply, price	negative, trade in situation s where global grain producti on is		2007-2010	negativ e. not yet clear if trend in food price volatilit	"World dollar prices of major agricult ural food commod	-	-	-	-	modera te	global

Subject to Copy-editing Do Not Cite, Quote or Distribute

doi:10.1098/rstb.2010.01 39.			reduced does not distribut e world food stocks / inadequa te and counter to modelin g results (in reality producin g countries protect domestic grain reserves; prices spike upwards in times of		y is perman ent	ities rose dramatic ally from late 2006 through to mid- 2008. Prices collapse d dramatic ally in the second half of 2008 with the onset of the financial crisis. periods of high					
			of normal or increase d yields)			and interspa ced with longer periods of market tranquill ity. It would therefor e be wrong simply to extrapol ate recent and current high volatilit y levels into the future. Howeve r, it remains valid to ask whether part of the volatilit y rise may be					
Gilbert, Christopher L. "How to Understand High Food Prices." Journal of Agricultural Economics, 2010, doi:10.1111/j.1477- 9552.2010.00248.x.	Stability (trade)	trade, supply, price	negative, trade in situation s where global grain producti on is reduced does not	2007-2010	e. not yet clear if trend in food price	ural futures markets is seen	-	-	-	-	moderate depending on exposure to market speculatio n

Headey, Derek. "Rethinking the Global Food Crisis: The Role of Trade Shocks." Food Policy, 2011, doi:10.1016/j.foodpol.20 10.10.003.	trade, supply, price	distribut e world food stocks / inadequa te and counter to modelin g results (in reality producin g countries protect domestic grain reserves; prices spike upwards in times of reduced yields but do not fall as much in times of normal or increase d yields) negative, trade in situation s where global grain producti on is		ent	major channel through which macroec onomic and monetar y factors generate d the 2007– 2008 food price rise when food price seaked in June of 2008, they soared	"In all cases except soybea ns, we find that large	-	-		monthly data from Thailand (the largest exporter of rice), and the
		distribut e world food stocks / inadequa te and counter to modelin g results (in reality producin g countries protect domestic grain reserves; prices spike upwards in times of reduced yields but do not fall as much in times of normal or increase d yields)			the new equilibri um price. observat ions that internati onal rice prices surged in response to export restricti ons by India and Vietnam suggeste d that trade- factors could be an importa factors could be especiall y given the very tangible	es preced surges. The presen ce of these large deman d surges, togethe r with back- of-the- envelo pe estimat es of their envelo pe stimat ts suges ts that trade a much large				largest exporter of wheat and maize and the third largest exporter of soybeans).

Marchaelt N. W	G4-1-11-			2007		link between export volumes and export prices	more pervasi ve role than previo usly though t."	D- "	6			M
Marchand, Philippe, et al. "Reserves and Trade Jointly Determine Exposure to Food Supply Shocks." Environmental Research Letters, 2016, doi:10.1088/1748- 9326/11/9/095009.	Stability (trade)	trade, supply, price	negative, trade in situation s where global grain producti on is reduced does not distribut e world food stocks / inadequa te and counter to modelin g results (in reality producin g countries protect domestic grain reserves; prices spike upwards in times of reduced yields but do not fall as much in times of normal or increase d yields)	2007-2010	negativ e. without coordin ated and effectiv e internat ional and domesti c risk manage ment of food stocks.	supply shocks driven not only by the intensifi cation of trade, but as importa ntly by changes in the distribut ion of reserves . trade depende ncy may accentua te the risk of food shortage s from foreign producti on shocks	increas ed numbe r and volum e of trade links (relativ e to produc tion), decrea se and a more even distrib decrea se and a more even distrib ution of global reserve s (still velativ e to produc tion), of global reserve s (still bution of relativ e to produc tion) - >distrib bution of reserve s matters more than their aggreg ate quantit y in terms of conferr ing reselves	Possib ility of multip le supply side shocks across of the world (multi- breadb asket failure)	Comp ounde d risk: Tra greate r relian ce on impor ts increa ses the risk of critica l food suppl y losses follo wing a foreig n shock, notabl y in the case of severa l Centr al Ameri can can countr ies that impor t grains from the case severa l Centr a severa l Centr a severa l Centr a severa l Centr a severa l Centr a severa l Centr a severa l Centr a severa l Centr a severa l Centr a sovera l Centr a severa l Centr a severa l Centr a severa l Centr a severa l Centr a severa l Centr a severa l Centr a severa l Centr a severa l Centr a severa l Centr a severa l Centr a severa l Centr a severa s that case s that cities s that case s that case s that case s that case s that countr severa s that case s that cuntr severa s that case s that s that s that severa s that severa s that s that s that severa s that s that s that s s s that s s that s that s that s that s that s s that s that s s that s that s s that s that s that s that s s that s s that s that s that s that s that s s that s that s that s s that s s s s that s that s s that s s s s s s that s s s s s s s s s s s s s s s s s s s			Medium. Trade dependen cy has substantia lly increased in the last few decades and more than doubled since the mid- 1980s (Porkka et al 2013, D'Odoric o et al 2014) likely as a result of liberalizat ion and the associated removal of subsidies and trade protection s in developin g countries (e.g., Shafaeddi n 2005)."
Sternberg, Troy. "Chinese Drought, Bread and the Arab Spring." Applied Geography, 2012, doi:10.1016/j.apgeog.20 12.02.004.	Stability (trade, political)	trade, supply, price	negative, trade in situation s where global grain producti on is reduced does not distribut e world food stocks / inadequa te and counter to modelin g results (in	2007-2010	"Chines e e drought contrib uted to a doublin g of global global wheat prices. The drought affected the price of bread in Egypt which influenc ed	-	-	-	-	-	-	Depends on food reserves, trade policy (risk managem ent) and if multi- breadbask et failure is present

			reality producin g countries protect domestic grain reserves; prices spike upwards in times of reduced yields but do not fall as much in times of normal or increase d yields)			political protest. The process exempli fies the potential consequ ences of climate today."							
Permafrost degradation													
Chadburn, S. E. et al., 2017 NCC	permafro st degradat ion	st area change (million km^2)	increase d loss of permafro st, leading to radical changes in high- latitude hydrolog y and biogeoch emical cycling. cycling. cycling. Estimate d sensitivit y of permafro st area loss to global global mean warming at stabilizat ion of 4.0 +/- 1.1 million Km^2 °C^-1.		1850-2300	Indirect ly	13	9	6	4	2	-	Global
Burke, E. J. et al., 2018 ERL	permafro st degradat ion	Increased land carbon emissions at stabilizati on Gt C /yr	Addition al emission s between	IMOGEN	1.5° and 2°C stabil izatio n	-	1.5: 0.08 to 0.16 Gt C yr-1 (10th to 90th percentil e)	0.09 to 0.19 GtC yr-1 (10th to 90th percent ile)	-	-	-	-	Global

			°C world.										
Jorgenson & Osterkamp 2005	permafro st degradat ion	Water erosion	Increase d water erosion	Review	-	-	-	-	-	-	-	-	Global
Gauthier et al., 2015	permafro st degradat ion	Tree mortality	Permafro st thawing in dry continent al Siberia may trigger widespre ad drought- induced mortality in dark conifero us forests and larch forests that cover 20% of the global boreal	Review		-		-	-	-	-	-	Fennosca ndia, Siberia and the northern reaches o North America
FAO 2012	permafro st degradat ion	Damage to forest hydrologi cal regimes	forest Permafro st thawing will reinforce the greenhou se effect and induce irreversi ble damage to forest hydrolog ical regimes, especiall y across regions receiving litle rainfaller	Review	2012-2030	-	-	-	-	Carbo n releas e by 2100 could be severa 1 times that of curren t tropic al defore statio n	-	-	Siberia
Price et al., 2013	permafro st degradat ion	Permafro st thaw	ranntall. Increases in nearsurfa ce permafro st temperat ures during 2007– 2009 are up to 2 °C warmer compare d to 2-3 decades, and there is a concurre nt trend in its	Review	1995-2100	-	Permafr ost is now warmin g at almost all sites across the North America n permafr ost zones, except for site where the permafr ost is already close to	-	Rapid degrad disapp earanc e over extensi ve areas within next 50– 100 years (Camil 1 2005; Smith et al. 2005). Accele rated degrad	16%- 35% of Canad ian perma frost area in 2000 may be lost by 2100 (Zhan g et al., 2008a ; 2008b)	-	-	Canada

Hjort et al., 2018 NatComm	permafro st degradat ion	Proportio n of all residentia l, transport ation, and industrial infrastruc ture in areas of nearsurfa ce permafro	risk from degradin g	Infrastruct ure hazard computati ons	2041 - 2060	-	0 °C and vertical ground temperat ure jsotherm al, indicatin g ongoing phase changes (Smith et al. 2010) -	4 million people, 70% of current infrastr ucture	ation by 2050 likely in several region s.	-	-	-	Global
Fire		permatro st thaw (a) and high hazard (b) in the pan- Arctic permafro st area (%)											
Bajocco et al., 2010	fire	Area burned	Multidir ectional relations hips between climate, land degradati on and fire may be amplifie d under future land use change and climate scenarios (Bajocco (Bajocco (Bajocco) (Bajocco)	-	1990-2000	-	-	-	-	-	-	-	Mediterra nean
Marlon et al., 2016	fire	Biomass burning	Increase in charcoal influx (i.e. biomass burning) during the undustria I period (probabl y not related to climate	Paleoclima te reconstruct ion	22ka- 2000	-	-	-	-	-	-	-	Global

			but human activities							
Giglio et al., 2016	fire	Area burned	A recent	Recent observatio ns	1995-2011	Global			- high in	Northern Hemisphe re Africa has experienc ed a fire decrease of 1.7 Mha yr-1 (-1.4% yr-1) since 2000, while Southern Hemisphe re Africa saw an increase of 2.3 Mha yr-1 (+1.8% yr-1) during the same period. Southeast Asia witnessed a small increase of 0.2 Mha yr-1 (+2.5% yr-1) since 1997, while Australia experienc ed a sharp decrease of about 5.5 Mha yr-1 (- 10.7% yr-1) during 2001-11, followed by an upsurge in 2011 that exceeded the annual area burned in the previous 14 years Global
Science		burned	analysis using the Global Fire Emission s Database v.4 that includes small fires conclude d that the net reductio n in land	sensing	2015	decline			the tropics	

			area burnt										
			globally during 1998– 2015										
			was - 24.3± 8.8% (- 1.35 ±										
			0.49% yr-1). However										
			, from the point of fire emission										
			s it is importan t to										
			consider the land cover types										
			which have experien ced										
			changes in area burned;										
			in this instance, most of the										
			declines have come from										
			grasslan ds, savannas and										
			other non- forest										
			land cover types (Andela et al.										
Abatzaglay and	fire	Forast	2017). Significa	Detection/	1070	plus 100			-			modere	western
Abatzoglou and Williams, 2016	IIIe	Forest area burned	nt recent increases in forest area	Detection/ attribution	1979- 2015	% cumulat ive forest	-	-	-	-	-	modera te (rise in forest fires	western and boreal north America
			burned (with higher fuel			fire area, CC acounte						despite increasi ng adaptati	
			consump tion per unit area) recorded			d for 55% of incease in fuel arididty						on measur es)	
			in western and boreal North			anduty							
Ansmann et al., 2018	fire	Forest area burned	America. Clear link between	Aerosoles, case study	2017- 2017	-	-	-	-	-	-	-	western and boreal north
			the western Canadia n fires and										America

			aerosol loading over Europe.										
Pechony and Shindell 2010	fire	Fire activity (% rel to pre- industrial)	Tempera ture increase and precipita tion decline may become the major driver of fire regimes under future climates as evapotra nspiratio n increases and soil moisture decrease s.	forces, A2, A1B, B1; singe GCM, AR4-era			plus0- 10%	plus0- 10%	plus5- 10%	plus1 0- 35%	plus 1 5%	low under high warmin g levels	"Although temperatures rise throughout the country, in becomes more humid and rainy in the East and drier in theWest (Fig. 4B). Conseque ntly, in the eastern United States fire activity declines, while rising considera bly in the western United States (Fig. 4A). In both cases increasing populatio n densitie: and land- cover changes (Fig. 4C) generally reduce
Aldersley et al., 2011	fire	Fire regimes	Tempera ture increase and precipita tion decline may become the major driver of fire regimes under future climates as evapotra nspiratio n increases and soil moisture decrease s.	Random forest on data sets	2000-2000	-	-	-	-	-	-	-	Global
Fernandes et al., 2017	fire	Fire regimes	Tempera ture increase and precipita	Logistic regression	1995- 2015	Yes, for Indones ia during moderat		-	-	-	-	-	Indonesia

			tion decline may become the major driver of fire regimes under future climates as evapotra nspiratio n increases and soil moisture decrease			e to wet years							
Liu et al., 2010	fire	Probabilit y of fire	s. The risk of wildfires in future could be expected to change, increasin g significa ntly in North America, South America, Southern Europe, southern Europe, and Australia	KBDI on GCM data	2070-2100	-	-	-	-	-	-	-	North America, South America, central Asia, southern Europe, southern Africa, and Australia
Jolly et al., 2015	fire	Fire weather season length	Fire weather season has already increase d by 18.7% globally between 1979 and 2013, with statistica lly significa nt increases across 25.3% but decrease s only across 10.7% of Earth's land surface covered with vegetation n; even sharper changes have	Weather analysis	1979-2013	Yes, global	plus18.7 %	-	-	-	-	-	Global

