Doc No: N1638=04-0078

Date: April 11, 2004

Reply to: Pete Becker
Dinkumware, Ltd.
petebecker@acm.org

Working Draft, Standard for
Programming Language C++

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has
lots of bad fomatting,

1 General [intro]

1.1 Scope [intro.scope]

This International Standard specifies requirements for implementations of the C+ programming language.
The first such requirement is that they implement the language, and so this International Standard also
defines C+. Other requirements and relaxations of the first requirement appear at various places within this
International Standard.

C+ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:1990 Programming languages — C (1.2). In addition to the facilities provided by C, G+
provides additional data types, classes, templates, exceptions, namespaces, inline functions, operator over-
loading, function name overloading, references, free store management operators, and additional library
facilities.

1.2 Normative references [intro.refs]

The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this International Standard are encouraged to investi-
gate the possibility of applying the most recent editions of the standards indicated below. Members of IEC
and ISO maintain registers of currently valid International Standards.

— ISO/IEC 2382 (all parts), Information technology — Vocabulary
— ISO/IEC 9899:1990, Programming languages — C
— ISO/IEC 9899/Amd.1:1995, Programming languages — C, AMENDMENT 1: C Integrity

— ISO/IEC 10646-1:1993 Information technology — Universal Multiple-Octet Coded Character Set
(UCS) — Part 1: Architecture and Basic Multilingual Plane

The library described in clause 7 of ISO/IEC 9899:1990 and clause 7 of ISO/IEC 9899/Amd.1:1995 is
hereinafter called the Standard C Library.l)

1.3 Definitions [intro.defs]

For the purposes of this International Standard, the definitions given in ISO/IEC 2382 and the following
definitions apply. 17.1 defines additional terms that are used only in clauses 17 through 27 and Annex D.

Terms that are used only in a small portion of this International Standard are defined where they are used
and italicized where they are defined.

1.3.1 argument [defns.argument]
an expression in the comma-separated list bounded by the parentheses in a function call expression, a
sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a function-like
macro invocation, the operand of throw, or an expression, type-id or template-name in the comma-sepa-
rated list bounded by the angle brackets in a template instantiation. Also known as an actual argument or
actual parameter.

D With the qualifications noted in clauses 17 through 27, and in C.2, the Standard C library is a subset of the Standard C++ library.

1-2 General DRAFT: 11 April 2004 1.3.2 diagnostic message

1.3.2 diagnostic message [defns.diagnostic]
a message belonging to an implementation-defined subset of the implementation’s output messages.

1.3.3 dynamic type [defns.dynamic.type]
the type of the most derived object (1.8) to which the lvalue denoted by an Ivalue expression refers. [Exam-
ple: if a pointer (8.3.1) p whose static type is “pointer to class B” is pointing to an object of class D, derived
from B (clause 10), the dynamic type of the expression *p is “D.” References (8.3.2) are treated similarly.
] The dynamic type of an rvalue expression is its static type.

1.3.4 ill-formed program [defns.ill.formed]
input to a G+ implementation that is not a well-formed program (1.3.14).

1.3.5 implementation-defined behavior [defns.impl.defined]
behavior, for a well-formed program construct and correct data, that depends on the implementation and
that each implementation shall document.

1.3.6 implementation limits [defns.impl.limits]
restrictions imposed upon programs by the implementation.

1.3.7 locale-specific behavior [defns.locale.specific]
behavior that depends on local conventions of nationality, culture, and language that each implementation
shall document.

1.3.8 multibyte character [defns.multibyte]
a sequence of one or more bytes representing a member of the extended character set of either the source or
the execution environment. The extended character set is a superset of the basic character set (2.2).

1.3.9 parameter [defns.parameter]
an object or reference declared as part of a function declaration or definition, or in the catch clause of an
exception handler, that acquires a value on entry to the function or handler; an identifier from the comma-
separated list bounded by the parentheses immediately following the macro name in a function-like macro
definition; or a template-parameter. Parameters are also known as formal arguments or formal parameters.

1.3.10 signature [defns.signature]
the information about a function that participates in overload resolution (13.3): its parameter-type-list
(8.3.5) and, if the function is a class member, the cv- qualifiers (if any) on the function itself and the class in
which the member function is declared.? The signature of a function template specialization includes the
types of its template arguments (14.5.5.1).

1.3.11 static type [defns.static.type]
the type of an expression (3.9), which type results from analysis of the program without considering execu-
tion semantics. The static type of an expression depends only on the form of the program in which the
expression appears, and does not change while the program is executing.

1.3.12 undefined behavior [defns.undefined]
behavior, such as might arise upon use of an erroneous program construct or erroneous data, for which this
International Standard imposes no requirements. Undefined behavior may also be expected when this Inter-
national Standard omits the description of any explicit definition of behavior. [Note: permissible undefined
behavior ranges from ignoring the situation completely with unpredictable results, to behaving during trans-
lation or program execution in a documented manner characteristic of the environment (with or without the
issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnos-
tic message). Many erroneous program constructs do not engender undefined behavior; they are required to
be diagnosed.]

2) Function signatures do not include return type, because that does not participate in overload resolution.

1.3.13 unspecified behavior DRAFT: 11 April 2004 General 1-3

1.3.13 unspecified behavior [defns.unspecified]
behavior, for a well-formed program construct and correct data, that depends on the implementation. The
implementation is not required to document which behavior occurs. [Note: usually, the range of possible
behaviors is delineated by this International Standard.]

1.3.14 well-formed program [defns.well.formed]
a C+ program constructed according to the syntax rules, diagnosable semantic rules, and the One Defini-
tion Rule (3.2).

1.4 Implementation compliance [intro.compliance]

The set of diagnosable rules consists of all syntactic and semantic rules in this International Standard
except for those rules containing an explicit notation that “no diagnostic is required” or which are described
as resulting in “undefined behavior.”

Although this International Standard states only requirements on G+ implementations, those requirements
are often easier to understand if they are phrased as requirements on programs, parts of programs, or execu-
tion of programs. Such requirements have the following meaning:

— If a program contains no violations of the rules in this International Standard, a conforming implemen-
tation shall, within its resource limits, accept and correctly execute” that program.

— If a program contains a violation of any diagnosable rule, a conforming implementation shall issue at
least one diagnostic message, except that

— If a program contains a violation of a rule for which no diagnostic is required, this International Stan-
dard places no requirement on implementations with respect to that program.

For classes and class templates, the library clauses specify partial definitions. Private members (clause 11)
are not specified, but each implementation shall supply them to complete the definitions according to the
description in the library clauses.

For functions, function templates, objects, and values, the library clauses specify declarations. Implementa-
tions shall supply definitions consistent with the descriptions in the library clauses.

The names defined in the library have namespace scope (7.3). A C+ translation unit (2.1) obtains access to
these names by including the appropriate standard library header (16.2).

The templates, classes, functions, and objects in the library have external linkage (3.5). The implementa-
tion provides definitions for standard library entities, as necessary, while combining translation units to
form a complete C+ program (2.1).

Two kinds of implementations are defined: hosted and freestanding. For a hosted implementation, this
International Standard defines the set of available libraries. A freestanding implementation is one in which
execution may take place without the benefit of an operating system, and has an implementation-defined set
of libraries that includes certain language-support libraries (17.4.1.3).

A conforming implementation may have extensions (including additional library functions), provided they
do not alter the behavior of any well-formed program. Implementations are required to diagnose programs
that use such extensions that are ill-formed according to this International Standard. Having done so, how-
ever, they can compile and execute such programs.

1.5 Structure of this International Standard [intro.structure]

Clauses 2 through 16 describe the C+ programming language. That description includes detailed syntactic
specifications in a form described in 1.6. For convenience, Annex A repeats all such syntactic specifica-
tions.

Clauses 17 through 27 and Annex D (the library clauses) describe the Standard G+ library, which provides
definitions for the following kinds of entities: macros (16.3), values (clause 3), types (8.1, 8.3), templates
(clause 14), classes (clause 9), functions (8.3.5), and objects (clause 7).

3) “Correct execution” can include undefined behavior, depending on the data being processed; see 1.3 and 1.9.

1-4 General DRAFT: 11 April 2004 15
Structure of this International Standard

Annex B recommends lower bounds on the capacity of conforming implementations.

Annex C summarizes the evolution of C+ since its first published description, and explains in detail the dif-
ferences between G+ and C. Certain features of G+ exist solely for compatibility purposes; Annex D
describes those features.

Finally, Annex E says what characters are valid in universal-character names in C+ identifiers (2.10).

Throughout this International Standard, each example is introduced by “[Example:” and terminated by “]”.
Each note is introduced by “[Note:” and terminated by “]”. Examples and notes may be nested.

1.6 Syntax notation [syntax]

In the syntax notation used in this International Standard, syntactic categories are indicated by italic type,
and literal words and characters in constant width type. Alternatives are listed on separate lines
except in a few cases where a long set of alternatives is presented on one line, marked by the phrase “one
of.” An optional terminal or nonterminal symbol is indicated by the subscript “opt,” so

{ expression,, }
indicates an optional expression enclosed in braces.
Names for syntactic categories have generally been chosen according to the following rules:

— X-name is a use of an identifier in a context that determines its meaning (e.g. class-name, typedef-
name).

— X-id is an identifier with no context-dependent meaning (e.g. qualified-id).

— X-seq is one or more X’s without intervening delimiters (e.g. declaration-seq is a sequence of declara-
tions).

— X-list is one or more X’s separated by intervening commas (e.g. expression-list is a sequence of
expressions separated by commas).

1.7 The G+ memory model [intro.memory]

The fundamental storage unit in the C+ memory model is the byte. A byte is at least large enough to con-
tain any member of the basic execution character set and is composed of a contiguous sequence of bits, the
number of which is implementation-defined. The least significant bit is called the low-order bit; the most
significant bit is called the high-order bit. The memory available to a G+ program consists of one or more
sequences of contiguous bytes. Every byte has a unique address.