	1		1	1		1			1		1		
Jolly et al., 2015	fire	Area	been observed during the second half of this period. Global	Weather	1979-	Yes,	plus108.		-	-	_	_	Global
Jony et al., 2015	nre	Area experienc ing long weather fire season	Global area experien cing long weather fire season has increase d by 3.1% per annum or 108.1% during 1979–	weather analysis	2013	res, global	pius 108. 1%	-	-	-	-	-	Giobai
Huang et al., 2014	fire	Fire frequenci es	2013. Fire frequenc ies by 2050 are projected to increase by ~27% globally, relative to the 2000 levels, with changes in future fire meteorol ogy playing the most importan t role in enhancin g the future global wildfires , followed by land cover changes, lightning activities and land use, while changes in populati on density exhibits the opposite	A1B	2000-2050				19%			-	Global
Knorr et al., 2016a NCC	fire	Area burned	effects. Climate is only one driver of	SIMFIRE +LPJGUE SS RCP4.5/8.	1971- 2100	-	no change	no change	no change	plus5 %	plus1 0%	-	Global
			a complex set of	5									

	environ										
	mental, ecologic										
	al and										
	human										
	factors										
	in										
	influenci										
	ng fire										
	(Bowma										
	n et al. 2011).										
	Interplay										
	leads to										
	complex										
	projectio										
	ns of										
	future burnt										
	area and										
	fire										
	emission										
	s (Knorr										
	et al.										
	2016b,a)										
	, yet human										
	exposure										
	to										
	wildland										
	fires is										
	projected										
	to										
	increase because										
	of										
	populati										
	on										
	expansio										
	n into										
	areas										
	already under										
	high risk										
	of fires.										
Knorr et al., 2016a NCC fire Axposur	Climate	SIMFIRE	1971-	-	413	-	497-	-	527-	-	Global
(#people	is only	+LPJGUE	2100				646		716		
	one	SS									
	driver of										
	a complex	5									
	set of										
	environ										
	mental,										
	ecologic										
	al and										
	human										
	factors										
	in influenci										
	ng fire										
	(Bowma										
	n et al.										
	2011).										
	Interplay										
	leads to										
	complex projectio										
	ns of										
	future										
	burnt										
	area and										
	fire										
		1									
	emission										
	s (Knorr										
	s (Knorr et al.										
	s (Knorr et al. 2016b,a)										
	s (Knorr et al.										

Knorr et al., 2016b BG	fire		to wildland fires is projected to increase because of populati on expansio n into areas already under high risk of fires.	SIMFIRE	1971-	-	-15%	-	-		-	-	Global
		se gas emissions from fire	is only one driver of a complex set of environ mental, ecclogic al and human factors in influenci ng fire (Bowma n et al. 2011). Interplay leads to complex projectio sof future burnt area and fire emission s (Knorr et al. 2016b,a), yet human exposure to wildland fires is projected to increase because of populati on expansio n into areas already under	LPJGUE +LPJGUE SS RCP4.5/8. 5	2100		-1.370						
Flannigan et al., 2009	fire	Area burned, fire season length	of fires. General increase in area burned and fire occurren ce but a lot of spatial variabilit y, with	Review	pres- 2100	-	-	-	-	-	-	-	Review of regional studies

			some areas of no change or even decrease s in area burned and occurren ce. Fire seasons are lengtheni ng for temperat e and boreal regions and trend will continue in a warmer world. Future trends of fire severity and intensity are difficult to determin e owing to the complex and non- linear interactions between weather, and										
Abatzoglou et al., 2019	fire	Multimo del median proportio n of burnable terrestrial surfaces for which emergenc e occurs (%)	Index days emerge for an increasin gly large fraction of burnable land area under higher global temperat	Fire Weather Index on 17 CMIP5 climate models	1861-2099	Yes, on 22% of burnabl e land	0-3%	15-30%	30- 50%	-	-	-	Global (pronounc ed effects in Mediterra nean and Amazon)
Westerling et al., 2006 Science	fire	Wildfire frequenc y and duration	ures. Higher large- wildfire frequenc y, longer wildfire durations , and longer wildfire	Fire reports	1970- 2003	Yes, for Wester n US	-	-	-	-	-	-	Western US

			seasons.										
Yang et al., 2014 JGR	fire	Area burned	Global decline in recent burned area (1.28×104 km2 yr1), driven signfican t decline in tropics and extratrop ics causd by human factors. warming and droughts are expected to increase wildfire activity towards the future	DLEM- Fire	1901-2007	-	-	-	-	-	-	-	Global
Turco, M. et al., 2018	fire	Area burned	future. Increase in burned area scales with warming levels. Substanti al benefits from limiting warming to well below 2 °C.	SM and NSM under RCP2.6 and RCP8.5	1981- 2100	-	-	plus50 -75%	plus75 -175%	-	-	-	Mediterra nean
Flannigan et al., 2005	fire	Area burned	Increase burned area under enhance d CO2 scenarios	2xCo2, 3xCO2 (cfr SRES A2)	1975- 1995; 2050; 2100	-	-	-	plus78 %	-	plus1 43%	-	Canada
Coastal degradation			scenarios										
Mentaschi et al., 2018	coastal degradat ion	Coastal erosion area (km2)	Substanti al global- scale increases in coastal erosion in recent decades.	sensing	1984 - 2015	No	28,000 km2 eroded globally	-	-	-	-	-	Global
Neumann, B., et al., 2015 Plos One	coastal degradat ion	Number of people exposed to a 1-in- 100 year flood event incoastal regions (million)	Increase d populati on exposure to 1-in- 100 year storm surge. Stronges t chages	Population projections		No	625	879- 949	1053- 1388	-	-	-	Coastal regions are also characteri sed by high populatio n density, particularly y in Asia (Banglade

Nicholls et al. 2011	coastal	Number	in exposure in Egypt and sub- Saharan countries in Western and Eastern Africa.		2000-	No	-	-	-	-	72-	high:	sh, China, India, Indonesia, Vietnam) whereas the highest populatio n increase of coastal regions is projected in Africa (East Africa, Egypt, and West Africa) Global
	degradat ion	of people displaced (million)	in coastal erosion.	model framework	2100						187 (0.9- 2.4%)	most of the threaten ed populat ion could be protecte d.	
Cazenave and Cozannet 2014	coastal degradat ion	-	Increases in coastal erosion.	Review, mostly qualitative ly	2000-2100	No	-	-	-	-	-	-	Global (with Southeast Asia concentrat ing many locations highly vulnerable to relative sea level rise)
Rahmstorf 2010	coastal degradat ion	-	Increases in coastal erosion.	Commenta ry	2000- 2100	Yes	-	-	-	-	-	-	Global
Meeder and Parkinson 2018	coastal degradat ion	Coastal erosion	Increases in coastal erosion.	Sedimenta ry record	1900- 2000	-	-	-	-	-	-	-	Everglade s, USA
Shearman et al. 2013	coastal degradat ion	Coastal erosion	Net contracti on in mangrov e area	Land cover classificati on	1980 s- 2000 s	Indirect ly	-0.28%	-	-	-	-	-	Asia- Pacific Region
McInnes et al. 2011	coastal degradat ion	Coastal erosion	CMIP3 wind speed exhibit low skill over land areas.	CMIP3 evaluation wind speed, SRES	1981- 2100	-	-	-	-	-	-	-	Global
Mori et al. 2010	coastal degradat ion	Coastal erosion	Wave heights increase in future climates across mid- latitudes and the Antarctic Ocean.	GCM combined with a wave model under SRES	1979- 2099		-	-	-	-	-	-	Global (rise in wave height in midlatitud es and southern ocean, decrease in tropics)
Savard et al., 2009	coastal degradat ion	Coastal erosion	Increases in coastal erosion	Stakeholde r discussion s	2005- 2007	-	-	-	-	-	-	-	Canada
Tamarin-Brodsky and Kaspi 2017	coastal degradat	Tropical cyclones	Polewar d shift in	Storm tracking	1980- 2099	-	-	-	-	-	-	-	Midlatitud es

	ion		the genesis latitude and increase d latitudin al displace ment of tropical cyclones under global warming	algorithm to CMIP5									
Ruggiero 2013	coastal degradat ion	Total water level	Increases in wave height (and period), increasin g the probabili ty of coastal flooding/ erosion more than sea level rise alone.	total water level model	1965-2010	-	-	-	-	-	-	-	U.S. Pacific Northwest
Elliott et al., 2014	coastal degradat ion	Nexus	Nexus of climate change and increasin g concentr ation of people.	Review, mostly qualitative ly	-	-	-	-	-	-	-	-	Global
Knutson et al., 2010	coastal degradat ion	Tropical cyclone intensity	Increase d intensity and frequenc y of high- intensity hurrican es with higher warming levels.	Review	1950- 2100	Yes globally , regional ly difficult	-	-	-	-	-	-	Tropical cyclone regions
Bender et al., 2010	coastal degradat ion	Atlantic hurricane category 4 frequenc y	Increase d intensity and frequenc y of high- intensity hurrican es with higher warming levels.	CMIP3 downscali ng with hurricane model; SRES A1B	2001- 2020; 2081- 2100	-	-	-	plus75 -81%	-	-	-	Atlantic (with the largest increase projected over the Western Atlantic, north of 20°N)
Vecchi et al., 2008	coastal degradat ion	Hurrican Power Dissipati on Index Anomaly (10^11 m^3 s^- 2)	Increase d intensity and frequenc y of high- intensity hurrican es with higher warming	Statistical regression SST PDI applied to CMIP	1950- 2100	-	plus l	-1 to +4	-1 to +6	-	-	-	Atlantic

D1 (1 (1 0010		m · ·	F	DOD: 7	2015		1.01	1 25					m : :
Bhatia et al., 2018	coastal degradat ion	Tropical cyclone category 4 frequenc y (# TCs)	Frequency, intensity, and intensific ation distributi on of TCs all shift to higher values during the twenty- first century.	single	2016- 2035; 2081- 2100	-	plus26- 67%	plus27 -133%		-	-	-	Tropical cyclone regions
Bhatia et al., 2018	coastal degradat ion	Tropical cyclone category 5 frequenc y (# TCs)	Frequency, intensity, and intensific ation distributi on of TCs all shift to higher values during the twenty- first century.	single GCM	2016- 2035; 2081- 2100		plus46- 50%	plus85 -200%		-	-	-	Tropical cyclone regions
Tu et al., 2018	coastal degradat ion	Tropical cyclones	Regime shift in the destructi ve potential of tropical cyclones around 1998, with regional regulatio n by the ElNiño/S outhern Oscillati on and the Pacific Decadal Oscillati on.	PDI on observatio ns	1979- 2016	No	-	-	-	-	-	-	Western North Pacific
Sharmila and Walsh 2018	coastal degradat ion	Tropical cyclones paths	Tropical cyclones paths shift poleward	Reanalysis	1980- 2014	Indirect ly: hadley cell expansi on has been linked to climate change	-	-	-	-	-	-	Tropical cyclone regions
Kossin 2018	coastal degradat ion	Tropical cyclones translatio n speed	Over the last seven decades, the speed at which tropical	Best-track data from IBTrACS	1949- 2016	Indirect ly: trend analysis	-	-	-	-	-	-	Tropical cyclone regions

	1						1						
			cyclones move has decrease d significa ntly as expected from theory, exacerba ting the damage on local commun ites from increasin g rainfall amounts										
Luke et al., 2016	coastal degradat ion	Forest compositi on	on at coasts that are affected by tropical cyclones can be further enhance d by the interacti on of its compone example, rainfall, wind speed, and direction) with topograp hic and biologica l factors (for example, species susceptib	Case studies of TC impacts on vegetation	2004-2007								West Indies
Emmanuel 2005 Nature	coastal degradat ion coastal	Tropical cyclone Power Dissipati on Index	ility Potential destructi veness of hurrican es has increase d d markedl y since the mid- 1970s due to both longer storm lifetimes and greater storm intensitie s. Increase	'best track' tropical data sets data sets	1930- 2010	Indirect ly: consiste ncy with increase in SST		-	- x18	-	-	-	Global
	degradat	cyclone	in	ng of large	2000;		increase		increas				

Wehner, M. F. et al., 2018 ESD	ion coastal degradat ion	precipitat ion Tropical cyclone counts of category 4/5	precipita tion associate d with tropical cyclones Increase in frequenc y and intensity of most intense cyclone s under 1.5°C and 2°C warming levels.	numbers of tropical cyclones from three climate reanalyses and six climate models single GCM, HAPPI protocol	2081- 2100 HAP PI	-	in probabil ity since late 20th century at 1.5°C: plus2.1/ plus1.2	plus1.4 /plus1. 2	e in probab ility since late 20th centur y -	-	-	-	Tropical cyclone regions
Hanson et al., 2011 CC	coastal degradat ion	People exposed to 1-in- 100-year coastal floodig (# people)	Enhance d exposure to extreme coastal flooding, with total populati on exposure possibly increasin g threefold by 2070.	Global rise of 0.5 m above current levels by 2070, +10% increase in extreme water levels	2005; 2070 s	-	38.5 M people (0.6%)	150 M people	-	-	-	high! "This researc h shows the high potentia l benefits from risk- reducti on plannin g and policies at the city scale to address the issues raised by the possibl e growth in exposur e." (maner)	Global
Hanson et al., 2011 CC	coastal degradat ion	Assets exposed to 1-in- 100-year coastal floodig (% global GDP of that period)	Enhance d exposure to extreme coastal flooding, with total populati on exposure possibly increasin g threefold by 2070.	Global rise of 0.5 m above current levels by 2070, +10% increase in extreme water levels	2005; 2070 s	-	5%	9%	-	-	-	(paper) high! "This researc h shows the high potentia l benefits from risk- reducti on plannin g and policies at the city scale to address the issues raised by the possibl e	Global

												growth in exposur e." (paper)	
Vousdoukas et al., 2016 CDD	coastal degradat ion	Extreme storm surge levels	The anticipat ed increase in relative sealevel rise can be further enforced by an increase in extreme storm sturge levels.	RCP4.5 + 8.5.8 CMIP5 models	1970-2100	-	-	-	-	-	-	present and needed	Europe
Vousdoukas et al., 2017 EF	coastal degradat ion	Extreme sea level change compared to present- day	100-year extreme sea level along Europe's coastline s is on average projected to increase by 57/81 cm for RCP4.5/ 8.5.	RCP4.5 + 8.5.6 CMIP5 models	1980- 2014; 2100	-	-	plus57 cm	-	plus8 1cm	-	-	Europe
/ousdoukas et al., 2017 EF	coastal degradat ion	Extreme sea level return period affecting 5 Million European s	extreme sea level along Europe's coastline	RCP4.5 + 8.5, 6 CMIP5 models	1980- 2014; 2100	-	100year	3 year	-	1 year	-	-	Europe
Vousdoukas et al., 2018 NComm	coastal degradat ion	Extreme sea level chang compared to present- day	By 2050, extreme sea level	RCP4.5 + 8.5, 6 CMIP5 models	1980- 2014; 2100	-	-	plus34 -76 cm	-	plus5 8- 172c m	-	-	Global

			timely adaptatio n measures are taken.										
Rasmussen, D. J. et al., 2018	coastal degradat ion	Human populatio n exposure under 2150 local SLR projectio ns (millions)	Increase d permafro st melt, increase d coastal erosion	1.5K, 2.0K, 2.5K stabilisatio n scenarios	2010; 2150	-	1.5: 56.05 (32.54– 112.97)	61.84 (32.89 - 138.63)	2.5: 62.27 (34.08 - 126.95)	-	-	-	Global
Moftakhari et al., 2017 PNAS	coastal degradat ion	Coastal flooding	Compou nd flooding from river flow and coastal water level enhances risk derived from univariat e assessme nts.	8.5	2030; 2050	-	-	-	-	-	-	-	Global
van den Hurk et al., 2015 ERL	coastal degradat ion	Coastal flooding	Compou nd flooding from river flow and coastal water level enhances risk derived from univariat e assessme nts.	800 sim years with an RCM	2012-2012	-	-	-	-	-	-	-	The Netherlan ds
Zscheischler et al., 2018 NCC	coastal degradat ion	Coastal flooding	Interacti on between multiple climate drivers and/or hazards play a major role in coastal extremes	Review	-	-	-	-	-	-	-	-	USA
Jevrejeva, S. et al., 2018 ERL	coastal degradat ion	Coastal flooding	Rising global annual flood costs with future warming	1.5K, 2.0K, stabilisatio n scenarios + RCP8.5 in CMIP5	2100	-	1.5°C: 1	1.2	-	14-27	-	"Adapt ation could potentia lly reduce sea level induced flood costs by a factor of 10" (paper)	countries are projected to experienc e the

Brown, S. et al., 2018	coastal	Decadal	Increase	1.5, 2.0	1986-		1.5°C:	1500-	2000-		"With	costs (up to 8% GDP) with a large proportion attributed to China. High income countries have lower projected flood costs, in part due to their high present- day protection standards. "(paper) Ganges-
REC	degradat	average of land inundatd by flooding (km2)	d soil erosion, increase d soil salinity, subsidin g land with future warming	nd 3.0 stabilisatio n scenarios from SRES A1B, with Delta Dynamic Integrated Emulator Model	2005; 2050; 2100		1000-1500	1700	2500		slow rates of sea- level rise, adaptati on remains possibl e, but further support is require d"	Brahmapu tra- Meghna and other vulnerable deltas
Nicholls, R. J. et al., 2018	coastal degradat ion	Expected people flooded (millions yr–1)	Increase in coastal inundati on and number of people exposed under future warming levels.	1.5K, 2.0K, stabilisatio n scenarios + RCP8.5 in CMIP5; Warming Acidificati on and Sea Level Projector Earth systems model, large ensembles	1986-2300	-	1.5°C: 150 (100- 230)	170 (120- 270)		400 (220-700)	(paper) "adapta tion remains essentia l in densely populat ed and econom ically importa nt coastal areas under climate stabiliz ation. Given the multipl e adaptati on steps that this will require, an adaptati on pathwa ys approac h has merits for coastal areas."	Global

												(paper)	
Mentaschi et al., 2017 GRL	coastal degradat ion	Extreme wave energy flux in 100yr return level	More extreme wave activity in the southern hemisph ere towards the end of the century.	Spectral wave model Wavewatc h III forced by 6 CMIP5 models under RCP8.5	1980- 2010; 2070- 2100	-	-	-	-	up to plus3 0%	-	-	Southern hemispher e
Villarini et al., 2014 BAMS	coastal degradat ion	Coastal flooding	Flooding from tropical cyclones affects large areas of the United States.	measurem ents	1981- 2011	-	-	-	-	-	-	-	Eastern US
Woodruff et al., 2013 Nature	coastal degradat ion	Coastal flooding	Increase in future extreme flood elevation s.	Review of global and regional studies	1981- 2100	-	-	-	-	-	-	-	Global
Brecht et al., 2012 JED	coastal degradat ion	Coastal flooding	Strong inequalit ies in the risk from future disasters.	tropical storm intensificat	2000-2100	-	-	-	-	-	-	-	Selected cities across the world
Hallegatte et al 2013	coastal degradat ion	Flood losses (Billion US\$ yr- 1)	Increasin g global flood future warming		2005; 2050 (20 and 40 cm sea level rise; assu me 2°C but no info in paper)	-	6	withou t adaptat ion, 60-63 with adaptat ion keepin g consta nt flood probab ility	-	-	-	huge challen ge: "To maintai n present flood risk, adaptati on will need to reduce flood probabi lities below present values" (paper)	Global
Jongman et al., 2012 GEC	coastal degradat ion	People and value of assets in flood- prone regions (Trillion US\$ in 1/00 coastal flood hazard areas)	Increase d people and asset exposure in 1-in- 100-year coastal flood hazard areas.	Population density and GDP per capita estimate; land-use estimate	2010; 2050	-	27-46	80-158	-	-	-	-	Global (largest populatio n exposure increase in Asia (absolute) and Sub- Sahran+N orth Africa (relative))

Muis et al., 2018 EF	coastal degradat ion	Coastal flooding	Significa nt correlati ons across the Pacific between ENSO and extreme sea	Tides and storm surge reanalysis	1979- 2014	No	-	-	-	-	-	-	Global
Reed et al., PNAS	coastal degradat ion	Return period of 1/500yr pre- industrial flood height (yr)	levels. Mean flood heights increase d by ~1.24 m from ~A.D.85 0 to present.	Proxy sea level records and downscale d CMIP5	850- 1800; 1970- 2005	Yes	24 year	-	-	-	-	-	New York
Wahl et al., NCC	coastal degradat ion	Return period of 1/100yr pre- industrial flood height (yr)	Increase in the number of coastal compoun d events over the past century.	Statistical analyses	1900- 2012	Yes	42 year	-	-	-	-	-	USA & New York
Vegetation degradaton													
Allen et al., 2010	vegtatio n changes	Tree mortality	Increases in tree mortality	Global assessment of recent tree mortality attributed to drought and heat stress. "Although episodic mortality occurs in the absence of climate change, studies ccompiled here suggest that at least some of the world's forested ecosystem s already may be responding to climate change and raise concern that forests may become increasingl y vulnerable to higher backgroun d tree mortality	1970-2008	Yes but not formall y							quasi- Global

				rates and die-off in response to future warming and drought, even in environme nts that are not normally considered water- limited" (paper)									
Trumbore et al.,2015	vegtatio n changes	Forest health	Intensifi cation of stresses on forests	Review	-	-	-	-	-	-	-	-	-
Hember et al., 2017	vegtatio n changes	Net ecosyste m biomass productio n (NEBP)	A 90% increase in NEBP driven by environ mental changes.	Observatio ns at 10,307 plots across southern ecozones of Canada	1501- 2012	Yes but not formall y	rise in wet climates , decline in dry climates	-	-	-	-	-	Canada
Midgley and Bond 2015	vegtatio n changes	Vegetatio n structure	Climate, atmosph eric CO2 and disturban ce changes are able to shift vegetatio n between states.	Review	-	-	-	-	-	-	-	-	Africa
Norby et al., 2010	vegtatio n changes	Net Primary Productiv ity (NPP, kg dry matter m- 2 yr-1)	Increasin g N limitatio n, expected from stand develop ment and exacerba ted by elevated CO2.	FACE: CO2 vs N	1998- 2008	-	reductio n in NPP differen ce between abient and elevated CO2 experim ents	-	-	-	-	-	High latitudes
Gauthier et al., 2015	vegtatio n changes	Boreal forest shift to woodland /shrublan d biome	Increase in drought-	Review	-	-	climate zones shift faster than adaptati on capacity	-	-	-		-	Fennosca ndia, Siberia and the northern reaches of North America

			t biome- level changes.										
FAO 2012	vegtatio n changes	Boreal forest productiv ity	Enhance d dieback and timber quality decrease despite increase in forest producti vity.	Review	2012-2030	-	"Higher forest mortalit y is already being observe d in practical ly all areas of the boreal belt."	-	-	-	mass destr uctio n of fores t stand s.	"The state of knowle dge regardi ng adaptiv e potentia l and the regiona l vulnera bility of forests to climate is insuffic ient" (paper)	Siberia (highest risks for Southern regions and forest steppe)
Price et al., 2013	vegtatio n changes	Boreal forest productiv ity	Where precipita tion is generally nonlimiti ng, warming coupled with increasin g atmosph eric carbon dioxide may stimulate higher forest producti vity. Increase in large wildfires . Risk of endemic forest insect populati on coubreak s in response to relativel y small temperat ure	Review	1995-2100						-	(paper) -	Canada
Girardin et al., 2016	vegtatio n changes	Boreal forest productiv ity	Tree growth depende nce on soil moisture in boreal Canada since the mid-20th century. Projectio ns of	Dendrochr onology	1950- 2015	drought and heat control boreal tree growth	no change	-	-	-	-	-	North America

			future drying pose risk to forests especiall y in moisture -limited regimes.										
Beck et al., 2011	vegtatio n changes	Boreal forest productiv ity	Growth increases at the boreal– tundra ecotones in contrast with drought- induced producti vity declines througho ut interior	Dendrochr onology and remote sensing	1982- 2010	drought - induced product ivity declines	-	-	-	-	-	-	North America
Lewis et al., 2004	vegtatio n	Tropical forest	Alaska. Initiating biome shift. Widespr ead	Review	1900- 2001	-	-	-	-	-	-	-	Global
	changes	health	changes observed in mature tropical forests.		2001								
Bonan et al., 2008	vegtatio n changes	Forest health	Forests under large pressure from global change.	Review	-	-	-	-	-	-	-	-	Global
Miles et al., 2004	vegtatio n changes	Species becoming non- viable (%)	in the realized distributi ons of most species due to delays in populati on response s.	HADCM2 GSa1 1%CO2 (old ref)	1990- 2095	-	-	-	-	-	43% by 2095	-	Amazonia (highest risks over lowland and montane forests of Western Amazonia)
Anderegg et al., 2012	vegtatio n changes	Tree mortality	Increase d tree mortality	Review	-	-	-	-	-	-	-	-	Global
Sturrock et al., 2011	vegtatio n changes	Tree mortality	Increase d tree mortality	Review "We Review knowledge of relationshi ps between climate variables and several forest diseases, as well as current evidence	-	-	-	-	-	-	-	"Regar dless of these uncertai nties, impacts of climate change on forest health must be mitigat ed. This will require	Global

of how	proacti
climate,	ve
host and	thinkin
pathogen	g and a
pathogen	g and a
interaction	modifie
s	d suite
are	of
responding	forest
or might	manage
respond to	ment
climate	approac
chinate	approac
change."	hes,
(paper)	because
	status
	quo
	manage
	ment
	strategi
	es will
	not
	protect
	forest
	values
	in a
	changin
	Changm
	g climate.
	climate.
	Climate
	change
	is
	already
	disrupti
	ng
	ng practice
	practice
	s
	and
	policies
	for
	managi
	ng
	comme
	rcial
	and
	non-
	comme
	rcial
	forests,
	such as
	forest
	classifi
	classifi
	cation
	systems
	projecti
	ons
	of
	growth
	and
	yield
	yieiu
	and
	subsequ
	ent
	models
	of
	supply
	for
	timber
	and
	other
	forest
	product
	s, plans
	and
	projecti
	ons for
	managi
	nanagi
	ng habitat
	nabitat
	£
	for differen

									t species of animals , and cycling of carbon, nutrient s and water (Graha m et al., 1990)." (paper)	
Bentz et al., 2010	vegtatio n changes	Tree mortality	Increase d tree mortality	Population models forced with CRCM climate projections under A2	1961-2100		e.g. Spruce beetle: "In the period 2030 and again from 2071 to 2100, we would expect substa ntial increas es in spruce forest area with bigh probab ility of spruce forest area with bigh probab ility of spruce dannual ly rather than semian nually (figure 1b, 1c, 1e, 1c, 1e, 1c, 2e, 200, we would expect substa area with bigh probab ility of spruce dannual ly rather than semian se			North America