[Note: the representation of types is described in 3.9.]
1.8 The C+ object model [intro.object]

The constructs in a G+ program create, destray, refer to, access, and manipulate objects. An object is a
region of storage. [Note: A function is not an object, regardless of whether or not it occupies storage in the
way that objects do.] An object is created by a definition (3.1), by a new-expression (5.3.4) or by the
implementation (12.2) when needed. The properties of an object are determined when the object is created.
An object can have a name (clause 3). An object has a storage duration (3.7) which influences its lifetime
(3.8). An object has a type (3.9). The term object type refers to the type with which the object is created.
Some objects are polymorphic (10.3); the implementation generates information associated with each such
object that makes it possible to determine that object’s type during program execution. For other objects,
the interpretation of the values found therein is determined by the type of the expressions (clause 5) used to
access them.

Objects can contain other objects, called sub-objects. A sub-object can be a member sub-object (9.2), a
base class sub-object (clause 10), or an array element. An object that is not a sub-object of any other object
is called a complete object.

For every object x, there is some object called the complete object of x, determined as follows:

1.8 The C+ object model DRAFT: 11 April 2004 General 1-5

— If x is a complete object, then x is the complete object of x.
— Otherwise, the complete object of x is the complete object of the (unique) object that contains x.

If a complete object, a data member (9.2), or an array element is of class type, its type is considered the
most derived class, to distinguish it from the class type of any base class subobject; an object of a most
derived class type is called a most derived object.

Unless it is a bit-field (9.6), a most derived object shall have a non-zero size and shall occupy one or more
bytes of storage. Base class sub-objects may have zero size. An object of poD? type (3.9) shall occupy
contiguous bytes of storage.

[Note: G+ provides a variety of built-in types and several ways of composing new types from existing
types (3.9).]
1.9 Program execution [intro.execution]

The semantic descriptions in this International Standard define a parameterized nondeterministic abstract
machine. This International Standard places no requirement on the structure of conforming implementa-
tions. In particular, they need not copy or emulate the structure of the abstract machine. Rather, conform-
ing implementations are required to emulate (only) the observable behavior of the abstract machine as
explained below.”

Certain aspects and operations of the abstract machine are described in this International Standard as imple-
mentation-defined (for example, sizeof (int)). These constitute the parameters of the abstract
machine. Each implementation shall include documentation describing its characteristics and behavior in
these respects. Such documentation shall define the instance of the abstract machine that corresponds to
that implementation (referred to as the “corresponding instance” below).

Certain other aspects and operations of the abstract machine are described in this International Standard as
unspecified (for example, order of evaluation of arguments to a function). Where possible, this Interna-
tional Standard defines a set of allowable behaviors. These define the nondeterministic aspects of the
abstract machine. An instance of the abstract machine can thus have more than one possible execution
sequence for a given program and a given input.

Certain other operations are described in this International Standard as undefined (for example, the effect of
dereferencing the null pointer). [Note: this International Standard imposes no requirements on the behavior
of programs that contain undefined behavior.]

A conforming implementation executing a well-formed program shall produce the same observable behav-
ior as one of the possible execution sequences of the corresponding instance of the abstract machine with
the same program and the same input. However, if any such execution sequence contains an undefined
operation, this International Standard places no requirement on the implementation executing that program
with that input (not even with regard to operations preceding the first undefined operation).

The observable behavior of the abstract machine is its sequence of reads and writes to volatile data and
calls to library 1/0O functions.®

Accessing an object designated by a volatile lvalue (3.10), modifying an object, calling a library 1/0
function, or calling a function that does any of those operations are all side effects, which are changes in the
state of the execution environment. Evaluation of an expression might produce side effects. At certain
specified points in the execution sequence called sequence points, all side effects of Previous evaluations
shall be complete and no side effects of subsequent evaluations shall have taken place.7

4) The acronym POD stands for “plain old data.”

This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this Interna-
tional Standard as long as the result is as if the requirement had been obeyed, as far as can be determined from the observable behavior
of the program. For instance, an actual implementation need not evaluate part of an expression if it can deduce that its value is not
used and that no side effects affecting the observable behavior of the program are produced.

6) An implementation can offer additional library 1/0 functions as an extension. Implementations that do so should treat calls to those
functions as “‘observable behavior’ as well.

7 Note that some aspects of sequencing in the abstract machine are unspecified; the preceding restriction upon side effects applies to

10

11

12

13

14

1-6 General DRAFT: 11 April 2004 1.9 Program execution

Once the execution of a function begins, no expressions from the calling function are evaluated until execu-
tion of the called function has completed.8)

When the processing of the abstract machine is interrupted by receipt of a signal, the values of objects with
type other than volatile std::sig atomic_t are unspecified, and the value of any object not of
volatile std::sig_atomic_t thatis modified by the handler becomes undefined.

An instance of each object with automatic storage duration (3.7.2) is associated with each entry into its
block. Such an object exists and retains its last-stored value during the execution of the block and while the
block is suspended (by a call of a function or receipt of a signal).

The least requirements on a conforming implementation are:

— At sequence points, volatile objects are stable in the sense that previous evaluations are complete and
subsequent evaluations have not yet occurred.

— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting
messages actually appear prior to a program waiting for input. What constitutes an interactive device
is implementation-defined.

[Note: more stringent correspondences between abstract and actual semantics may be defined by each
implementation.]

A full-expression is an expression that is not a subexpression of another expression. If a language construct
is defined to produce an implicit call of a function, a use of the language construct is considered to be an
expression for the purposes of this definition. Conversions applied to the result of an expression in order to
satisfy the requirements of the language construct in which the expression appears are also considered to be
part of the full-expression. [Example:

struct S {
S(int i): I(i) { }
int& v() { return I; }

private:
int I;
}i
S s1(1); // full-expression is call of S::S(int)
S s2 = 2; // full-expression is call of S::S(int)
void £() {
if (S(3).v()) // full-expression includes Ivalue-to-rvalue and
// int to bool conversions, performed before
// temporary is deleted at end of full-expression
{1}
}

—end example]

[Note: the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically
part of the full-expression. For example, subexpressions involved in evaluating default argument expres-
sions (8.3.6) are considered to be created in the expression that calls the function, not the expression that
defines the default argument.]

[Note: operators can be regrouped according to the usual mathematical rules only where the operators

that particular execution sequence in which the actual code is generated. Also note that when a call to a library 1/0 function returns,
the side effect is considered complete, even though some external actions implied by the call (such as the I/O itself) may not have
completed yet.

) In other words, function executions do not “interleave” with each other.

15
16

17

1.9 Program execution DRAFT: 11 April 2004 General 1-7

really are associative or commutative.”) For example, in the following fragment

int a, b;
[*...%/
a =a + 32760 + b + 5;
the expression statement behaves exactly the same as
a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is
next added to b, and that result is then added to 5 which results in the value assigned to a. On a machine in
which overflows produce an exception and in which the range of values representable by an int is
[-32768,+32767], the implementation cannot rewrite this expression as

a = ((a + b) + 32765);

since if the values for a and b were, respectively, —32754 and -15, the sum a + b would produce an
exception while the original expression would not; nor can the expression be rewritten either as

a = ((a + 32765) + b);
or
a = (a + (b + 32765));

since the values for a and b might have been, respectively, 4 and -8 or =17 and 12. However on a machine
in which overflows do not produce an exception and in which the results of overflows are reversible, the
above expression statement can be rewritten by the implementation in any of the above ways because the
same result will occur.]

There is a sequence point at the completion of evaluation of each fuII-expressionlO).

When calling a function (whether or not the function is inline), there is a sequence point after the evaluation
of all function arguments (if any) which takes place before execution of any expressions or statements in
the function body. There is also a sequence point after the copying of a returned value and before the
execution of any expressions outside the function®. Several contexts in G+ cause evaluation of a function
call, even though no corresponding function call syntax appears in the translation unit. [Example: evalua-
tion of a new expression invokes one or more allocation and constructor functions; see 5.3.4. For another
example, invocation of a conversion function (12.3.2) can arise in contexts in which no function call syntax
appears.] The sequence points at function-entry and function-exit (as described above) are features of the
function calls as evaluated, whatever the syntax of the expression that calls the function might be.

In the evaluation of each of the expressions
b

b : ¢
, b

&& b
N
?

Q0 9 9

using the built-in meaning of the operators in these expressions (5.14, 5.15, 5.16, 5.18), there is a sequence
point after the evaluation of the first expression™.

9) Overloaded operators are never assumed to be associative or commutative.

0) As specified in 12.2, after the "end-of-full-expression” sequence point, a sequence of zero or more invocations of destructor func-
tions for temporary objects takes place, usually in reverse order of the construction of each temporary object.

11) The sequence point at the function return is not explicitly specified in 1SO C, and can be considered redundant with sequence
points at full-expressions, but the extra clarity is important in C+. In G+, there are more ways in which a called function can termi-
nate its execution, such as the throw of an exception.

12) The operators indicated in this paragraph are the built-in operators, as described in clause 5. When one of these operators is over-
loaded (clause 13) in a valid context, thus designating a user-defined operator function, the expression designates a function invoca-

tion, and the operands form an argument list, without an implied sequence point between them.

1-8 General DRAFT: 11 April 2004 1.10 Acknowledgments

1.10 Acknowledgments [intro.ack]

The G+ programming language as described in this International Standard is based on the language as
described in Chapter R (Reference Manual) of Stroustrup: The C+ Programming Language (second edi-
tion, Addison-Wesley Publishing Company, ISBN 0-201-53992-6, copyright © 1991 AT&T). That, in
turn, is based on the C programming language as described in Appendix A of Kernighan and Ritchie: The C
Programming Language (Prentice-Hall, 1978, ISBN 0-13-110163-3, copyright © 1978 AT&T).

Portions of the library clauses of this International Standard are based on work by P.J. Plauger, which was
published as The Draft Standard C+ Library (Prentice-Hall, ISBN 0-13-117003-1, copyright © 1995 P.J.
Plauger).

All rights in these originals are reserved.

2 Lexical conventions [lex]

The text of the program is kept in units called source files in this International Standard. A source file
together with all the headers (17.4.1.2) and source files included (16.2) via the preprocessing directive
#include, less any source lines skipped by any of the conditional inclusion (16.1) preprocessing direc-
tives, is called a translation unit. [Note: a C+ program need not all be translated at the same time.]

[Note: previously translated translation units and instantiation units can be preserved individually or in
libraries. The separate translation units of a program communicate (3.5) by (for example) calls to functions
whose identifiers have external linkage, manipulation of objects whose identifiers have external linkage, or
manipulation of data files. Translation units can be separately translated and then later linked to produce an
executable program. (3.5).]

2.1 Phases of translation [lex.phases]

The precedence among the syntax rules of translation is specified by the following phases.13)

1 Physical source file characters are mapped, in an implementation-defined manner, to the basic source
character set (introducing new-line characters for end-of-line indicators) if necessary. Trigraph
sequences (2.3) are replaced by corresponding single-character internal representations. Any source
file character not in the basic source character set (2.2) is replaced by the universal-character-name
that designates that character. (An implementation may use any internal encoding, so long as an actual
extended character encountered in the source file, and the same extended character expressed in the
source file as a universal-character-name (i.e. using the \uXxxX notation), are handled equivalently.)

2 Each instance of a new-line character and an immediately preceding backslash character is deleted,
splicing physical source lines to form logical source lines. If, as a result, a character sequence that
matches the syntax of a universal-character-name is produced, the behavior is undefined. If a source
file that is not empty does not end in a new-line character, or ends in a new-line character immediately
preceded by a backslash character, the behavior is undefined.

3 The source file is decomposed into preprocessing tokens (2.4) and sequences of white-space characters
(includinq comments). A source file shall not end in a partial preprocessing token or partial
comment™®. Each comment is replaced by one space character. New-line characters are retained.
Whether each nonempty sequence of white-space characters other than new-line is retained or
replaced by one space character is implementation-defined. The process of dividing a source file’s
characters into preprocessing tokens is context-dependent. [Example: see the handling of < within a
#include preprocessing directive.]

4 Preprocessing directives are executed and macro invocations are expanded. If a character sequence
that matches the syntax of a universal-character-name is produced by token concatenation (16.3.3), the
behavior is undefined. A #include preprocessing directive causes the named header or source file
to be processed from phase 1 through phase 4, recursively.

5 Each source character set member, escape sequence, or universal-character-name in character literals
and string literals is converted to a member of the execution character set (2.13.2, 2.13.4).

13) Implementations must behave as if these separate phases occur, although in practice different phases might be folded together.

) A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that requires a
terminating sequence of characters, such as a header-name that is missing the closing " or >. A partial comment would arise from a
source file ending with an unclosed /* comment.

2-2 Lexical conventions DRAFT: 11 April 2004 2.1 Phases of translation

6 Adjacent ordinary string literal tokens are concatenated. Adjacent wide string literal tokens are con-
catenated.

7 White-space characters separating tokens are no longer significant. Each preprocessing token is con-
verted into a token. (2.6). The resulting tokens are syntactically and semantically analyzed and trans-
lated. [Note: Source files, translation units and translated translation units need not necessarily be
stored as files, nor need there be any one-to-one correspondence between these entities and any exter-
nal representation. The description is conceptual only, and does not specify any particular implemen-
tation.]

8 Translated translation units and instantiation units are combined as follows: [Note: some or all of these
may be supplied from a library.] Each translated translation unit is examined to produce a list of
required instantiations. [Note: this may include instantiations which have been explicitly requested
(14.7.2).] The definitions of the required templates are located. It is implementation-defined whether
the source of the translation units containing these definitions is required to be available. [Note: an
implementation could encode sufficient information into the translated translation unit so as to ensure
the source is not required here.] All the required instantiations are performed to produce instantiation
units. [Note: these are similar to translated translation units, but contain no references to uninstanti-
ated templates and no template definitions.] The program is ill-formed if any instantiation fails.

9 All external object and function references are resolved. Library components are linked to satisfy
external references to functions and objects not defined in the current translation. All such translator
output is collected into a program image which contains information needed for execution in its execu-
tion environment.

2.2 Character sets [lex.charset]

The basic source character set consists of 96 characters: the space character, the control characters regre-
senting horizontal tab, vertical tab, form feed, and new-line, plus the following 91 graphical characters:™

abcdefghijklmnopgrstuvwixyz
ABCDEFGHIJKLMNOPQRSTUVWIXYZ
01234567829

C{ YL # () <> ;. -/ s | T L=, "

The universal-character-name construct provides a way to name other characters.

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

The character designated by the universal-character-name \ UNNNNNNNN is that character whose character
short name in ISO/IEC 10646 is NNNNNNNN; the character designated by the universal-character-name
\UNNNN is that character whose character short name in ISO/IEC 10646 is 0000NNNN. If the hexa-
decimal value for a universal character name is less than 0x20 or in the range 0x7F-0x9F (inclusive), or if
the universal character name designates a character in the basic source character set, then the program is ill-
formed.

The basic execution character set and the basic execution wide-character set shall each contain all the
members of the basic source character set, plus control characters representing alert, backspace, and car-
riage return, plus a null character (respectively, null wide character), whose representation has all zero bits.
For each basic execution character set, the values of the members shall be non-negative and distinct from
one another. In both the source and execution basic character sets, the value of each character after 0 in the

15) The glyphs for the members of the basic source character set are intended to identify characters from the subset of ISO/IEC 10646
which corresponds to the ASCII character set. However, because the mapping from source file characters to the source character set
(described in translation phase 1) is specified as implementation-defined, an implementation is required to document how the basic
source characters are represented in source files.

2.2 Character sets DRAFT: 11 April 2004 Lexical conventions 2-3

above list of decimal digits shall be one greater than the value of the previous. The execution character set
and the execution wide-character set are supersets of the basic execution character set and the basic execu-
tion wide-character set, respectively. The values of the members of the execution character sets are imple-
mentation-defined, and any additional members are locale-specific.

2.3 Trigraph sequences [lex.trigraph]

Before any other processing takes place, each occurrence of one of the following sequences of three charac-
ters (“trigraph sequences”) is replaced by the single character indicated in Table 1.

Table 1—trigraph sequences

trigraph replacement | trigraph replacement | trigraph replacement

?27= # 22 ([??< {
22/ \ ?2?)] 22> }
2727 B 221 | 272~ ~

[Example:

??=define arraycheck(a,b) a??(b??) ??!?2?! b??(a??)
becomes

#define arraycheck(a,b) alb] || blal
—end example]

No other trigraph sequence exists. Each ? that does not begin one of the trigraphs listed above is not
changed.

2.4 Preprocessing tokens [lex.pptoken]

preprocessing-token:
header-name
identifier
pp-number
character-literal
string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above

Each preprocessing token that is converted to a token (2.6) shall have the lexical form of a keyword, an
identifier, a literal, an operator, or a punctuator.

A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6.
The categories of preprocessing token are: header names, identifiers, preprocessing numbers, character lit-
erals, string literals, preprocessing-op-or-punc, and single non-white-space characters that do not lexically
match the other preprocessing token categories. If a * or a " character matches the last category, the
behavior is undefined. Preprocessing tokens can be separated by white space; this consists of comments
(2.7), or white-space characters (space, horizontal tab, new-line, vertical tab, and form-feed), or both. As
described in clause 16, in certain circumstances during translation phase 4, white space (or the absence
thereof) serves as more than preprocessing token separation. White space can appear within a preprocess-
ing token only as part of a header name or between the quotation characters in a character literal or string
literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the next preprocessing
token is the longest sequence of characters that could constitute a preprocessing token, even if that would
cause further lexical analysis to fail.

2—-4 Lexical conventions DRAFT: 11 April 2004 2.4 Preprocessing tokens

[Example: The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid
floating or integer literal token), even though a parse as the pair of preprocessing tokens 1 and Ex might
produce a valid expression (for example, if Ex were a macro defined as +1). Similarly, the program frag-
ment 1E1 is parsed as a preprocessing number (one that is a valid floating literal token), whether or not E is
a macro name.]

[Example: The program fragment x+++++y is parsed as x ++ ++ + vy, which, if x and y are of built-in
types, violates a constraint on increment operators, even though the parse x ++ + ++ y might yield a
correct expression.]

2.5 Alternative tokens [lex.digraph]
Alternative token representations are provided for some operators and punctuatorsls).

In all respects of the language, each alternative token behaves the same, respectively, as its primary token,
except for its spellingl7). The set of alternative tokens is defined in Table 2.

Table 2—alternative tokens

alternative primary | alternative primary | alternative primary
<% { and && and_eq &=
$> } bitor | or_eq |=
< [or || Xor_eq "=
:>] xXor - not !
%: # compl - not_eq I=
$:%: 4 bitand &
2.6 Tokens [lex.token]
token:

identifier

keyword

literal

operator

punctuator

There are five kinds of tokens: identifiers, keywords, Iiterals,ls) operators, and other separators. Blanks,

horizontal and vertical tabs, newlines, formfeeds, and comments (collectively, “white space”), as described
below, are ignored except as they serve to separate tokens. [Note: Some white space is required to separate
otherwise adjacent identifiers, keywords, numeric literals, and alternative tokens containing alphabetic char-
acters.]

2.7 Comments [lex.comment]

The characters /* start a comment, which terminates with the characters * /. These comments do not nest.
The characters // start a comment, which terminates with the next new-line character. If there is a form-
feed or a vertical-tab character in such a comment, only white-space characters shall appear between it and
the new-line that terminates the comment; no diagnostic is required. [Note: The comment characters //,
/*, and */ have no special meaning within a // comment and are treated just like other characters. Simi-
larly, the comment characters // and /* have no special meaning withina /* comment.]

16) These include “digraphs” and additional reserved words. The term “digraph” (token consisting of two characters) is not perfectly
descriptive, since one of the alternative preprocessing-tokens is % :%: and of course several primary tokens contain two characters.
Nonetheless, those alternative tokens that aren’t lexical keywords are colloquially known as “digraphs”.
17) Thus the “stringized” values (16.3.2) of [and <: will be different, maintaining the source spelling, but the tokens can otherwise
be freely interchanged.

8) Literals include strings and character and numeric literals.