McDowell et al., 2011 Lindner et al., 2010	vegtatio n changes vegtatio n changes	Tree mortality Tree mortality	Increase d tree mortality positive effects on forest growth and wood producti on from increasin g atmosph eric CO2 content and	Synthetic theory Review	1850- 2100 2000- 2100	- Some changes already detecte d (e.g. in Pyrenee s)		-	higher probab ility of spruce beetle outbre ak potenti al, based on develo pment al timing alone. A model for predict ing the cold toleran ce of this insect is not availa ble" (paper) -	-		Global Europe
Mokria et al. 2015	vegtatio n changes	Tree mortality	atmosph eric CO2 content and warmer temperat ures especiall y in northern and western Europe. Increasin g drought and disturban ce (e.g. fire) risks will cause adverse effects, outweigh ing positive trends in southern and eastern Europe.	Dendrochr onology	2006-2013		-		-	-	-	Northern Ethiopia, dry

			mortality with increasin g elevation										afromonta ne forest
Shanahan et al., 2016	vegtatio n changes	Abrupt woodland - grassland shifts	between	28,000- year integrated record of vegetation, climate and fire from West Africa	15- 28Ka			-	-	-	-		West Africa
Ferry Slik et al., 2002	vegtatio n changes	Tree mortality	Reductio n in number of trees and tree species per surface area directly after disturban	Forest plot monitoring	1970- 2002	-	-	-	-	-	-	-	Indonesia
Dale et al., 2001	vegtatio n changes	Tree mortality		Review	-	-	-	-	-	-	-	-	Global
Schlesinger and Jasechko 2014	vegtatio n changes	ratio of transpirat ion over evapotran spiration (%)	Changes in transpira	Review	-	-	-	-	-	-	-	-	Global

			concentr ations, land use changes, shifting ecozones and climate warming										
Loucks et al., 2010 CC	coastal degradat ion	Number of breeding tiger species	Tiger habitat loss under future climate change. High agreeme nt that the joint effect of climate change and land degradati on will be very negative for the area.	Sea level rise scenarios of 0, 12, 28cm (assumed 1,2,3K)	2000-2090	-	115	105	5	-	-	-	Sundarba n, Banglades h
Payo et al., 2016 CC	coastal degradat ion	Mangrov e area loss (km2)	Increasin g mangrov e area losses by 2100 relative to 2000 due to sea level rise.	Sea level rise scenarios of 0.46, 0.75 and 1.48m	2000; 2100	-	-	-	81- 1391k m² lost	-	-	-	Sundarba n, Banglades h
Song et al., 2018	vegtatio n changes	Land change	60% of all recent land changes are associate d with direct human activities whereas 40% with indirect drivers such as climate change.		1982-2016		40% of land change from indirect drivers such as climate change	-	-	-	-	-	Global
Mc Kee et al. 2004 GEB	vegtatio n changes	Salt marsh dieback (ha)	Vegetati on dieback and soil degradati on.	Areal and ground surveys	2000-2001	-	More than 100,000 ha affected, with 43,000 ha everely damage d	-	-	-	-	-	USA
soil erosion													
Li and Fang, 2016	soil erosion	Soil erosion rates (t ha^-1 yr^-1)	more often than not studies project an	Review	1990- 2100	Indirect ly: close links demons trated	0-73.04	-	-	-	-	-	Global

			increase in erosion rates (+1.2 to + 1600%, 49 out of 205 studies project more than			regional ly, no formal D&A							
			50% increase)										
Serpa et al., 2015	soil erosion	Sediment export change in humid/dr y catchmen t (%)	in streamfl ow (2071-	SWAT + ECHAM SRES A1B and B1	1971- 2000; 2071- 2100	-	-	- 22/+5 %	- 29/+22 2%	-	-	-	Mediterra nean
Neupane and Kumar, 2015	soil erosion	Change in river flow	Dominan t effect of LULCC	SWAT under SRES B1, A1B, A2	1987- 2001; 2091- 2100	-	-	-	-	-	-	-	Big Sioux River
Mullan et al., 2012	soil erosion	Change in soil erosion	Erosion rates without land manage ment changes would decrease by 2020s, 2020s, 2020s, 2050s and 2100s, dominan t effect of land manage ment	WEPP under SRES	2000 2020 s; 2050 s; 2080 s	-	-	-	-	-	-	-	Northern Ireland
Bond-Lamberty et al., 2018	soil erosion	Soil organic matter (SOM)	Soil carbon decline	Global soil respiration data base	1990- 2014	-	-	-	-	-	-	-	Global
Bellmay et al., 2005 Nature	soil erosion	Soil property changes	Soil carbon decline	National soil inventory of England and Wales	1978- 2003	Indirect ly: relation betwee n rate of carbon loss and carbon content irrespec tive of land use, suggesti ng a link to climate change.	- 0.6%/yr	-	-	-	-	-	UK
Ramankutty et al., 2002	soil erosion	Suitabilit y for agricultur e (%)	Increase d suitabilit y for agricultu re in northern high latitutdes ,	IS92a 'business as usual' "calibratin g the satellite- based IGBP-DIS 1-km land- cover	1992; 2070- 2099	-	-	-	-	plus1 6%	-	-	Global

			decrease in tropics	classificati on dataset (Loveland et al ., 2000) against a worldwide collection of agricultura l census									
Zabel et al., 2014	soil erosion	Suitabilit y for agricultur e (million km ²)		data." (paper) ECHAM5 SRES A1B	1980- 2010; 2071- 2100	-	-	-	-	plus 5.6	-	-	Global
Burt et al., 2016b	soil erosion	Extreme precipitat ion indices	tropics Soil erosion may increase in a warmer, wetter world, yet land manage ment is first- order control.	Commenta ry	1900- 2016	-	-	-	-	-	-	-	India
Capolongo et al., 2008	soil erosion	Climate erosivity	Influenc e on soil erosion in Mediterr anean	Simplified rainfall erosivity model	1951- 2000	-	-	-	-	-	-	-	Mediterra nean
Barring et al. 2003 Catena	soil erosion	Wind erosion	No clear trend in wind erosion.	Review	1901- 2000	-	-	-	-	-	-	-	Sweden
Munson et al., 2011 PNAS	soil erosion	Wind erosion	Enhance d wind erosion.	Wind erosion model	1989- 2008	-	-	-	-	-	-	-	USA
Allen & Breshears 1998 - PNAS	soil erosion	Water erosion	Increase d water erosion.	Observatio ns	1950- 1990	-	-	-	-	-	-	-	USA
Shakesby 2011 Earth Science Reviews	soil erosion	Water erosion	Water erosion after wildfire not notably distinct in Mediterr anean, likely due to land use effects	Review	-	-	-	-	-	-	-	-	Mediterra nean
Pruski and Nearing 2002	soil erosion	Water erosion		HadCM3	1990- 2099	-	-	-	-	-	-	-	USA

Knorr et al., 2005 Nature	soil erosion	Soil Organic Carbon (SOC) turnover time	Soil carbon decline	Three-pool model, theoretical study	-	-	-	-	-	-	-	-	Global
Bond-Lamberty & Thompson 2010 Nature	soil erosion	Soil respiratio n change (PgC yr^- 1)	respirati	Database of worldwide soil respiration observatio ns	1961- 2008	-	plus0.1 Pg C/yr	-	-	-	-	-	Global
Jiang et al., 2014	soil erosion	Soil erosion rates (t ha^-1 yr^-1)	No significn at change in soil erosion during one decade	Revised Universal Soil Loss Equation (RUSLE)	2000; 2006; 2012	-	-	-	-	-	-	-	Mount Elgon
Vanmaercke et al. 2011 (Science of the Total Environment)	soil erosion	Sediment yield		Review	-	-	-	-	-	-	-	-	Europe
Vanmaercke et al. 2016 (Earth-Science Reviews)	soil erosion	Volumetr ic gully headcut retreat rate change (%)	Increase in headcut retreat rates	Gully headcut retreat sensitivity to climate	-	-	gully erosion already forms an importa nt problem in many regions	-	plus27 -300%	-	-	-	Global
de Vente et al. 2013 ESR	soil erosion	Soil erosion and sediment yield	Importan ce of spatial and temporal scales when consideri ng erosion processe s.		-	-	-	-	-	-	-	-	Global
Broeckx et al., 2018 ESR	soil erosion	Landslide susceptib ility	precipita tion not a significa nt driver of landslide susceptib ility, but is significa nt in non-arid climates	Review	-	-	-	-	-	-	-	-	Africa
Gariano and Guzetti 2016 ESR	soil erosion	Landslide susceptib ility		Review	-	-	-	-	-	-	-	-	Global

			y and intensity of severe rainfall events.										
Water scarcity in drylands			events.										
IPCC AR5	water scarcity	drought		observatio ns	histor ical	high confide nce in observe d trends in some regions of the world, includin g drought increase s in the Mediter ranean and West Africa and drought decreas es in central North Americ a and northwe st Australi							
Hoegh-Guldberg et al., 2018	water scarcity	drought		observatio ns	histor ical	a medium confide nce that greenho use forcing has contrib uted to increase d drying in the Mediter ranean region (includi ng souther n Europe, norther n Africa and the Near East)							
Greve et al., GRL, 2015	water scarcity	P-ET (mm)	generally a decrease in P-ET in dryland regions but not statistica lly significa nt		2080 - 2099 comp ared to 1980 - 1999	-	-	201		-	-	-	global
Byers et al., ERL, 2018	water scarcity	water stress	increase d water	time sampling	2050	-	-	391 (11%)	418 (12%)	-	-	-	Drylands particularl

		index (populati on exposed and vulnerabl e in drylands, in millions and in percentag e of drylands populatio n)	stress with temperat ure	approach using a combinati on of RCPs									y impacted, including southwest ern North America, southeaste rn Brazil, northern Africa, the Mediterra nean, the Middle East, and western, southern and eastern
Hanasaki, N., et al, 2013, Hydrol. Earth Syst. Sci., 17, 2393–2413, doi:10.5194/hess-17- 2393-2013.	water scarcity	percentag e of populatio n under severely water- stressed condition s based on Cumulati ve Abstracti on to Demand ratio CAD≤0.5	increase with time and RCP	RCP2.6, 4.5, 8.5	(2071 - 2100 comp ared 1971 - 2000	-		3.6% - 12%	6.2% - 16%	-	12.3 % - 22.4 %	-	Asia global
Huang, J. et al. 2017 (NCC) Drylands face potential threat under 2C global warming target (CarbonBrief)	impact of temperat ure increase	temperat ure	higher temperat ure increase in drylands compare d to rest of the world			-	-	44% more warmi ng over drylan ds than humid lands	-	-	-	-	drylands/g lobal
Zeng and Yoon, GRL, 2009	increase desert area	expansio n of desert area (i.e. LAI less than 1)	increase in desert area	A1B	2099 comp ared to 1901	-	-	-	-	-	2.5 milli on km2 (10% incre ase)/ with veget ation - albed o feed back: +8.5 milli on km2 (34% incre ase)	-	drylands/g lobal
Liu, W. et al. 2018 (ESD) Global drought and severe drought- Affected populations in 1.5 and 2C warmer worlds	water scarcity	increase in populatio n exposed to severe drought	increase in exposed populati on globally	time sampling approach at 1.5 and 2 degree		-	-	194.5± 276.5 M	-	-	-	-	global
Naumann, G. et al. (2018) Global Changes in Drought Conditions	water scarcity	drought magnitud e	increase in drought	time sampling approach		-	-	Doubli ng of drough	-	-	-	-	global

Under Different Levels of Warming			magnitu de	at 1.5 and 2 degree			t magnit ude for 30% of global landma ss					
Schewe et al., 2014 PNAS	water scarcity	river runoff as a proxi for water resources	increase in populati on confront ed to water scarcity	RCP8.5	-	-	severe reducti on in water resourc es for about 8% of the global popula tion	severe reducti on in water resour ces for about 14% of the global popula tion	-	-	-	global
Haddeland et al., 2014 PNAS	Irrigatio n water scarcity	percentag e of populatio n under worsened water- stressed condition s based on Cumulati ve Abstracti on to Demand ratio	increases with temperat ure in		-	-	-	-	-	-	-	global

Table SM7.2: literature considered in the expert judgement of risk transitions for figure 7.2

Reference	Risk	variable (unit)	climate scenario	timefra me	GMS T level	Direction of impact	SSP 1	SSP2	SSP3	SSP 4	SSP5	Region (Includin g Regional Differenc es)
Food security												
(Palazzo et al. 2017)	food availability	percent deviaiton from 2010 Kilocalori e	RCP 8.5	2050		increase	up to 30%		only up to 10%			West Africa
(Hasegawa et al. 2018)	change in crop yield combined with exposure and vulnerability based on prevalence of the undernourish ment (PoU) concept	populatio n at risk of hunger (million)	RCP2.6	2050		increasing population at risk of hunger	approx 2M	approx 5M	approx 24M	-	-	sub- Saharan Africa and South Asia have highest impacts
(Hasegawa et al. 2018)	change in crop yield combined with exposure and vulnerability based on prevalence of the undernourish ment (PoU) concept	populatio n at risk of hunger (million)	RCP6.0	2050		increasing population at risk of hunger	approx 5M (0- 30M) (RCP to GMT conversio n based on SM SR15 ch3)	24M (2- 56M) (RCP to GMT conversio n based on SM SR15 ch3)	approx 80M (2- 190M)	-	-	sub- Saharan Africa and South Asia have highest impacts