2.7 Comments DRAFT: 11 April 2004 Lexical conventions 2-5

2.8 Header names [lex.header]

header-name:
<h-char-sequence>
"g-char-sequence™"

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except
new-line and >

g-char-sequence:
g-char
g-char-sequence g-char

g-char:
any member of the source character set except
new-line and "

Header name preprocessing tokens shall only appear within a #include preprocessing directive (16.2).
The sequences in both forms of header-names are mapped in an implementation-defined manner to headers
or to external source file names as specified in 16.2.

If either of the characters * or \, or either of the character sequences /* or // appears in a g-char-
sequence or a h-char-sequence, or the character " appears in a h-char-sequence, the behavior is
undefined.*®

2.9 Preprocessing numbers [lex.ppnumber]

pp-number:
digit
. digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .

Preprocessing number tokens lexically include all integral literal tokens (2.13.1) and all floating literal
tokens (2.13.3).

A preprocessing humber does not have a type or a value; it acquires both after a successful conversion (as
part of translation phase 7, 2.1) to an integral literal token or a floating literal token.

2.10 Identifiers [lex.name]

identifier:
nondigit
identifier nondigit
identifier digit

19) Thus, sequences of characters that resemble escape sequences cause undefined behavior.

2-6 Lexical conventions DRAFT: 11 April 2004 2.10 Identifiers

nondigit: one of
universal-character-name

_abcdefghijklm
nopgrstuvwzxyz
ABCDEFGHTIJKLM
NOPQRSTUVWIXYZ
digit: one of
01234567839
1 An identifier is an arbitrarily long sequence of letters and digits. Each universal-character-name in an iden-

tifier shall designate a character whose encoding in 1SO 10646 falls into one of the ranges specified in
Annex E. Upper- and lower-case letters are different. All characters are significant.

2 In addition, some identifiers are reserved for use by C+ implementations and standard libraries (17.4.3.1.2)
and shall not be used otherwise; no diagnostic is required.
2.11 Keywords [lex.key]
1 The identifiers shown in Table 3 are reserved for use as keywords (that is, they are unconditionally treated

as keywords in phase 7):

Table 3—keywords

asm do if return typedef
auto double inline short typeid
bool dynamic_cast int signed typename
break else long sizeof union
case enum mutable static unsigned
catch explicit namespace static_cast using
char export new struct virtual
class extern operator switch void
const false private template volatile
const_cast float protected this wchar t
continue for public throw while
default friend register true
delete goto reinterpret cast try

2 Furthermore, the alternative representations shown in Table 4 for certain operators and punctuators (2.5) are

reserved and shall not be used otherwise:

Table 4—alternative representations

and and _eq bitand bitor compl not
not _eq or or eq Xor Xor_eq

20) On systems in which linkers cannot accept extended characters, an encoding of the universal-character-name may be used in form-
ing valid external identifiers. For example, some otherwise unused character or sequence of characters may be used to encode the \u
in a universal-character-name. Extended characters may produce a long external identifier, but C+ does not place a translation limit
on significant characters for external identifiers. In C+, upper- and lower-case letters are considered different for all identifiers,
including external identifiers.

2.12 Operators and punctuators DRAFT: 11 April 2004 Lexical conventions 2-7

2.12 Operators and punctuators [lex.operators]

The lexical representation of G+ programs includes a number of preprocessing tokens which are used in
the syntax of the preprocessor or are converted into tokens for operators and punctuators:

preprocessing-op-or-punc: one of

} [1 # HH# ()
< > <% %> % %$:% ;
new delete ? H . L *
+ - * / % ~ & | -
! = < > += -= * = /= %=
= &= |: << >> >>= <<= == 1=
<= >= && | | ++ -- , —>* ->
and and eq bitand bitor compl not not_eq
or or eq xor Xor eq

Each preprocessing-op-or-punc is converted to a single token in translation phase 7 (2.1).

2.13 Literals [lex.literal]

There are several kinds of literals.?")
literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal

2.13.1 Integer literals [lex.icon]

integer-literal:
decimal-literal integer-suffix
octal-literal integer-suffix,y
hexadecimal-literal integer-suffix,

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
01 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b ¢ 4d e
A B C D

H

21) The term “literal” generally designates, in this International Standard, those tokens that are called “constants” in ISO C.

2-8 Lexical conventions DRAFT: 11 April 2004 2.13.1 Integer literals

integer-suffix:
unsigned-suffix long-suffix,
long-suffix unsigned-suffix g

unsigned-suffix: one of
u U

long-suffix: one of
1 L

An integer literal is a sequence of digits that has no period or exponent part. An integer literal may have a
prefix that specifies its base and a suffix that specifies its type. The lexically first digit of the sequence of
digits is the most significant. A decimal integer literal (base ten) begins with a digit other than 0 and con-
sists of a sequence of decimal digits. An octal integer literal (base eight) begins with the digit 0 and con-
sists of a sequence of octal digits.zz) A hexadecimal integer literal (base sixteen) begins with 0x or 0X and
consists of a sequence of hexadecimal digits, which include the decimal digits and the letters a through £
and A through F with decimal values ten through fifteen. [Example: the number twelve can be written 12,
014, or 0XC.]

The type of an integer literal depends on its form, value, and suffix. If it is decimal and has no suffix, it has
the first of these types in which its value can be represented: int, long int; if the value cannot be repre-
sented as a 1ong int, the behavior is undefined. If it is octal or hexadecimal and has no suffix, it has the
first of these types in which its value can be represented: int, unsigned int, long int, unsigned
long int. If it is suffixed by u or U, its type is the first of these types in which its value can be repre-
sented: unsigned int, unsigned long int. If it is suffixed by 1 or L, its type is the first of these
types in which its value can be represented: long int, unsigned long int. If it is suffixed by ul,
lu, uL, Lu, U1, 1U, UL, or LU, its type is unsigned long int.

A program is ill-formed if one of its translation units contains an integer literal that cannot be represented
by any of the allowed types.

2.13.2 Character literals [lex.ccon]

character-literal:
' c-char-sequence’
L’ c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quote ’, backslash \, or new-line character
escape-sequence
universal-character-name

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of

A S V- A
\a \b \f \n \r \t \wv

2) The digits 8 and 9 are not octal digits.

2.13.2 Character literals DRAFT: 11 April 2004 Lexical conventions 2-9

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A character literal is one or more characters enclosed in single quotes, as in ’x’, optionally preceded by
the letter ., as in L’ x’. A character literal that does not begin with L is an ordinary character literal, also
referred to as a narrow-character literal. An ordinary character literal that contains a single c-char has type
char, with value equal to the numerical value of the encoding of the c-char in the execution character set.
An ordinary character literal that contains more than one c-char is a multicharacter literal. A multicharac-
ter literal has type int and implementation-defined value.

A character literal that begins with the letter 1,, such as I.” x’, is a wide-character literal. A wide-character
literal has type wchar_t.23) The value of a wide-character literal containing a single c-char has value
equal to the numerical value of the encoding of the c-char in the execution wide-character set. The value of
a wide-character literal containing multiple c-chars is implementation-defined.

Certain nongraphic characters, the single quote ’, the double quote ", the question mark ?, and the back-
slash \, can be represented according to Table 5.

Table 5—escape sequences

new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ \\
question mark ~ ? \?
single quote ’ \
double quote " \"
octal number 000 \ooo
hex number hhh \xhhh

The double quote " and the question mark 2, can be represented as themselves or by the escape sequences
\" and \? respectively, but the single quote * and the backslash \ shall be represented by the escape
sequences \’ and \\ respectively. If the character following a backslash is not one of those specified, the
behavior is undefined. An escape sequence specifies a single character.

The escape \ 000 consists of the backslash followed by one, two, or three octal digits that are taken to spec-
ify the value of the desired character. The escape \xhhh consists of the backslash followed by x followed
by one or more hexadecimal digits that are taken to specify the value of the desired character. There is no
limit to the number of digits in a hexadecimal sequence. A sequence of octal or hexadecimal digits is ter-
minated by the first character that is not an octal digit or a hexadecimal digit, respectively. The value of a
character literal is implementation-defined if it falls outside of the implementation-defined range defined for
char (for ordinary literals) or wchar t (for wide literals).

A universal-character-name is translated to the encoding, in the execution character set, of the character
named. If there is no such encoding, the universal-character-name is translated to an implementation-
defined encoding. [Note: in translation phase 1, a universal-character-name is introduced whenever an

23) They are intended for character sets where a character does not fit into a single byte.

2-10 Lexical conventions DRAFT: 11 April 2004 2.13.2 Character literals

actual extended character is encountered in the source text. Therefore, all extended characters are described
in terms of universal-character-names. However, the actual compiler implementation may use its own
native character set, so long as the same results are obtained.]

2.13.3 Floating literals [lex.fcon]

floating-literal:
fractional-constant exponent-part,, floating-suffix,y
digit-sequence exponent-part floating-suffix g,

fractional-constant:
digit-sequence,,, . digit-sequence
digit-sequence .

exponent-part:
e sign,, digit-sequence
E sign,, digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
£f 1 F L

A floating literal consists of an integer part, a decimal point, a fraction part, an e or E, an optionally signed
integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
decimal (base ten) digits. Either the integer part or the fraction part (not both) can be omitted; either the
decimal point or the letter e (or E) and the exponent (not both) can be omitted. The integer part, the
optional decimal point and the optional fraction part form the significant part of the floating literal. The
exponent, if present, indicates the power of 10 by which the significant part is to be scaled. If the scaled
value is in the range of representable values for its type, the result is the scaled value if representable, else
the larger or smaller representable value nearest the scaled value, chosen in an implementation-defined
manner. The type of a floating literal is double unless explicitly specified by a suffix. The suffixes £ and
F specify £loat, the suffixes 1 and L specify 1long double. If the scaled value is not in the range of
representable values for its type, the program is ill-formed.

2.13.4 String literals [lex.string]

string-literal:
"s-char-sequence,y"
L"s-char-sequence, "

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except
the double-quote ", backslash \, or new-line character
escape-sequence
universal-character-name

A string literal is a sequence of characters (as defined in 2.13.2) surrounded by double quotes, optionally
beginning with the letter L, asin ". . . " or " . . . ". A string literal that does not begin with L is an ordi-
nary string literal, also referred to as a narrow string literal. An ordinary string literal has type “array of n
const char” and static storage duration (3.7), where n is the size of the string as defined below, and is

2.13.4 String literals DRAFT: 11 April 2004 Lexical conventions 2-11

initialized with the given characters. A string literal that begins with L, such as L"asdf ", is a wide string
literal. A wide string literal has type “array of n const wchar_ t” and has static storage duration, where
n is the size of the string as defined below, and is initialized with the given characters.

Whether all string literals are distinct (that is, are stored in nonoverlapping objects) is implementation-
defined. The effect of attempting to modify a string literal is undefined.

In translation phase 6 (2.1), adjacent narrow string literals are concatenated and adjacent wide string literals
are concatenated. If a narrow string literal token is adjacent to a wide string literal token, the behavior is
undefined. Characters in concatenated strings are kept distinct. [Example:

n \XA" ngn

contains the two characters ' \xA’ and ‘' B’ after concatenation (and not the single hexadecimal character
"\xAB").]

After any necessary concatenation, in translation phase 7 (2.1), ' \ 0’ is appended to every string literal so
that programs that scan a string can find its end.

Escape sequences and universal-character-names in string literals have the same meaning as in character lit-
erals (2.13.2), except that the single quote ’ is representable either by itself or by the escape sequence \ ’,
and the double quote " shall be preceded by a \. In a narrow string literal, a universal-character-name may
map to more than one char element due to multibyte encoding. The size of a wide string literal is the total
number of escape sequences, universal-character-names, and other characters, plus one for the terminating
L’ \0’. The size of a narrow string literal is the total number of escape sequences and other characters,
plus at least one for the multibyte encoding of each universal-character-name, plus one for the terminating
"\0"’.

2.13.5 Boolean literals [lex.bool]

boolean-literal:
false
true

The Boolean literals are the keywords false and true. Such literals have type bool. They are not Ival-
ues.

3 Basic concepts [basic]

[Note: this clause presents the basic concepts of the C+ language. It explains the difference between an
object and a name and how they relate to the notion of an Ivalue. It introduces the concepts of a declara-
tion and a definition and presents C+’s notion of type, scope, linkage, and storage duration. The mecha-
nisms for starting and terminating a program are discussed. Finally, this clause presents the fundamental
types of the language and lists the ways of constructing compound types from these.

This clause does not cover concepts that affect only a single part of the language. Such concepts are dis-
cussed in the relevant clauses.]

An entity is a value, object, subobject, base class subobject, array element, variable, function, instance of a
function, enumerator, type, class member, template, or namespace.

A name is a use of an identifier (2.10) that denotes an entity or label (6.6.4, 6.1). A variable is introduced
by the declaration of an object. The variable’s name denotes the object.

Every name that denotes an entity is introduced by a declaration. Every name that denotes a label is intro-
duced either by a goto statement (6.6.4) or a labeled-statement (6.1).

Some names denote types, classes, enumerations, or templates. In general, it is necessary to determine
whether or not a name denotes one of these entities before parsing the program that contains it. The pro-
cess that determines this is called name lookup (3.4).

Two names are the same if

— they are identifiers composed of the same character sequence; or

— they are the names of overloaded operator functions formed with the same operator; or
— they are the names of user-defined conversion functions formed with the same type.

An identifier used in more than one translation unit can potentially refer to the same entity in these transla-
tion units depending on the linkage (3.5) of the identifier specified in each translation unit.

3.1 Declarations and definitions [basic.def]

A declaration (clause 7) introduces names into a translation unit or redeclares names introduced by previ-
ous declarations. A declaration specifies the interpretation and attributes of these names.

A declaration is a definition unless it declares a function without specifying the function’s body (8.4), it
contains the extern specifier (7.1.1) or a Iinkage—specification24) (7.5) and neither an initializer nor a
function-body, it declares a static data member in a class definition (9.4), it is a class name declaration (9.1),
oritisa typedef declaration (7.1.3), a using-declaration (7.3.3), or a using-directive (7.3.4).

24) Appearing inside the braced-enclosed declaration-seq in a linkage-specification does not affect whether a declaration is a defini-
tion.

3-2 Basic concepts

DRAFT: 11 April 2004 3.1 Declarations and definitions

[Example: all but one of the following are definitions:

int a;
extern const int ¢ = 1;
int f(int x) { return x+a; }
struct S { int a; int b; };
struct X {

int x;

static int y;
} X(): x(0) { }
int X::y = 1;
enum { up, down };
namespace N { int d; }
namespace N1 = N;
X anX;

whereas these are just declarations:

extern int a;
extern const int c;
int f(int);

struct S;

typedef int Int;
extern X anotherX;
using N::d;

—end example]

// defines a

// defines ¢

// defines £ and defines x

// defines S, S::a,and S: :b

// defines X

// defines nonstatic data member x
// declares static data member v
// defines a constructor of X

// defines X: :y

// defines up and down
// definesN and N: :d
// defines N1

// defines anx

// declares a

// declares ¢

// declares £

// declares s

// declares Int

// declares anotherX
// declaresN: :d

[Note: in some circumstances, C+ implementations implicitly define the default constructor (12.1), copy
constructor (12.8), assignment operator (12.8), or destructor (12.4) member functions. [Example: given

#include <string>

struct C {
std::string s;

// std: :stringis the standard library class (clause 21)

the implementation will implicitly define functions to make the definition of C equivalent to

}i

int main()

{
C a;
C b= a;
b = a;

}

struct C {
std::string s;
cO: s0 {}

C(const C& x): s(x.s)
C& operator=(const C& x)
“cO {}

}i

—end example] —end note]

{}

{ s = x.s; return *this; }

[Note: a class name can also be implicitly declared by an elaborated-type-specifier (3.3.1).]

A program is ill-formed if the definition of any object gives the object an incomplete type (3.9).

3.2 One definition rule DRAFT: 11 April 2004 Basic concepts 3-3

3.2 One definition rule [basic.def.odr]

No translation unit shall contain more than one definition of any variable, function, class type, enumeration
type or template.

An expression is potentially evaluated unless it appears where an integral constant expression is required
(see 5.19), is the operand of the sizeof operator (5.3.3), or is the operand of the typeid operator and
the expression does not designate an Ivalue of polymorphic class type (5.2.8). An object or non-overloaded
function is used if its name appears in a potentially-evaluated expression. A virtual member function is
used if it is not pure. An overloaded function is used if it is selected by overload resolution when referred
to from a potentially-evaluated expression. [Note: this covers calls to named functions (5.2.2), operator
overloading (clause 13), user-defined conversions (12.3.2), allocation function for placement new (5.3.4), as
well as non-default initialization (8.5). A copy constructor is used even if the call is actually elided by the
implementation.] An allocation or deallocation function for a class is used by a new expression appearing
in a potentially-evaluated expression as specified in 5.3.4 and 12.5. A deallocation function for a class is
used by a delete expression appearing in a potentially-evaluated expression as specified in 5.3.5 and 12.5.
A non-placement allocation or deallocation function for a class is used by the definition of a constructor of
that class. A non-placement deallocation function for a class is used by the definition of the destructor of
that class, or by being selected by the lookup at the point of definition of a virtual destructor (12.4).25) A
copy-assignment function for a class is used by an implicitly-defined copy-assignment function for another
class as specified in 12.8. A default constructor for a class is used by default initialization or value initial-
ization as specified in 8.5. A constructor for a class is used as specified in 8.5. A destructor for a class is
used as specified in 12.4.

Every program shall contain exactly one definition of every non-inline function or object that is used in that
program; no diagnostic required. The definition can appear explicitly in the program, it can be found in the
standard or a user-defined library, or (when appropriate) it is implicitly defined (see 12.1, 12.4 and 12.8).
An inline function shall be defined in every translation unit in which it is used.

Exactly one definition of a class is required in a translation unit if the class is used in a way that requires the
class type to be complete. [Example: the following complete translation unit is well-formed, even though it
never defines X:

struct X; // declare X as a struct type
struct X* x1; // use X in pointer formation
X* x2; // use X in pointer formation

—end example] [Note: the rules for declarations and expressions describe in which contexts complete class
types are required. A class type T must be complete if:

— an object of type T is defined (3.1), or

— anon-static class data member of type T is declared (9.2), or

— T is used as the object type or array element type in a new-expression (5.3.4), or

— an Ivalue-to-rvalue conversion is applied to an Ivalue referring to an object of type T (4.1), or

— an expression is converted (either implicitly or explicitly) to type T (clause 4, 5.2.3, 5.2.7, 5.2.9, 5.4),
or

— an expression that is not a null pointer constant, and has type other than void =*, is converted to the
type pointer to T or reference to T using an implicit conversion (clause 4), a dynamic_cast (5.2.7)
orastatic_cast (5.2.9), or

— aclass member access operator is applied to an expression of type T (5.2.5), or

— the typeid operator (5.2.8) or the sizeof operator (5.3.3) is applied to an operand of type T, or

) An implementation is not required to call allocation and deallocation functions from constructors or destructors; however, this is a
permissible implementation technique.

3-4 Basic concepts DRAFT: 11 April 2004 3.2 One definition rule

a function with a return type or argument type of type T is defined (3.1) or called (5.2.2), or
a class with a base class of type T is defined (10), or

an lvalue of type T is assigned to (5.17).]