(Byers et al. 2018)	crop yield change	crop yield change (Number of exposed and vulnerabl e people)	time sampling approach using a combinati on of RCPs	2050	1.5		2	8	20	-	-	
(Byers et al. 2018)	crop yield change	crop yield change (Number of exposed and vulnerabl e people)	time sampling approach using a combinati on of RCPs	2050	2		24	81	178	-	-	
(Byers et al. 2018)	crop yield change	crop yield change (Number of exposed and vulnerabl e people)	time sampling approach using a combinati on of RCPs	2050	3		118	406	854	-	-	
(Wiebe et al. 2015)	Economic access	% change in price	RCP4.5	2050		Increase in price	~3% to ~17% (interquart ile range)					
(Wiebe et al. 2015)	Economic access	% change in price	RCP6.0	2050		Increase in price	-	0 to ~12% increase (interquart ile range)	-	-	-	
(Wiebe et al. 2015)	Economic access	% change in price	RCP8.5	2050		Increase in price			~5% to 30% (interquart ile range), median by crop varies from 10% to 30%; restricting trade increases effects			
(van Meijl et al. 2018)	Crop production	% change in productio n	RCP6.0	2050		Decrease in production	2-3% decline		1-4% decline			
(van Meijl et al. 2018)	Economic access	% change in price	RCP6.0	2050		Increase in price	up to 5%		up to 20%			
(Ishida et al. 2014)	undernourish ment	DALYs attributabl e to childhood underwei ght (DAtU)	Used RCP 4.5 for BAU	2050 compare d to 2005		generally decrease in undernourishm ent	Health burden decreases by 36.4 million DALYS by 2030 and to 11.6 DALYS by 2050	decrease by 30.4 DALYS by 2030 and 17.0 DAYS by 2050	decrease by 16.2 DALYS by 2030 but increase to 43.7 by 2050	-	-	These are global statistics but there are regional difference s. E.g. sub- Saharan Africa has higher DALYS
(Ishida et al. 2014)	undernourish ment	DALYs attributabl e to childhood underwei ght (DAtU)	Used RCP 2.6	2050 compare d to 2005		generally decrease in undernoursihm ent, although there are some climate impacts	Difference in health burden of 0.2% compared to BAU	Difference of 0.5% in 2050 compared to BAU	Difference of 2.0% compared to BAU	-	-	These are global statistics but there are regional difference s. E.g. sub- Saharan Africa has higher DALYS
(Fujimori et al. 2018)	Economic access	GDP loss	RCP8.5	2100		Decline in GDP	0%	0.04%	0.57% decrease			

									in "GDP change rate"			
(Springman n et al. 2016)	Deaths due to changes in dietary and weight-related risk facors	Climate- related deaths	RCP2.6 to RCP8.5	2050			more avoided deaths compared to SSP2 and 3	intermedia te	fewer avoided deaths			
Land degradatio n												
(Byers et al. 2018)	habitat degradation	populatio n (Million) exposed and vulnerabl e in relation to share of land area within a pixel being converted from natural land to agricultur al land	time sampling approach using a combinati on of RCPs	2050	1.5		88	88	107	-	-	non- drylands only; data provided by authors
(Byers et al. 2018)	habitat degradation	populatio n (Million) exposed and vulnerabl e in relation to share of land area within a pixel being converted from natural land to agricultur al land	time sampling approach using a combinati on of RCPs	2050	2		257	551	564	-	-	non- drylands only; data provided by authors
(Byers et al. 2018)	habitat degradation	populatio n (Million) exposed and vulnerabl e in relation to share of land area within a pixel being converted from natural land to agricultur al land	time sampling approach using a combinati on of RCPs	2050	3		652	1068	1156	-	-	non- drylands only; data provided by authors
(Hinkel et al. 2014)	flooding and sea level rise, Coastal erosion	number of people exposed to annual flooding		2100			Lowest number of people flooded	-	highest number of people flooded	-	-	
(Hinkel et al. 2014)	Flood costs, Coastal erosion	cost of flooding (% GDP)		2100		The global costs of protecting the coast with dikes are	-	-	lowest costs under contstant protection	-	highest costs under constant protecti	

						significant with annual investment and maintenance costs of US\$ 12–71 billion in 2100, but much smaller than the global cost of avoided damages even without accounting for indirect costs of damage to regional production supply.			but highest under enhanced protection !		on	
(Zhang et al. 2018)	Extreme preciptation	populatio n exposed to precipitati on extremes (RX5day events exceeding 20-year return values)	time sampling approach on RCP8.5 and RCP4.5	2100	2	exposed population steadily increases with temperature, with only marginal differences between SSPs						
(Knorr et al. 2016a)	fire	exposure (#people)	RCP4.5 transient	2071- 2100 vs 1971- 2000	2		-	560	646	-	508	globally
(Knorr et al. 2016a)	fire	exposure (#people)	RCP8.5 transient	2071- 2100 vs 1971- 2000	4		-	610	716	-	527	globally
(Knorr et al. 2016b)	fire	emissions (Pg C yr^-1)	RCP4.5 transient	2071- 2100 vs 1971- 2000	2		-	1.22	1.11	-	1.31	globally
(Knorr et al. 2016b)	fire	emissions (Pg C yr^-1)	RCP8.5 transient	2071- 2100 vs 1971- 2000	4		-	1.33	1.22	-	1.43	globally
Desertificat ion												
(Zhang et al. 2018)	Extreme preciptation	populatio n exposed to precipitati on extremes (RX5day events exceeding 20-year return values)	time sampling approach on RCP8.5 and RCP4.5	2100	2	exposed population steadily increases with temperature, with only marginal differences between SSPs						
(Byers et al. 2018)	water scarcity	water stress index (2050); populatio n exposed and vulnerabl e in drylands (Units: Million and percentag e of drylands populatio n)	time sampling approach using a combinati on of RCPs	2050	1.5		76 (2%)	349 (10%)	783 (20%)	-	-	Dryland only: data provided by authors

Lloyd- Hughes 2014) (Arnell and Lloyd- Hughes 2014)	water scarcity water scarcity	to increased water resources stress Numbers of people (millions) exposed to increased water	RCP6	2050		 759–2668 802–2947	807–3054 (919– 3416	924–3564 1006– 4201	- 322 7 950 - 351 9	803– 2682 854– 2981	
(Arnell and Lloyd- Hughes 2014) (Arnell and	water scarcity	Numbers of people (millions) exposed to increased water resources stress Numbers of people (millions) exposed	RCP4.5	2050		810–2845	881–3239	1037– 3975	884 344 4 809	854– 2879	
(Arnell and Lloyd- Hughes 2014)	water scarcity	Numbers of people (millions) exposed to increased water resources stress	RCP2.6	2050		379–2997	473–3434	626–4088	508 - 348 1	418– 3033	
(Byers et al. 2018)	water scarcity	water stress index (2050); populatio n exposed and vulnerabl e in drylands (Units: Million and percentag e of drylands populatio n)	time sampling approach using a combinati on of RCPs	2050	3	91 (3%)	418 (12%)	919 (24%)	-	-	Dryland only: data provided by authors
(Byers et al. 2018)	water scarcity	water stress index (2050); populatio n exposed and vulnerabl e in drylands (Units: Million and percentag e of drylands populatio n)	time sampling approach using a combinati on of RCPs	2050	2	82 (3%)	391 (11%)	864 (22%)	-	-	Dryland only: data provided by authors

(Hanasaki et al. 2013)	water scarcity	Populatio n living in grid cells with CAD < 0.5 (millions)	RCP6.0	2041- 2070		2853 - 3043 (baseline is ~2000; all regions increase)					informatio n. Global. Paper includes maps and graphs with regional informatio
UNCCD, 2017	mean species abundance, aridity; biodiversity, land degradation, water scarcity	populatio n living in drylands				-	43% increase	-	-	-	<u>n.</u>

Table SM7.3: literature considered in the expert judgement of risk transitions for figure 7.3

Reference	Risk	Variable	Climate scenario	SSP	Timeframe	Non- climatic hazard	Bioenergy area	Impacts	Notes
(Humpenöder et al. 2017)	trade-offs with SDGs	sustainability indicators: SDG 2; 7; 13; 14; 15	no climate change (consistent with strong mitigation)	SSP1	2100 compared to baseline without bioenergy	bioenergy deployment	636 Mha	only slight impact on sustainability indicators (i.e. no trade-offs due to lower food demand in SSP1) compared to baseline	
(Humpenöder et al. 2017)	trade-offs with SDGs	sustainability indicators: SDG 2; 7; 13; 14; 15	no climate change (consistent with strong mitigation)	SSP2	2100 compared to baseline without bioenergy	bioenergy deployment	636 Mha	pronounced decrease in all sustainability indicators (i.e. increase in adverse side- effects) compared to case without bioenergy	
(Humpenöder et al. 2017)	trade-offs with SDGs	sustainability indicators: SDG 2; 7; 13; 14; 15	no climate change (consistent with strong mitigation)	SSP5	2100 compared to baseline without bioenergy	bioenergy deployment	636 Mha	pronounced decrease in all sustainability indicators (i.e. increase in adverse side- effects) even more severe than in SSP2	
(Heck et al. 2018)	planetary boundaries transgression	Planetary Boundaries (PBs): biosphere integrity; land- system change; biogeochemical flows; freshwater use	RCP2.6	SSP1	2050 compared to baseline without bioenergy	bioenergy deployment	870Mha	upper limit of most PBs is transgressed implying high risk of irreversible shifts	
(Heck et al. 2018)	planetary boundaries transgression	Planetary Boundaries (PBs): biosphere integrity; land- system change; biogeochemical flows; freshwater use	RCP2.6	SSP2	2050 compared to baseline without bioenergy	bioenergy deployment	778Mha	upper limit of most PBs is transgressed implying high risk of irreversible shifts	
(Boysen et al. 2017)	food production	kcal cap-1 day-1 production loss (%); N application (Mt yr^-1)	4.5°C trajectory	NA	2100	bioenergy deployment	1078Mha	-43%; 96 Мt yr^-1	
(Boysen et al. 2017)	food production	kcal cap-1 day-1 production loss	4.5°C trajectory	NA	2100	bioenergy deployment	2176Mha	-73%; 151 Mt yr^-1	

		(%); N application (Mt yr^-1)							
(Boysen et al. 2017)	food production	kcal cap-1 day-1 production loss (%); N application (Mt yr^-1)	4.5°C trajectory	NA	2100	bioenergy deployment	4267Mha	-100%; 196 Mt yr^-1	
(Hasegawa et al. 2018)	population at risk of hunger	population at risk of hunger (million)	RCP2.6	SSP1	2050 compared to baseline	mitigation policies (including bioenergy)	262Mha (106-490) (provided by authors)	approx +25M	
(Hasegawa et al. 2018)	population at risk of hunger	population at risk of hunger (million)	RCP2.6	SSP2	2050 compared to baseline?	mitigation policies (including bioenergy)	752Mha (175-1904) (provided by authors)	approx +78M (0-170)	
(Hasegawa et al. 2018)	population at risk of hunger	population at risk of hunger (million)	RCP2.6	SSP3	2050 compared to baseline?	mitigation policies (including bioenergy)	813Mha (171-1983) (provided by authors)	approx +120M	
(Fujimori et al. 2018)	population at risk of hunger	population at risk of hunger (million)	RCP2.6	SSP1	2050 compared to baseline	mitigation policies (including bioenergy)	90Mha	approx +20M	
(Fujimori et al. 2018)	population at risk of hunger	population at risk of hunger (million)	RCP2.6	SSP2	2050 compared to baseline	mitigation policies (including bioenergy)	170Mha	approx +100M	
(Fujimori et al. 2018)	population at risk of hunger	population at risk of hunger (million)	RCP2.6	SSP3	2050 compared to baseline	mitigation policies (including bioenergy)	220Mha	approx +260M	
(Obersteiner et al. 2016)	agricultural water use	km3		SSP1	2030	bioenergy	210Mha	approx + 13 km3	
(Obersteiner et al. 2016)	agricultural water use	km3		SSP2	2030	bioenergy	210Mha	approx +12km3	
(Obersteiner	agricultural	km3		SSP3	2030	bioenergy	210Mha	approx +11km3	
et al. 2016) (Hejazi et al. 2014)	water use bioenergy water withdrawal	km3		SSP3	2050	bioenergy	150 Mha	approx +300km3	Paper uses a pre- cursor to the SSP3, with a similar population and storyline.
(Hasegawa et al. 2015)	population at risk of hunger	population	RCP2.6	SSP2	2050	bioenergy	280Mha	approx +2M	
Fujimori et al., NSust, accepted	population at risk of hunger	population	No climate; but assessed in SM as small effect	SSP2	2050	bioenergy	38 - 395 Mha	approx 25 - 160 M	Difference between 1.5C scenario and Baseline for both bioenergy and impact. Total population at risk of hunger is ~300 to >500 million; total increase in population at risk of hunger is 50 to 320 M. Authors state that roughly half is attributed to bioenergy; those numbers are included here.
Fujimori et al., NSust, accepted	population at risk of hunger	population	No climate; but assessed in SM as small effect	SSP2	2050	bioenergy	43 - 225 Mha	approx 20 - 145 M	Difference between 2C scenario and Baseline for both bioenergy and impact. Total population at risk of hunger is ~290 to ~500 million; total increase in

				population at risk of hunger is 40 to 290 M. Authors state that roughly half is attributed to bioenergy; those numbers are included
				here.