There can be more than one definition of a class type (clause 9), enumeration type (7.2), inline function
with external linkage (7.1.2), class template (clause 14), non-static function template (14.5.5), static data
member of a class template (14.5.1.3), member function of a class template (14.5.1.1), or template special-
ization for which some template parameters are not specified (14.7, 14.5.4) in a program provided that each
definition appears in a different translation unit, and provided the definitions satisfy the following require-
ments. Given such an entity named D defined in more than one translation unit, then

each definition of D shall consist of the same sequence of tokens; and

in each definition of D, corresponding names, looked up according to 3.4, shall refer to an entity
defined within the definition of D, or shall refer to the same entity, after overload resolution (13.3) and
after matching of partial template specialization (14.8.3), except that a name can refer to a const
object with internal or no linkage if the object has the same integral or enumeration type in all defini-
tions of D, and the object is initialized with a constant expression (5.19), and the value (but not the
address) of the object is used, and the object has the same value in all definitions of D; and

in each definition of D, the overloaded operators referred to, the implicit calls to conversion functions,
constructors, operator new functions and operator delete functions, shall refer to the same function, or
to a function defined within the definition of D; and

in each definition of D, a default argument used by an (implicit or explicit) function call is treated as if
its token sequence were present in the definition of D; that is, the default argument is subject to the
three requirements described above (and, if the default argument has sub-expressions with default
arguments, this requirement applies recursively).26

if D is a class with an implicitly-declared constructor (12.1), it is as if the constructor was implicitly
defined in every translation unit where it is used, and the implicit definition in every translation unit
shall call the same constructor for a base class or a class member of D. [Example:

// translation unit 1:
struct X {

X (int) ;

X (int, int);
bi
X::X(int = 0) { }
class D: public X { };

D d2; // X (int) called by D ()

// translation unit 2:
struct X {

X (int) ;

X (int, int);

¥
X::X(int = 0, int = 0) { }
class D: public X { }; // X (int, int) called by D () ;

// D()’s implicit definition
// violates the ODR

—end example] If D is a template, and is defined in more than one translation unit, then the last four
requirements from the list above shall apply to names from the template’s enclosing scope used in the
template definition (14.6.3), and also to dependent names at the point of instantiation (14.6.2). If the
definitions of D satisfy all these requirements, then the program shall behave as if there were a single
definition of D. If the definitions of D do not satisfy these requirements, then the behavior is unde-
fined.

26) 8.3.6 describes how default argument names are looked up.

3.2 One definition rule DRAFT: 11 April 2004 Basic concepts 3-5

3.3 Declarative regions and scopes [basic.scope]

Every name is introduced in some portion of program text called a declarative region, which is the largest
part of the program in which that name is valid, that is, in which that name may be used as an unqualified
name to refer to the same entity. In general, each particular name is valid only within some possibly dis-
contiguous portion of program text called its scope. To determine the scope of a declaration, it is some-
times convenient to refer to the potential scope of a declaration. The scope of a declaration is the same as
its potential scope unless the potential scope contains another declaration of the same name. In that case,
the potential scope of the declaration in the inner (contained) declarative region is excluded from the scope
of the declaration in the outer (containing) declarative region.

[Example: in
int j = 24;
int main()
{
int 1 =3, 3J;
J o= 42;
}

the identifier § is declared twice as a name (and used twice). The declarative region of the first § includes
the entire example. The potential scope of the first § begins immediately after that § and extends to the end
of the program, but its (actual) scope excludes the text between the , and the }. The declarative region of
the second declaration of j (the § immediately before the semicolon) includes all the text between { and },
but its potential scope excludes the declaration of i. The scope of the second declaration of 5 is the same
as its potential scope.]

The names declared by a declaration are introduced into the scope in which the declaration occurs, except
that the presence of a friend specifier (11.4), certain uses of the elaborated-type-specifier (3.3.1), and
using-directives (7.3.4) alter this general behavior.

Given a set of declarations in a single declarative region, each of which specifies the same unqualified
name,

— they shall all refer to the same entity, or all refer to functions and function templates; or

— exactly one declaration shall declare a class name or enumeration name that is not a typedef name and
the other declarations shall all refer to the same object or enumerator, or all refer to functions and
function templates; in this case the class name or enumeration name is hidden (3.3.7). [Note: a name-
space name or a class template name must be unique in its declarative region (7.3.2, clause 14).]

[Note: these restrictions apply to the declarative region into which a name is introduced, which is not neces-
sarily the same as the region in which the declaration occurs. In particular, elaborated-type-specifiers
(3.3.1) and friend declarations (11.4) may introduce a (possibly not visible) name into an enclosing name-
space; these restrictions apply to that region. Local extern declarations (3.5) may introduce a name into the
declarative region where the declaration appears and also introduce a (possibly not visible) name into an
enclosing namespace; these restrictions apply to both regions.]

[Note: the name lookup rules are summarized in 3.4.]
3.3.1 Point of declaration [basic.scope.pdecl]

The point of declaration for a name is immediately after its complete declarator (clause 8) and before its
initializer (if any), except as noted below. [Example:

int x = 12;
{ int x = x; }

Here the second x is initialized with its own (indeterminate) value.]

[Note: a nonlocal name remains visible up to the point of declaration of the local name that hides it.
[Example:

3-6 Basic concepts DRAFT: 11 April 2004 3.3.1 Point of declaration

const int 1 = 2;
{ int 4i[i]; }

declares a local array of two integers.]]

The point of declaration for an enumerator is immediately after its enumerator-definition. [Example:

const int x = 12;
{ enum { x = x }; }

Here, the enumerator x is initialized with the value of the constant x, namely 12.]

After the point of declaration of a class member, the member name can be looked up in the scope of its
class. [Note: this is true even if the class is an incomplete class. For example,

struct X {

enum E { z = 16 };

int b[X::z]; // OK
i

—end note]
The point of declaration of a class first declared in an elaborated-type-specifier is as follows:
— for a declaration of the form
class-key identifier ;
the identifier is declared to be a class-name in the scope that contains the declaration, otherwise

— for an elaborated-type-specifier of the form
class-key identifier

if the elaborated-type-specifier is used in the decl-specifier-seq or parameter-declaration-clause of a
function defined in namespace scope, the identifier is declared as a class-name in the namespace that
contains the declaration; otherwise, except as a friend declaration, the identifier is declared in the
smallest non-class, non-function-prototype scope that contains the declaration. [Note: These rules also
apply within templates. —end note] [Note: Other forms of elaborated-type-specifier do not declare a
new name, and therefore must refer to an existing type-name. See 3.4.4and 7.1.5.3.]

The point of declaration for an injected-class-name (9) is immediately following the opening brace of the
class definition.

[Note: friend declarations refer to functions or classes that are members of the nearest enclosing name-
space, but they do not introduce new names into that namespace (7.3.1.2). Function declarations at block
scope and object declarations with the extern specifier at block scope refer to delarations that are mem-
bers of an enclosing namespace, but they do not introduce new names into that scope.]

[Note: For point of instantiation of a template, see 14.6.4.1 .]
3.3.2 Local scope [basic.scope.local]

A name declared in a block (6.3) is local to that block. Its potential scope begins at its point of declaration
(3.3.1) and ends at the end of its declarative region.

The potential scope of a function parameter name in a function definition (8.4) begins at its point of decla-
ration. If the function has a function-try-block the potential scope of a parameter ends at the end of the last
associated handler, else it ends at the end of the outermost block of the function definition. A parameter
name shall not be redeclared in the outermost block of the function definition nor in the outermost block of
any handler associated with a function-try-block.

The name in a catch exception-declaration is local to the handler and shall not be redeclared in the outer-
most block of the handler.

3.3.2 Local scope DRAFT: 11 April 2004 Basic concepts 3-7

Names declared in the for-init-statement, and in the condition of if, while, for, and switch state-
ments are local to the if, while, for, or switch statement (including the controlled statement), and
shall not be redeclared in a subsequent condition of that statement nor in the outermost block (or, for the i £
statement, any of the outermost blocks) of the controlled statement; see 6.4.

3.3.3 Function prototype scope [basic.scope.proto]

In a function declaration, or in any function declarator except the declarator of a function definition (8.4),
names of parameters (if supplied) have function prototype scope, which terminates at the end of the nearest
enclosing function declarator.

3.3.4 Function scope [basic.funscope]

Labels (6.1) have function scope and may be used anywhere in the function in which they are declared.
Only labels have function scope.

3.3.5 Namespace scope [basic.scope.namespace]

The declarative region of a namespace-definition is its namespace-body. The potential scope denoted by an
original-namespace-name is the concatenation of the declarative regions established by each of the name-
space-definitions in the same declarative region with that original-namespace-name. Entities declared in a
namespace-body are said to be members of the namespace, and names introduced by these declarations into
the declarative region of the namespace are said to be member names of the namespace. A namespace
member name has namespace scope. Its potential scope includes its hamespace from the name’s point of
declaration (3.3.1) onwards; and for each using-directive (7.3.4) that nominates the member’s namespace,
the member’s potential scope includes that portion of the potential scope of the using-directive that follows
the member’s point of declaration. [Example:

namespace N {
int 1i;
int g(int a) { return a; }
int j();
void g() ;
}
namespace { int 1=1; }
// the potential scope of 1 is from its point of declaration
// to the end of the translation unit

namespace N {

int g(char a) // overloadsN: : g (int)
{

return l+a; // 1 is from unnamed namespace
!
int 1i; // error: duplicate definition
int 3(); // OK: duplicate function declaration
int j() // OK: definition of N: : § ()
{

return g(i); //callsN: :g(int)
}
int g(); // error: different return type

}

—end example]

A namespace member can also be referred to after the : : scope resolution operator (5.1) applied to the
name of its namespace or the name of a namespace which nominates the member’s namespace in a using-
directive; see 3.4.3.2.

The outermost declarative region of a translation unit is also a namespace, called the global namespace. A
name declared in the global namespace has global namespace scope (also called global scope). The

3-8 Basic concepts DRAFT: 11 April 2004 3.3.5 Namespace scope

potential scope of such a name begins at its point of declaration (3.3.1) and ends at the end of the transla-
tion unit that is its declarative region. Names with global namespace scope are said to be global.

3.3.6 Class scope [basic.scope.class]
1 The following rules describe the scope of names declared in classes.

1) The potential scope of a name declared in a class consists not only of the declarative region following
the name’s point of declaration, but also of all function bodies, default arguments, and constructor
ctor-initializers in that class (including such things in nested classes).

2) A name N used in a class S shall refer to the same declaration in its context and when re-evaluated in
the completed scope of S. No diagnostic is required for a violation of this rule.

3) If reordering member declarations in a class yields an alternate valid program under (1) and (2), the
program is ill-formed, no diagnostic is required.

4) A name declared within a member function hides a declaration of the same name whose scope extends
to or past the end of the member function’s class.

5) The potential scope of a declaration that extends to or past the end of a class definition also extends to
the regions defined by its member definitions, even if the members are defined lexically outside the
class (this includes static data member definitions, nested class definitions, member function defini-
tions (including the member function body and, for constructor functions (12.1), the ctor-initializer
(12.6.2)) and any portion of the declarator part of such definitions which follows the identifier, includ-
ing a parameter-declaration-clause and any default arguments (8.3.6). [Example:

typedef int c;
enum { 1 = 1 };

class X {

char vI[i]; // error: irefersto ::i
// but when reevaluated is X : : i
int £() { return sizeof(c); } //OK:X::c
char c;
enum { 1 = 2 };

bi

typedef char* T;
struct Y {
T a; // error: Trefersto : : T
// but when reevaluated isY: : T
typedef long T;
T Db;

Vi

typedef int I;
class D {
typedef I I; / / error, even though no reordering involved

—end example]
2 The name of a class member shall only be used as follows:
— inthe scope of its class (as described above) or a class derived (clause 10) from its class,

— after the . operator applied to an expression of the type of its class (5.2.5) or a class derived from its
class,

— after the - > operator applied to a pointer to an object of its class (5.2.5) or a class derived from its
class,

3.3.6 Class scope DRAFT: 11 April 2004 Basic concepts 3-9

— after the : : scope resolution operator (5.1) applied to the name of its class or a class derived from its
class.

3.3.7 Name hiding [basic.scope.hiding]

A name can be hidden by an explicit declaration of that same name in a nested declarative region or derived
class (10.2).

A class name (9.1) or enumeration name (7.2) can be hidden by the name of an object, function, or enumer-
ator declared in the same scope. If a class or enumeration name and an object, function, or enumerator are
declared in the same scope (in any order) with the same name, the class or enumeration name is hidden
wherever the object, function, or enumerator name is visible.

In a member function definition, the declaration of a local name hides the declaration of a member of the
class with the same name; see 3.3.6. The declaration of a member in a derived class (clause 10) hides the
declaration of a member of a base class of the same name; see 10.2.

During the lookup of a name qualified by a namespace name, declarations that would otherwise be made
visible by a using-directive can be hidden by declarations with the same name in the namespace containing
the using-directive; see (3.4.3.2).

If a name is in scope and is not hidden it is said to be visible.
3.4 Name lookup [basic.lookup]

The name lookup rules apply uniformly to all names (including typedef-names (7.1.3), hamespace-names
(7.3) and class-names (9.1)) wherever the grammar allows such names in the context discussed by a partic-
ular rule. Name lookup associates the use of a name with a declaration (3.1) of that name. Name lookup
shall find an unambiguous declaration for the name (see 10.2). Name lookup may associate more than one
declaration with a name if it finds the name to be a function name; the declarations are said to form a set of
overloaded functions (13.1). Overload resolution (13.3) takes place after name lookup has succeeded. The
access rules (clause 11) are considered only once name lookup and function overload resolution (if applica-
ble) have succeeded. Only after name lookup, function overload resolution (if applicable) and access
checking have succeeded are the attributes introduced by the name’s declaration used further in expression
processing (clause 5).

A name “looked up in the context of an expression” is looked up as an unqualified name in the scope where
the expression is found.

The injected-class-name of a class (clause 9) is also considered to be a member of that class for the pur-
poses of name hiding and lookup.

[Note: 3.5 discusses linkage issues. The notions of scope, point of declaration and name hiding are dis-
cussed in 3.3.]

3.4.1 Unqualified name lookup [basic.lookup.unqual]

In all the cases listed in 3.4.1, the scopes are searched for a declaration in the order listed in each of the
respective categories; name lookup ends as soon as a declaration is found for the name. If no declaration is
found, the program is ill-formed.

The declarations from the namespace nominated by a using-directive become visible in a namespace
enclosing the using-directive; see 7.3.4. For the purpose of the unqualified name lookup rules described in
3.4.1, the declarations from the namespace nominated by the using-directive are considered members of
that enclosing namespace.

The lookup for an unqualified name used as the postfix-expression of a function call is described in 3.4.2.
[Note: for purposes of determining (during parsing) whether an expression is a postfix-expression for a
function call, the usual name lookup rules apply. The rules in 3.4.2 have no effect on the syntactic interpre-
tation of an expression. For example,

3-10 Basic concepts DRAFT: 11 April 2004 3.4.1 Unqualified name lookup

typedef int £f;
namespace N {
struct A {
friend int £(A &);
operator int () ;
void g(a a) {
int 1 = f(a);
// £ is the typedef, not the friend
// function: equivalent to int (a)

}i
}
Because the expression is not a function call, the argument-dependent name lookup (3.4.2) does not apply
and the friend function £ is not found.]

A name used in global scope, outside of any function, class or user-declared namespace, shall be declared
before its use in global scope.

A name used in a user-declared namespace outside of the definition of any function or class shall be
declared before its use in that namespace or before its use in a namespace enclosing its namespace.

A name used in the definition of a function following the function’s declarator-id®”) that is a member of

namespace N (where, only for the purpose of exposition, N could represent the global scope) shall be
declared before its use in the block in which it is used or in one of its enclosing blocks (6.3) or, shall be
declared before its use in namespace N or, if N is a nested namespace, shall be declared before its use in one
of N’s enclosing namespaces.

[Example:

namespace A {
namespace N {
void £();
}
}

void A::N::f() {
i =5;
// The following scopes are searched for a declaration of i:
// 1) outermost block scope of A: : N: : £, before the use of 1
// 2) scope of namespace N
// 3) scope of namespace A
// 4) global scope, before the definition of A: :N: : £

}

—end example]

A name used in the definition of a class X outside of a member function body or nested class definition?®)
shall be declared in one of the following ways:

— before its use in class X or be a member of a base class of x (10.2), or

— if X is a nested class of class Y (9.7), before the definition of X in Y, or shall be a member of a base
class ozfg)Y (this lookup applies in turn to Y’s enclosing classes, starting with the innermost enclosing
class),”™ or

— if Xis alocal class (9.8) or is a nested class of a local class, before the definition of class X in a block
enclosing the definition of class X, or

27) This refers to unqualified names that occur, for instance, in a type or default argument expression in the parameter-declaration-
clause or used in the function body.

28) This refers to unqualified names following the class name; such a name may be used in the base-clause or may be used in the class
definition.

29) This lookup applies whether the definition of X is nested within Y’s definition or whether X’s definition appears in a namespace
scope enclosing Y’s definition (9.7).

3.4.1 Unqualified name lookup DRAFT: 11 April 2004 Basic concepts 3-11

— if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local
class or a nested class within a local class of a function that is a member of N, before the definition of
class X in namespace N or in one of N’s enclosing namespaces.

[Example:

namespace M {
class B { };
}

namespace N {
class Y : public M::B {
class X {
int ali];
i

}i
}

// The following scopes are searched for a declaration of i :
// 1) scope of class N : : Y : : X, before the use of 1

// 2) scope of class N : : Y, before the definition of N: : Y: : X
// 3)scope of N: : Y’s base class M: : B

// 4) scope of namespace N, before the definition of N: : ¥
// 5) global scope, before the definition of N

—end example] [Note: when looking for a prior declaration of a class or function introduced by a friend
declaration, scopes outside of the innermost enclosing hamespace scope are not considered; see 7.3.1.2.]
[Note: 3.3.6 further describes the restrictions on the use of names in a class definition. 9.7 further describes
the restrictions on the use of names in nested class definitions. 9.8 further describes the restrictions on the
use of names in local class definitions.]

A name used in the definition of a member function (9.3) of class x following the function’s
declarator-id>” shall be declared in one of the following ways:

— before its use in the block in which it is used or in an enclosing block (6.3), or
— shall be a member of class X or be a member of a base class of x (10.2), or

— if X'is a nested class of class Y (9.7), shall be a member of v, or shall be a member of a base class of ¥
(this lookup applies in turn to Y’s enclosing classes, starting with the innermost enclosing class),31) or

— if X is alocal class (9.8) or is a nested class of a local class, before the definition of class X in a block
enclosing the definition of class X, or

— if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local
class or a nested class within a local class of a function that is a member of N, before the member
function definition, in namespace N or in one of N’s enclosing namespaces.

[Example:

30) That is, an unqualified name that occurs, for instance, in a type or default argument expression in the parameter-declaration-
clause, in the function body, or in an expression of a mem-initializer in a constructor definition.

31) This lookup applies whether the member function is defined within the definition of class X or whether the member function is
defined in a namespace scope enclosing X’s definition.

10

11

12

13

3-12 Basic concepts DRAFT: 11 April 2004 3.4.1 Unqualified name lookup

class B { };
namespace M {
namespace N {
class X : public B {

void £();
}i
1
}
void M::N::X::f() {
i = 16;
1

// The following scopes are searched for a declaration of 1 :

// 1) outermost block scope of M: : N: : X: : £, before the use of 1
// 2)scopeof classM: :N: : X

// 3)scope of M: :N: : X’s base class B

// 4) scope of namespace M: : N

// 5) scope of namespace M

// 6) global scope, before the definition of M: :N: : X: : £

—end example] [Note: 9.3 and 9.4 further describe the restrictions on the use of names in member function
definitions. 9.7 further describes the restrictions on the use of names in the scope of nested classes. 9.8 fur-
ther describes the restrictions on the use of names in local class definitions.]

Name lookup for a name used in the definition of a £riend function (11.4) defined inline in the class
granting friendship shall proceed as described for lookup in member function definitions. If the friend
function is not defined in the class granting friendship, name lookup in the £riend function definition
shall proceed as described for lookup in namespace member function definitions.

In a £riend declaration naming a member function, a name used in the function declarator and not part of
a template-argument in a template-id is first looked up in the scope of the member function’s class. If it is
not found, or if the name is part of a template-argument in a template-id, the look up is as described for
unqualified names in the definition of the class granting friendship. [Example:

struct A {
typedef int AT;
void f1 (AT) ;
void f2(float) ;
}i
struct B {
typedef float BT;
friend void A::f1(AT); // parametertypeisA: :AT
friend void A::£2(BT); // parametertypeisB::BT

}i
—end example]

During the lookup for a name used as a default argument (8.3.6) in a function parameter-declaration-clause
or used in the expression of a mem-initializer for a constructor (12.6.2), the function parameter names are
visible and hide the names of entities declared in the block, class or namespace scopes containing the func-
tion declaration. [Note: 8.3.6 further describes the restrictions on the use of names in default arguments.
12.6.2 further describes the restrictions on the use of names in a ctor-initializer.]