Table SM7.4. Risks thresholds for different components of desertification, land degradation and food security as a function of global mean surface temperature change relative to pre-industrial times. The confidence levels are defined according to the IPCC guidance note on consistent treatment of uncertainties (Mastrandrea et al., 2010). These data are used in Figure 7.1

Component	Risk Transition	Global temperature industrial lev	mean surface change above pre- rels °C	Confidence
Low Latitude Crop Yield	Undetectable to	Min	0.5	high
	Moderate	Max	0.7	
	Moderate to High	Min	1.2	medium
		Max	2.2	
	High to Very High	Min	3.0	medium
		Max	4.0	
Food Supply Stability	Undetectable to	Min	0.75	high
	Moderate	Max	0.85	
	Moderate to High	Min	0.9	medium
		Max	1.4	
	High to Very High	Min	1.5	medium
		Max	2.5	
Permafrost Degradation	Undetectable to	Min	0.3	high
	Moderate	Max	0.7	
	Moderate to High	Min	1.1	high
		Max	1.5	
	High to Very High	Min	1.8	medium
		Max	2.3	
Vegetation Loss	Undetectable to	Min	0.7	high
	Moderate	Max	1.0	
	Moderate to High	Min	1.6	medium
		Max	2.6	
	High to Very High	Min	2.6	medium
		Max	4.0	
Coastal Degradation	Undetectable to	Min	0.8	high
	Moderate	Max	1.05	
	Moderate to High	Min	1.1	high
		Max	1.6	
	High to Very High	Min	1.8	high

		1		1
		Max	2.7	
Soil Erosion	Undetectable to Moderate	Min	0.8	medium
		Max	1.2	
	Moderate to High	Min	2.0	low
		Max	3.5	
	High to Very High	Min	4.0	low
		Max	6.0	
Fire	Undetectable to	Min	0.7	high
	Moderate	Max	1.0	
	Moderate to High	Min	1.3	medium
		Max	1.7	
	High to Very High	Min	2.5	medium
		Max	3.0	
Water Scarcity in Drylands	s Undetectable to Moderate	Min	0.7	high
		Max	1.0	
	Moderate to High	Min	1.5	medium
		Max	2.5	
	High to Very High	Min	2.5	medium
		Max	3.5	
Food Access	Undetectable to Moderate	Min	0.8	medium
		Max	1.1	
	Moderate to High	Min	1.4	low
		Max	2.4	
	High to Very High	Min	2.4	low
		Max	3.4	
Food Nutrition	Undetectable to	Min	1.1	low
	Moderate	Max	1.7	1
	Moderate to High	Min	1.9	low
		Max	2.2	1
	High to Very High	Min	2.3	low
		Max	3.3	
	I	I	I	

7. SM. 1. Additional embers

Details of two embers (nutrition and coastal degradation) where not included in Chapter 7 due to
space limitations. Changes in atmospheric CO2, will result in reduced nutritional value of crops
(iron, protein, zinc, other micronutrients, and increases in mycotoxins), impacting food
utilization, with potential risks to health of vulnerable groups such as children and pregnant
women (*high confidence, high agreement*). This may create nutrition-related health risks for 600
million people (Zhou et al. 2018). Further details are provided in Chapter 5 of this Report.

11

Coastal flooding and degradation bring risk of damage to infrastructure and livelihoods. There are
very few global studies investigating past changes in coastal degradation (erosion and flooding)
and associated risk (Muis et al. 2018; Mentaschi et al. 2018), yet strong evidence exists that

1 anthropogenic climate change is already affecting the main drivers of coastal degradation,

2 including: mean and extreme sea level (IPCC, 2013), storm surges (Wahl et al. 2015) and tropical

3 cyclones (Kossin 2018). It is also clear that land-based processes, such as groundwater extraction

- 4 and land subsidence, may impact coastal degradation {See Chapter 4, including 4.8.5}.
- 5

At 1.5°C there is a high risk of destruction of coastal infrastructure and livelihoods (Hoegh-Guldberg et al. 2018) (*high confidence*). There is an associated strong increase in people and assets exposed to mean and extreme sea level rise and to coastal flooding above 1.5°C. Very high risks start to occur above 1.8 °C (*high confidence*) (Hanson et al. 2011; Vousdoukas et al. 2017;
Jevrejeva et al. 2018; Hallegatte et al. 2013). Impacts of climate change on coasts is further explored in the IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.

12

13 7. SM 2 SSP and Mitigation Burning Embers 14

15 Table SM7.5 Risks thresholds associated to desertification, land degradation and food security as a 16 function of Global mean surface temperature change relative to pre-industrial levels and socio-17 economic development. Risks associated to desertification include, population exposed and 18 vulnerable to water scarcity and changes in irrigation supply and demand. Risks related to land 19 degradation include vegetation loss, population exposed to fire and floods, costs of floods, extent of 20 deforestation, and ecosystem services including the ability of land to sequester carbon. Risks to food 21 security include population at risk of hunger, food price increases, disability adjusted life years. The 22 risks are assessed for two contrasted socio-economic futures (SSP1 and SSP3) under unmitigated 23 climate change up to 3°C. These data are used in Figure 7.2.

Component	Risk Transition	temperatu	mean surface re change above rial levels °C	Confidence	
Land Degradation (SSP1)	Undetectable to	Min	0.7	High	
	Moderate	Max	1.0		
	Moderate to High	Min	1.8	low	
		Max	2.8		
	High to Very High	Min		does not reach this	
		Max		threshold	
Land Degradation (SSP3)	Undetectable to	Min	0.7 High	High	
	Moderate	Max	1.0		
	Moderate to High	Min	1.4	Medium	
		Max	2.0		
	High to Very High	Min	2.2	Medium	
		Max	2.8		
Food Security (SSP1)	Undetectable to	Min	0.5	Medium	
	Moderate	Max	1.0		
	Moderate to High	Min	2.5	Medium	
		Max	3.5		
	High to Very High	Min		does not reach this	
		Max		threshold	

Food Security (SSP3)	Undetectable to	Min	0.5	Medium
	Moderate	Max	1.0	
	Moderate to High	Min	1.3	Medium
		Max	1.7	
	High to Very High	Min	2	Medium
		Max	2.7	
Desertification (SSP1)	Undetectable to Moderate	Min	0.7	High
		Max	1.0	
	Moderate to High	Min		Does not reach this
		Max		threshold
	High to Very High	Min		Does not reach this
		Max		threshold
Desertification (SSP3)	Undetectable to	Min	0.7	High
	Moderate	Max	1.0	
	Moderate to High	Min	1.2	Medium
		Max	1.5	
	High to Very High	Min	1.5	Medium
		Max	2.8	

Table SM7.6 Risk thresholds associated with 2nd generation bioenergy crop deployment (in 2050) as a land-based mitigation strategy under two SSPs (SSP1 and SSP3). The assessment is based on literature investigating the consequences of bioenergy expansion for food security, ecosystem loss and water scarcity, these indicators being aggregated as a single risk metric. These data are used in Figure 7.3.

9

Component		Risk Transition	Land area bioenergy cr		Confidence
Risk due to	bioenergy	Undetectable to Moderate	Min	1	Medium
deployment (SSP1)			Max	4	
		Moderate to High	Min	6	Low
			Max	8.7	
		High to Very High	Min	8.8	Medium
			Max	20	
Risk due to	bioenergy	bioenergy Undetectable to Moderate	Min	0.5	Medium
deployment (SSP3)			Max	1.5	
		Moderate to High	Min	1.5	Low
			Max	3	
		High to Very High	Min	4	Medium
			Max	8	

10

References
Abatzoglou, J. T., and A. P. Williams, 2016: Impact of anthropogenic climate change on wildfire
across western US forests. Proc. Natl. Acad. Sci., doi:10.1073/pnas.1607171113.
—, —, and R. Barbero, 2019: Global Emergence of Anthropogenic Climate Change in Fire
Weather Indices. Geophys. Res. Lett., 46, 326-336, doi:10.1029/2018GL080959.
http://doi.wiley.com/10.1029/2018GL080959 (Accessed April 14, 2019).
Aberman, N. L., and C. Tirado, 2014: Impacts of climate change on food utilization. <i>Global</i>
Environmental Change.
Abid, M., U. A. Schneider, and J. Scheffran, 2016: Adaptation to climate change and its impacts
on food productivity and crop income: Perspectives of farmers in rural Pakistan. J. Rural
Stud., doi:10.1016/j.jrurstud.2016.08.005.
Andela, N., and Coauthors, 2017: A human-driven decline in global burned area. Science, 356,
1356–1362, doi:10.1126/science.aal4108. http://www.ncbi.nlm.nih.gov/pubmed/28663495
(Accessed April 14, 2019).
Arnell, N. W., and B. Lloyd-Hughes, 2014: The global-scale impacts of climate change on water
resources and flooding under new climate and socio-economic scenarios. Clim. Change, 122,
127-140, doi:10.1007/s10584-013-0948-4. http://link.springer.com/10.1007/s10584-013-
0948-4 (Accessed April 11, 2019).
Asseng, S., and Coauthors, 2015: Rising temperatures reduce global wheat production. Nat. Clim.
<i>Chang.</i> , doi:10.1038/nclimate2470.
Asseng, S., D. Cammarano, B. Basso, U. Chung, P. D. Alderman, K. Sonder, M. Reynolds, and D.
B. Lobell, 2017: Hot spots of wheat yield decline with rising temperatures. <i>Glob. Chang.</i>
<i>Biol.</i> , doi:10.1111/gcb.13530.
Bellemare, M. F., 2015: Rising food prices, food price volatility, and social unrest. Am. J. Agric.
<i>Econ.</i> , doi:10.1093/ajae/aau038.
Bentz, B. J., and Coauthors, 2010: Climate Change and Bark Beetles of the Western United States
and Canada: Direct and Indirect Effects. <i>Bioscience</i> , 60 , 602–613,
doi:10.1525/bio.2010.60.8.6. https://academic.oup.com/bioscience/article-
lookup/doi/10.1525/bio.2010.60.8.6 (Accessed April 14, 2019).
Betts, R. A., and Coauthors, 2018: Subject Areas : Author for correspondence : Changes in
climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.
$5 \circ C$ and $2 \circ C$ global warming with a higher-resolution global climate model.
Black, R., W. N. Adger, N. W. Arnell, S. Dercon, A. Geddes, and D. Thomas, 2011: Migration
and global environmental change. <i>Global Environmental Change</i> .
Bojke, L., K. Claxton, Y. Bravo-Vergel, M. Sculpher, S. Palmer, and K. Abrams, 2010: Eliciting
distributions to populate decision analytic models. <i>Value Heal.</i> , 13 , 557–564.
Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of
forests. Science (80)., 320 , 1444–1449, doi:10.1126/science.1155121.
Boysen, L. R., W. Lucht, D. Gerten, V. Heck, T. M. Lenton, and H. J. Schellnhuber, 2017: The
limits to global-warming mitigation by terrestrial carbon removal. <i>Earth's Futur.</i> , 5 , 463–
474, doi:10.1002/2016EF000469.
Burke, E. J., S. E. Chadburn, C. Huntingford, and C. D. Jones, 2018: CO ₂ loss by permafrost
thawing implies additional emissions reductions to limit warming to 1.5 or 2 °C. <i>Environ</i> .
<i>Res. Lett.</i> , 13 , 024024, doi:10.1088/1748-9326/aaa138. http://stacks.iop.org/1748- 0226/13/i=2/a=0240242kgu=grospref of51af78a0228a0abf841752a004a4f6 (Aggassed April
9326/13/i=2/a=024024?key=crossref.cf51ef78a9238c9ebf841752a904e4f6 (Accessed April
15, 2019). Byers E and Coauthors 2018: Global exposure and vulnerability to multi-sector development
Byers, E., and Coauthors, 2018: Global exposure and vulnerability to multi-sector development and climate change hotspots. <i>Environ. Res. Lett.</i> , 13 , 055012, doi:10.1088/1748-
9326/aabf45. http://stacks.iop.org/1748-
9326/13/i=5/a=055012?key=crossref.dcb006b2e0b98d78e8d8ed4aa6eb51fb (Accessed
//////////////////////////////////////

1	April 11, 2019).
2	Calvin, K., M. Wise, P. Kyle, P. Patel, L. Clarke, and J. Edmonds, 2014: Trade-offs of different
3	land and bioenergy policies on the path to achieving climate targets. <i>Clim. Change</i> , 123 ,
4	691–704, doi:10.1007/s10584-013-0897-y.
5	Chadburn, S. E., E. J. Burke, P. M. Cox, P. Friedlingstein, G. Hugelius, and S. Westermann,
6	2017a: An observation-based constraint on permafrost loss as a function of global warming.
7	Nat. Clim. Chang., doi:10.1038/nclimate3262.
8	, <u>, , , , , , , , , , , , , , , , , , </u>
9	loss as a function of global warming. <i>Nat. Clim. Chang.</i> , 7 , 340–344,
10	
10	doi:10.1038/nclimate3262. http://www.nature.com/articles/nclimate3262 (Accessed April
12	15, 2019). Challinor, A. J., J. Watson, D. B. Lobell, S. M. Howden, D. R. Smith, and N. Chhetri, 2014: A
13	
	meta-analysis of crop yield under climate change and adaptation. <i>Nat. Clim. Chang.</i> ,
14	doi:10.1038/nclimate2153.
15	Challinor, A. J., W. N. Adger, and T. G. Benton, 2017: Climate risks across borders and scales.
16	Nat. Clim. Chang., doi:10.1038/nclimate3380.
17	Chatzopoulos, T., I. Pérez Domínguez, M. Zampieri, and A. Toreti, 2019: Climate extremes and
18	agricultural commodity markets: A global economic analysis of regionally simulated events.
19	Weather Clim. Extrem., doi:10.1016/j.wace.2019.100193.
20	Diffenbaugh, N. S., T. W. Hertel, M. Scherer, and M. Verma, 2012: Response of corn markets to
21	climate volatility under alternative energy futures. Nat. Clim. Chang.,
22	doi:10.1038/nclimate1491.
23	Donati, M., M. Zuppiroli, M. Riani, and G. Verga, 2016: The impact of investors in agricultural
24	commodity derivative markets. <i>Outlook Agric.</i> , doi:10.5367/oa.2016.0233.
25	Faye, B., and Coauthors, 2018: Impacts of 1.5 versus 2.0 °c on cereal yields in the West African
26	Sudan Savanna. Environ. Res. Lett., doi:10.1088/1748-9326/aaab40.
27	Van der Fels-Klerx, H. J., C. Liu, and P. Battilani, 2016: Modelling climate change impacts on
28	mycotoxin contamination. World Mycotoxin J., doi:10.3920/wmj2016.2066.
29	Fernandes, K., L. Verchot, W. Baethgen, V. Gutierrez-Velez, M. Pinedo-Vasquez, and C. Martius,
30	2017: Heightened fire probability in Indonesia in non-drought conditions: the effect of
31	increasing temperatures. Environ. Res. Lett., 12, 054002, doi:10.1088/1748-9326/aa6884.
32	http://stacks.iop.org/1748-
33	9326/12/i=5/a=054002?key=crossref.cb943b6a65dbd8384efb770f0ca7d8ed (Accessed
34	April 14, 2019).
35	Fujimori, S., T. Hasegawa, J. Rogelj, X. Su, P. Havlik, V. Krey, K. Takahashi, and K. Riahi,
36	2018: Inclusive climate change mitigation and food security policy under 1.5 °C climate
37	goal. Environ. Res. Lett., 13, 074033, doi:10.1088/1748-9326/aad0f7.
38	http://stacks.iop.org/1748-
39	9326/13/i=7/a=074033?key=crossref.a32ea879418f0f13056428c7ab426997 (Accessed
40	April 10, 2019).
41	Gilbert, C. L., 2010: How to understand high food prices. J. Agric. Econ., doi:10.1111/j.1477-
42	9552.2010.00248.x.
43	Gilbert, C. L., and C. W. Morgan, 2010: Food price volatility. Philos. Trans. R. Soc. B Biol. Sci.,
44	doi:10.1098/rstb.2010.0139.
45	Gosling, J., 2018: SHELF: the Sheffield elicitation framework. <i>Elicitation</i> , Springer, Cham, 61–
46	93.
47	von der Gracht, H. A., 2012: Consensus measurement in Delphi studies. Technol. Forecast. Soc.
48	Change, 79 , 1524–1536.
49	Grant, S., M. Booth, and D. Khodyakov, 2018: Lack of preregistered analysis plans allows
50	unacceptable data mining for and selective reporting of consensus in Delphi studies. J. Clin.
51	Epidemiol., 99.
	-

1 2	Haddeland, I., and Coauthors, 2014: Global water resources affected by human interventions and
23	climate change. <i>Proc. Natl. Acad. Sci. U. S. A.</i> , 111 , 3251–3256,
	doi:10.1073/pnas.1222475110. http://www.ncbi.nlm.nih.gov/pubmed/24344275 (Accessed
4 5	April 11, 2019).
6	Hallegatte, S., C. Green, R. J. Nicholls, and J. Corfee-Morlot, 2013: Future flood losses in major coastal cities. <i>Nat. Clim. Chang.</i> , doi:10.1038/nclimate1979.
7	Hanasaki, N., and Coauthors, 2013: A global water scarcity assessment under Shared Socio-
8	economic Pathways & amp; amp; ndash; Part 2: Water availability and scarcity. Hydrol.
9	Earth Syst. Sci., 17, 2393-2413, doi:10.5194/hess-17-2393-2013. https://www.hydrol-earth-
10	syst-sci.net/17/2393/2013/ (Accessed April 11, 2019).
11	Hanson, S., R. Nicholls, N. Ranger, S. Hallegatte, J. Corfee-Morlot, C. Herweijer, and J. Chateau,
12	2011: A global ranking of port cities with high exposure to climate extremes. Clim. Change,
13	doi:10.1007/s10584-010-9977-4.
14	Harvey, C. A., Z. L. Rakotobe, N. S. Rao, R. Dave, H. Razafimahatratra, R. H. Rabarijohn, H.
15	Rajaofara, and J. L. MacKinnon, 2014: Extreme vulnerability of smallholder farmers to
16	agricultural risks and climate change in Madagascar. Philos. Trans. R. Soc. B Biol. Sci.,
17	doi:10.1098/rstb.2013.0089.
18	Hasegawa, T., S. Fujimori, K. Takahashi, and T. Masui, 2015: Scenarios for the risk of hunger in
19	the twenty-first century using Shared Socioeconomic Pathways. Environ. Res. Lett., 10,
20	14010.
21	—, and Coauthors, 2018: Risk of increased food insecurity under stringent global climate
22	change mitigation policy. <i>Nat. Clim. Chang.</i> , 8 , 699–703, doi:10.1038/s41558-018-0230-x.
23	http://www.nature.com/articles/s41558-018-0230-x (Accessed April 10, 2019).
24	Hasson, F., and S. Keeney, 2011: Enhancing rigour in the Delphi technique research. <i>Technol.</i>
25	<i>Forecast. Soc. Change</i> , 78 , 1695–1704.
26	Headey, D., 2011: Rethinking the global food crisis: The role of trade shocks. <i>Food Policy</i> ,
27	doi:10.1016/j.foodpol.2010.10.003.
28	Heck, V., D. Gerten, W. Lucht, and A. Popp, 2018: Biomass-based negative emissions difficult to
29 30	reconcile with planetary boundaries. <i>Nat. Clim. Chang.</i> , 8 , 151–155, doi:10.1038/s41558-017-0064-y. http://www.nature.com/articles/s41558-017-0064-y (Accessed April 10, 2019).
30 31	Hejazi, M. I., and Coauthors, 2014: Integrated assessment of global water scarcity over the 21st
32	century under multiple climate change mitigation policies. <i>Hydrol. Earth Syst. Sci.</i> , 18 ,
33	2859–2883, doi:10.5194/hess-18-2859-2014. https://www.hydrol-earth-syst-
33 34	sci.net/18/2859/2014/ (Accessed April 10, 2019).
35	Hember, R. A., W. A. Kurz, and N. C. Coops, 2017: Relationships between individual-tree
36	mortality and water-balance variables indicate positive trends in water stress-induced tree
37	mortality across North America. <i>Glob. Chang. Biol.</i> , 23 , 1691–1710, doi:10.1111/gcb.13428.
38	http://doi.wiley.com/10.1111/gcb.13428 (Accessed April 14, 2019).
39	Hertel, T. W., M. B. Burke, and D. B. Lobell, 2010: The poverty implications of climate-induced
40	crop yield changes by 2030. <i>Glob. Environ. Chang.</i> , doi:10.1016/j.gloenvcha.2010.07.001.
41	Hinkel, J., and Coauthors, 2014: Coastal flood damage and adaptation costs under 21st century
42	sea-level rise. Proc. Natl. Acad. Sci., doi:10.1073/pnas.1222469111.
43	Hjort, J., O. Karjalainen, J. Aalto, S. Westermann, V. E. Romanovsky, F. E. Nelson, B.
44	Etzelmüller, and M. Luoto, 2018: Degrading permafrost puts Arctic infrastructure at risk by
45	mid-century. Nat. Commun., 9, 5147, doi:10.1038/s41467-018-07557-4.
46	Hoegh-Guldberg, O., and Coauthors, 2018: Impacts of 1.5°C global warming on natural and
47	human systems. Global Warming of 1.5 °C an IPCC special report on the impacts of global
48	warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission
49	pathways, in the context of strengthening the global response to the threat of climate change
50	http://report.ipcc.ch/sr15/pdf/sr15_chapter3.pdf (Accessed October 29, 2018).
F 1	

51 Huang, J., H. Yu, A. Dai, Y. Wei, and L. Kang, 2017: Drylands face potential threat under 2 °C

1	global warming target. Nat. Clim. Chang., 7, 417-422, doi:10.1038/nclimate3275.
2	http://www.nature.com/articles/nclimate3275 (Accessed April 11, 2019).
3	Humpenöder, F., and Coauthors, 2017: Large-scale bioenergy production: How to resolve
4	sustainability trade-offs? Environ. Res. Lett., doi:10.1088/1748-9326/aa9e3b.
5	http://iopscience.iop.org/article/10.1088/1748-9326/aa9e3b (Accessed December 8, 2017).
6	IPCC, 2018: Summary for Policy Makers. IPCC Special Report on the impacts of global
7	warming of 1.5°C, William Solecki http://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf
8	(Accessed November 1, 2018).
9	IPCC 2014, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II
10	and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
11	IPCC, Ed. Gian-Kasper Plattner, Geneva, http://www.ipcc.ch. (Accessed October 31, 2018).
12	Ishida, H., and Coauthors, 2014: Global-scale projection and its sensitivity analysis of the health
13	burden attributable to childhood undernutrition under the latest scenario framework for
14	climate change research. Environ. Res. Lett., 9, 064014, doi:10.1088/1748-9326/9/6/064014.
15	http://stacks.iop.org/1748-
16	9326/9/i=6/a=064014?key=crossref.288e05e1c145e8fa5c1873d6d19c9811 (Accessed April
17	14, 2019).
18	Jevrejeva, S., L. P. Jackson, A. Grinsted, D. Lincke, and B. Marzeion, 2018: Flood damage costs
19	under the sea level rise with warming of 1.5°C and 2°C. Environ. Res. Lett.,
20	doi:10.1088/1748-9326/aacc76.
21	Jolly, W. M., M. A. Cochrane, P. H. Freeborn, Z. A. Holden, T. J. Brown, G. J. Williamson, and
22	D. M. J. S. Bowman, 2015: Climate-induced variations in global wildfire danger from 1979
23	to 2013. Nat. Commun., 6, 7537, doi:10.1038/ncomms8537.
24	http://www.nature.com/articles/ncomms8537 (Accessed April 14, 2019).
25	Kelley, C., S. Mohtadi, M. Cane, R. Seager, and Y. Kushnir, 2017: Commentary on the Syria
26	case: Climate as a contributing factor. Polit. Geogr., doi:10.1016/j.polgeo.2017.06.013.
27	Knorr, W., A. Arneth, and L. Jiang, 2016a: Demographic controls of future global fire risk. Nat.
28	Clim. Chang., 6, 781–785, doi:10.1038/nclimate2999.
29	http://www.nature.com/articles/nclimate2999 (Accessed April 12, 2019).
30	—, L. Jiang, and A. Arneth, 2016b: Climate, CO ₂
31	and human population impacts on global wildfire emissions. <i>Biogeosciences</i> , 13 , 267–282,
32	doi:10.5194/bg-13-267-2016. https://www.biogeosciences.net/13/267/2016/ (Accessed
33	April 21, 2019).
34	Kossin, J. P., 2018: A global slowdown of tropical-cyclone translation speed. <i>Nature</i> , 558 , 104–
35	107, doi:10.1038/s41586-018-0158-3. http://dx.doi.org/10.1038/s41586-018-0158-3.
36	Kreidenweis, U., F. Humpenöder, M. Stevanović, B. L. Bodirsky, E. Kriegler, H. Lotze-Campen,
37	and A. Popp, 2016: Afforestation to mitigate climate change: impacts on food prices under
38	consideration of albedo effects. Environ. Res. Lett., 11, 085001, doi:10.1088/1748-
39	9326/11/8/085001. http://stacks.iop.org/1748-
40	9326/11/i=8/a=085001?key=crossref.498dab12c59b27f71805e8cdbafc36f1 (Accessed
41	December 9, 2017).
42	Li, Z., and H. Fang, 2016: Impacts of climate change on water erosion: A review. <i>Earth-Science</i>
43	<i>Rev.</i> , 163 , 94–117, doi:10.1016/J.EARSCIREV.2016.10.004.
44	https://www.sciencedirect.com/science/article/pii/S0012825216303555 (Accessed April 14,
45	2019).
46	Magan, N., A. Medina, and D. Aldred, 2011: Possible climate-change effects on mycotoxin
47	contamination of food crops pre- and postharvest. <i>Plant Pathol.</i> , doi:10.1111/j.1365-
48	3059.2010.02412.x.
49	Marchand, P., and Coauthors, 2016: Reserves and trade jointly determine exposure to food supply
50	shocks. Environ. Res. Lett., doi:10.1088/1748-9326/11/9/095009.
51	Medina-Elizalde, M., and E. J. Rohling, 2012: Collapse of classic maya civilization related to

1	modest reduction in precipitation. Science (80)., doi:10.1126/science.1216629.
2	Medina, A., A. Akbar, A. Baazeem, A. Rodriguez, and N. Magan, 2017: Climate change, food
3	security and mycotoxins: Do we know enough? Fungal Biol. Rev.,
4	doi:10.1016/j.fbr.2017.04.002.
5	van Meijl, H., and Coauthors, 2018: Comparing impacts of climate change and mitigation on
6	global agriculture by 2050. Environ. Res. Lett., 13, 064021, doi:10.1088/1748-9326/aabdc4.
7	http://stacks.iop.org/1748-
8	9326/13/i=6/a=064021?key=crossref.42a4eb1897f2ed545f2b0dc439d03e64 (Accessed
9	April 12, 2019).
10	Mentaschi, L., M. I. Vousdoukas, J. F. Pekel, E. Voukouvalas, and L. Feyen, 2018: Global long-
11	term observations of coastal erosion and accretion. Sci. Rep., doi:10.1038/s41598-018-
12	30904-w.
13	Moretti, A., M. Pascale, and A. F. Logrieco, 2018: Mycotoxin risks under a climate change
14	scenario in Europe. Trends in Food Science and Technology.
15	Morris, G. P., S. Reis, S. A. Beck, L. E. Fleming, W. N. Adger, T. G. Benton, and M. H.
16	Depledge, 2017: Scoping the proximal and distal dimensions of climate change on health
17	and wellbeing. <i>Environ. Heal. A Glob. Access Sci. Source</i> , doi:10.1186/s12940-017-0329-y.
18	Muis, S., I. D. Haigh, and J. C. J. H. Aerts, 2018: Earth 's Future In fl uence of El Niño-Southern
19	Oscillation on Global Coastal Flooding Earth 's Future. 1311–1322,
20	doi:10.1029/2018EF000909.
21	Mukherjee, N., J. Hugé, W. J. Sutherland, J. Mcneill, M. Van Opstal, F. Dahdouh-Guebas, and N.
22	Koedam, 2015: The Delphi technique in ecology and biological conservation: Applications
23	and guidelines. <i>Methods Ecol. Evol.</i> , 6 , 1097–1109, doi:10.1111/2041-210X.12387.
24	Myers, S. S., and Coauthors, 2014: Increasing CO2 threatens human nutrition. <i>Nature</i> ,
25	doi:10.1038/nature13179.
26	—, K. R. Wessells, I. Kloog, A. Zanobetti, and J. Schwartz, 2015: Effect of increased
27	concentrations of atmospheric carbon dioxide on the global threat of zinc deficiency: A
28	modelling study. <i>Lancet Glob. Heal.</i> , doi:10.1016/S2214-109X(15)00093-5.
29	Neumann, B., A. T. Vafeidis, J. Zimmermann, and R. J. Nicholls, 2015: Future coastal population
30	growth and exposure to sea-level rise and coastal flooding-a global assessment. <i>PLoS One</i> ,
31	10, e0118571.
32	
32 33	Nicholls, R. J., and A. Cazenave, 2010: Sea-level rise and its impact on coastal zones. <i>Science</i>
33 34	(80)., 328 , 1517–1520. O'Neill, B. C., and Coauthors, 2017: IPCC reasons for concern regarding climate change risks.
34 35	
35 36	<i>Nat. Clim. Chang.</i> , 7 , 28–37, doi:10.1038/nclimate3179. Oakley, J. E., and A. O'Hagan, 2016: SHELF: the Sheffield Elicitation Framework (version 3.0).
30 37	
38	http://tonyohagan.co.uk/shelf.
30 39	Obersteiner, M., and Coauthors, 2016: Assessing the land resource–food price nexus of the Sustainable Development Goals. <i>Sci. Adv.</i> , 2 , e1501499, doi:10.1126/sciadv.1501499.
40	
	http://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1501499 (Accessed April 21, 2010)
41	2019). Release A and Cooutham 2017: Linking regional stakeholder comprise and shared
42	Palazzo, A., and Coauthors, 2017: Linking regional stakeholder scenarios and shared
43	socioeconomic pathways: Quantified West African food and climate futures in a global
44 45	context. <i>Glob. Environ. Chang.</i> , 45 , 227–242, doi:10.1016/J.GLOENVCHA.2016.12.002.
45	https://www.sciencedirect.com/science/article/pii/S0959378016305751 (Accessed April 21, 2010)
46	
47	Parry, M. L., C. Rosenzweig, A. Iglesias, M. Livermore, and G. Fischer, 2004: Effects of climate
48	change on global food production under SRES emissions and socio-economic scenarios.
49 50	Glob. Environ. Chang., doi:10.1016/j.gloenvcha.2003.10.008.
50	Paterson, R. R. M., and N. Lima, 2011: Further mycotoxin effects from climate change. <i>Food Res.</i>
51	Int., doi:10.1016/j.foodres.2011.05.038.

1 2 3 4	 Porter, J. R., L. Xie, A. J. Challinor, K. Cochrane, S. M. Howden, M. M. Iqbal, D. B. Lobell, and M. I. Travasso, 2014: Food security and food production systems. <i>Climate Change 2014:</i> <i>Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution</i> of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on
5	Climate Change, 485–533.
6	—, and Coauthors, 2015: Food security and food production systems. <i>Climate Change 2014</i>
7	Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects.
8	Rivera-Ferre, M. G., and Coauthors, 2016: Local agriculture traditional knowledge to ensure food
9	availability in a changing climate: revisiting water management practices in the Indo-
10	Gangetic Plains. Agroecol. Sustain. Food Syst., doi:10.1080/21683565.2016.1215368.
11	Roberts, M. J., and W. Schlenker, 2013: Identifying supply and demand elasticities of agricultural
12	commodities: Implications for the US ethanol mandate. Am. Econ. Rev.,
13	doi:10.1257/aer.103.6.2265.
14	Rosenzweig, C., and Coauthors, 2014: Assessing agricultural risks of climate change in the 21st
15	century in a global gridded crop model intercomparison. <i>Proc. Natl. Acad. Sci.</i> ,
16	doi:10.1073/pnas.1222463110.
17	Salmon, J. M., M. A. Friedl, S. Frolking, D. Wisser, and E. M. Douglas, 2015: Global rain-fed,
18	irrigated, and paddy croplands: A new high resolution map derived from remote sensing,
19	crop inventories and climate data. Int. J. Appl. Earth Obs. Geoinf.,
20 21	doi:10.1016/j.jag.2015.01.014. Schleussner, C. F., and Coauthors, 2016: Differential climate impacts for policy-relevant limits to
22	global warming: The case of 1.5 °c and 2 °c. <i>Earth Syst. Dyn.</i> , doi:10.5194/esd-7-327-2016.
23	Schmidhuber, J., and F. N. Tubiello, 2007: Global food security under climate change. <i>Proc. Natl.</i>
23	Acad. Sci., doi:10.1073/pnas.0701976104.
25	Smith, M. R., C. D. Golden, and S. S. Myers, 2017: Potential rise in iron deficiency due to future
26	anthropogenic carbon dioxide emissions. <i>GeoHealth</i> , doi:10.1002/2016gh000018.
27	Smith, P., R. S. Haszeldine, and S. M. Smith, 2016: Preliminary assessment of the potential for,
28	and limitations to, terrestrial negative emission technologies in the UK. <i>Environ. Sci.</i>
29	Process. Impacts, doi:10.1039/c6em00386a.
30	Sperber, D., D. Mortimer, P. Lorgelly, and D. Berlowitz, 2013: An expert on every street corner?
31	Methods for eliciting distributions in geographically dispersed opinion pools. Value Heal.,
32	16 , 434–437.
33	Springmann, M., H. C. J. Godfray, M. Rayner, and P. Scarborough, 2016: Analysis and valuation
34	of the health and climate change cobenefits of dietary change. Proc. Natl. Acad. Sci.,
35	doi:10.1073/pnas.1523119113.
36	Sternberg, T., 2012: Chinese drought, bread and the Arab Spring. Appl. Geogr.,
37	doi:10.1016/j.apgeog.2012.02.004.
38	Sturrock, R. N., S. J. Frankel, A. V. Brown, P. E. Hennon, J. T. Kliejunas, K. J. Lewis, J. J.
39	Worrall, and A. J. Woods, 2011: Climate change and forest diseases. Plant Pathol., 60,
40	133–149, doi:10.1111/j.1365-3059.2010.02406.x.
41	Thompson, B., and M. J. Cohen, 2012: The impact of climate change and bioenergy on nutrition.
42	Tigchelaar, M., D. Battisti, R Naylor, and D Ray, 2018: Probability of globally synchronized
43	maize production shocks. Proc. Natl. Acad. Sci., 115, 6644–6649.
44	Tirado, M. C., R. Clarke, L. A. Jaykus, A. McQuatters-Gollop, and J. M. Frank, 2010: Climate
45	change and food safety: A review. <i>Food Res. Int.</i> , doi:10.1016/j.foodres.2010.07.003.
46	Vanmaercke, M., and Coauthors, 2016: How fast do gully headcuts retreat? <i>Earth-Science Rev.</i> ,
47	154 , 336–355, doi:10.1016/J.EARSCIREV.2016.01.009.
48	https://www.sciencedirect.com/science/article/pii/S0012825216300083 (Accessed April 14, 2010)
49 50	2019). Norma M. T. Hartal and N. Diffenhaugh 2014: Market oriented athenel and some trade policies.
50 51	Verma, M., T. Hertel, and N. Diffenbaugh, 2014: Market-oriented ethanol and corn-trade policies can reduce climate-induced US corn price volatility. <i>Environ. Res. Lett.</i> , doi:10.1088/1748-

1	9326/9/6/064028.
2	Vermeulen, S. J., and Coauthors, 2012: Options for support to agriculture and food security under
3	climate change. Environ. Sci. Policy, doi:10.1016/j.envsci.2011.09.003.
4	Vousdoukas, M. I., L. Mentaschi, E. Voukouvalas, M. Verlaan, and L. Feyen, 2017: Extreme sea
5	levels on the rise along Europe's coasts. Earth's Futur., doi:10.1002/2016EF000505.
6	—, —, —, , S. Jevrejeva, L. P. Jackson, and L. Feyen, 2018: Global probabilistic
7	projections of extreme sea levels show intensification of coastal flood hazard. <i>Nat.</i>
8	<i>Commun.</i> , 9 , 2360, doi:10.1038/s41467-018-04692-w.
9	http://www.nature.com/articles/s41467-018-04692-w (Accessed April 15, 2019).
10	Wahl, T., S. Jain, J. Bender, S. D. Meyers, and M. E. Luther, 2015: Increasing risk of compound
11	flooding from storm surge and rainfall for major US cities. <i>Nat. Clim. Chang.</i> , 5 , 1093–1097,
12	doi:10.1038/nclimate2736.
13	Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and Earlier
14	Spring Increase Western U.S. Forest Wildfire Activity. Science (80)., 313, 940-943,
15	doi:10.1126/SCIENCE.1128834.
16	Wiebe, K., and Coauthors, 2015: Climate change impacts on agriculture in 2050 under a range of
17	plausible socioeconomic and emissions scenarios. Environ. Res. Lett., 10, 085010,
18	doi:10.1088/1748-9326/10/8/085010. http://stacks.iop.org/1748-
19	9326/10/i=8/a=085010?key=crossref.acb559d1aa179071d5d2466fd63ceb3b (Accessed
20	April 12, 2019).
21	Willenbockel, D., 2012: Extreme weather events and crop price spikes in a changing climate.
22	Illustrative global simulation scenarios.
23	Yang, J., H. Tian, B. Tao, W. Ren, J. Kush, Y. Liu, and Y. Wang, 2014: Spatial and temporal
24	patterns of global burned area in response to anthropogenic and environmental factors:
25	Reconstructing global fire history for the 20th and early 21st centuries. J. Geophys. Res.
26	<i>Biogeosciences</i> , 119 , 249–263, doi:10.1002/2013JG002532.
27	http://doi.wiley.com/10.1002/2013JG002532 (Accessed April 14, 2019).
28	Zampieri, M., A. Ceglar, F. Dentener, and A. Toreti, 2017: Wheat yield loss attributable to heat
29	waves, drought and water excess at the global, national and subnational scales. <i>Environ. Res.</i>
30	Lett., doi:10.1088/1748-9326/aa723b.
31	Zhang, W., T. Zhou, L. Zou, L. Zhang, and X. Chen, 2018: Reduced exposure to extreme
32	precipitation from 0.5 °C less warming in global land monsoon regions. <i>Nat. Commun.</i> , 9 ,
33	3153, doi:10.1038/s41467-018-05633-3. http://www.nature.com/articles/s41467-018-05633-
34	3 (Accessed April 12, 2019).
35	Zhao, C., and Coauthors, 2017: Temperature increase reduces global yields of major crops in four
36	independent estimates. Proc. Natl. Acad. Sci., doi:10.1073/pnas.1701762114.
37	Zheng, J., L. Xiao, X. Fang, Z. Hao, Q. Ge, and B. Li, 2014: How climate change impacted the
38	collapse of the Ming dynasty. <i>Clim. Change</i> , doi:10.1007/s10584-014-1244-7.
39	Zimmermann, A., H. Webber, G. Zhao, F. Ewert, J. Kros, J. Wolf, W. Britz, and W. de Vries,
40	2017: Climate change impacts on crop yields, land use and environment in response to crop
41	sowing dates and thermal time requirements. <i>Agric. Syst.</i> , doi:10.1016/j.agsy.2017.07.007.
42	Zscheischler, J., and Coauthors, 2018: Future climate risk from compound events. <i>Nat. Clim.</i>
43	<i>Chang.</i> , doi:10.1038/s41558-018-0156-3.
44	2012: The Russian Federation forest sector: outlook study to 2030. FAO,
45	http://agris.fao.org/agris-search/search.do?recordID=XF2013001279 (Accessed April 16,
46	2019).
47	