A name used in the definition of a static data member of class X (9.4.2) (after the qualified-id of the
static member) is looked up as if the name was used in a member function of X. [Note: 9.4.2 further
describes the restrictions on the use of names in the definition of a static data member.]

A name used in the handler for a function-try-block (clause 15) is looked up as if the name was used in the
outermost block of the function definition. In particular, the function parameter names shall not be rede-
clared in the exception-declaration nor in the outermost block of a handler for the function-try-block.
Names declared in the outermost block of the function definition are not found when looked up in the scope
of a handler for the function-try-block. [Note: but function parameter names are found.]

14

2a

3.4.1 Unqualified name lookup DRAFT: 11 April 2004 Basic concepts 3-13

[Note: the rules for name lookup in template definitions are described in 14.6.]
3.4.2 Argument-dependent name lookup [basic.lookup.argdep]

When an unqualified name is used as the postfix-expression in a function call (5.2.2), other namespaces not
considered during the usual unqualified lookup (3.4.1) may be searched, and in those namespaces, name-
space-scope friend function declarations (11.4) not otherwise visible may be found. These modifications to
the search depend on the types of the arguments (and for template template arguments, the namespace of
the template argument).

For each argument type T in the function call, there is a set of zero or more associated namespaces and a set
of zero or more associated classes to be considered. The sets of namespaces and classes is determined
entirely by the types of the function arguments (and the namespace of any template template argument).
Typedef names and using-declarations used to specify the types do not contribute to this set. The sets of
namespaces and classes are determined in the following way:

— If T is a fundamental type, its associated sets of namespaces and classes are both empty.

— If Tis aclass type (including unions), its associated classes are: the class itself; the class of which it is
a member, if any; and its direct and indirect base classes. Its associated namespaces are the name-
spaces in which its associated classes are defined.

— If T is an enumeration type, its associated namespace is the namespace in which it is defined. If it is
class member, its associated class is the member’s class; else it has no associated class.

— If T is a pointer to U or an array of U, its associated namespaces and classes are those associated with
U.

— If T is a function type, its associated namespaces and classes are those associated with the function
parameter types and those associated with the return type.

— If T is a pointer to a member function of a class X, its associated namespaces and classes are those
associated with the function parameter types and return type, together with those associated with x.

— If T is a pointer to a data member of class X, its associated namespaces and classes are those associ-
ated with the member type together with those associated with X.

— If T is a class template specialization its associated namespaces and classes are the namespace in
which the template is defined; for member templates, the member template’s class; the namespaces
and classes associated with the types of the template arguments provided for template type parameters
(excluding template template parameters); the namespaces in which any template template arguments
are defined; and the classes in which any member templates used as template template arguments are
defined. [Note: non-type template arguments do not contribute to the set of associated namespaces.]

In addition, if the argument is the name or address of a set of overloaded functions and/or function tem-
plates, its associated classes and namespaces are the union of those associated with each of the members of
the set: the namespace in which the function or function template is defined and the classes and namespaces
associated with its (non-dependent) parameter types and return type.

If the ordinary unqualified lookup of the name finds the declaration of a class member function, or a block-
scope function declaration that is not a using-declaration, the associated namespaces are not considered.
Otherwise the set of declarations found by the lookup of the function name is the union of the set of decla-
rations found using ordinary unqualified lookup and the set of declarations found in the namespaces associ-
ated with the argument types. [Note: the namespaces and classes associated with the argument types can
include namespaces and classes already considered by the ordinary unqualified lookup.] [Example:

3-14 Basic concepts DRAFT: 11 April 2004 3.4.2 Argument-dependent name lookup

namespace NS {
class T { };
void £ (T) ;
void g(T, int);

}

NS::T parm;

void g(NS::T, float);

int main()

f (parm) ; // OK:callsNs: : f

extern void g(NS::T, float);

g(parm, 1); //OK:callsg(NS::T, float)
}

—end example]

When considering an associated namespace, the lookup is the same as the lookup performed when the asso-
ciated namespace is used as a qualifier (3.4.3.2) except that:

— Any using-directives in the associated nhamespace are ignored.

— Any namespace-scope friend functions declared in associated classes are visible within their respective
namespaces even if they are not visible during an ordinary lookup (11.4).

3.4.3 Qualified name lookup [basic.lookup.qual]

The name of a class or namespace member can be referred to after the : : scope resolution operator (5.1)
applied to a nested-name-specifier that nominates its class or namespace. During the lookup for a name
preceding the :: scope resolution operator, object, function, and enumerator names are ignored. If the
name found is not a class-name (clause 9) or namespace-name (7.3.1), the program is ill-formed. [Exam-

ple:

class A {
public:
static int n;
}i
int main()
{
int A;
A::n = 42; // OK
A b; // ill-formed: A does not name a type
1

—end example]

[Note: Multiply qualified names, such as N1::N2::N3: :n, can be used to refer to members of nested
classes (9.7) or members of nested namespaces.]

In a declaration in which the declarator-id is a qualified-id, names used before the qualified-id being
declared are looked up in the defining namespace scope; names following the qualified-id are looked up in
the scope of the member’s class or namespace. [Example:

class X { };
class C {
class X { };
static const int number = 50;
static X arr[number] ;
}i
X C::arr [number] ; // ill-formed:
// equivalentto: : :X C::arr[C: :number] ;
//notto: C::X C::arr[C: :number] ;

—end example]

la

3.4.3 Qualified name lookup DRAFT: 11 April 2004 Basic concepts 3-15

A name prefixed by the unary scope operator : : (5.1) is looked up in global scope, in the translation unit
where it is used. The name shall be declared in global namespace scope or shall be a name whose declara-
tion is visible in global scope because of a using-directive (3.4.3.2). The use of : : allows a global name to
be referred to even if its identifier has been hidden (3.3.7).

If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, the type-names are looked up as
types in the scope designated by the nested-name-specifier. Similarly, in a qualified-id of the form:

: : opy NEsted-name-specifier,,, class-name : : class-name

the second class-name is looked up in the same scope as the first. [Example:

struct C {
typedef int I;
}i

typedef int I1, I2;

extern int* p;

extern int* g;

p->C::I1::7I(); // T is looked up in the scope of C

g->I1::712(); // 12 is looked up in the scope of
// the postfix-expression

struct A {
"AQ);
}i

typedef A AB;
int main()

{
AB *p;
p->AB::"AB() ; // explicitly calls the destructor for A

}

—end example] [Note: 3.4.5 describes how name lookup proceeds after the . and - > operators.]
3.4.3.1 Class members [class.qual]

If the nested-name-specifier of a qualified-id nominates a class, the name specified after the nested-name-
specifier is looked up in the scope of the class (10.2), except for the cases listed below. The name shall rep-
resent one or more members of that class or of one of its base classes (clause 10). [Note: a class member
can be referred to using a qualified-id at any point in its potential scope (3.3.6).] The exceptions to the
name lookup rule above are the following:

— adestructor name is looked up as specified in 3.4.3;

— a conversion-type-id of an operator-function-id is looked up both in the scope of the class and in the
context in which the entire postfix-expression occurs and shall refer to the same type in both contexts;

— the template-arguments of a template-id are looked up in the context in which the entire postfix-expres-
sion occurs.

— the lookup for a name specified in a using-declaration (7.3.3) also finds class or enumeration names
hidden within the same scope (3.3.7).

In a lookup in which the constructor is an acceptable lookup result, if the nested-name-specifier nominates
a class ¢, and the name specified after the nested-name-specifier, when looked up in C, is the injected-class-
name of C (clause 9), the name is instead considered to name the constructor of class C. [Note: For exam-
ple, the constructor is not an acceptable lookup result in an elaborated-type-specifier so the constructor
would not be used in place of the injected-class-name.] Such a constructor name shall be used only in the
declarator-id of a declaration that names a constructor. [Example:

3-16 Basic concepts DRAFT: 11 April 2004 3.4.3.1 Class members

struct A { A(); };
struct B: public A { B(); };

A::Aa() { }
B::B() { }

B::A ba; // object of type A
A::A a; // error, A: : Ais not a type name
struct A::A a2; // object of type A

—end example]

A class member name hidden by a name in a nested declarative region or by the name of a derived class
member can still be found if qualified by the name of its class followed by the : : operator.

3.4.3.2 Namespace members [namespace.qual]

If the nested-name-specifier of a qualified-id nominates a namespace, the name specified after the nested-
name-specifier is looked up in the scope of the namespace, except that the template-arguments of a tem-
plate-id are looked up in the context in which the entire postfix-expression occurs.

Given X : :m (where X is a user-declared namespace), or given : :m (where X is the global namespace), let
S be the set of all declarations of m in X and in the transitive closure of all namespaces nominated by using-
directives in X and its used namespaces, except that using-directives are ignored in any namespace, includ-
ing X, directly containing one or more declarations of m. No namespace is searched more than once in the
lookup of a name. If S is the empty set, the program is ill-formed. Otherwise, if S has exactly one mem-
ber, or if the context of the reference is a using-declaration (7.3.3), S is the required set of declarations of
m. Otherwise if the use of m is not one that allows a unique declaration to be chosen from s, the program is
ill-formed. [Example:

int x;

namespace Y {
void f (float) ;
void h(int) ;

}

namespace Z {
void h(double) ;
}

namespace A {
using namespace Y;
void f (int) ;
void g(int) ;
int 1i;

}

namespace B {
using namespace Z;
void f (char) ;
int i;

}

namespace AB {
using namespace A;
using namespace B;
void g();

3.4.3.2 Namespace members DRAFT: 11 April 2004 Basic concepts 3-17

void h{()

AB::g () ; // g is declared directly in AB,
// therefore Sis{AB::g () }and AB: :g () is chosen
AB::f(1); // £ is not declared directly in AB so the rules are
// applied recursively to 2 and B;
// namespace Y is not searched and Y: : £ (£loat)
// is not considered;
// Sis{A::f(int),B::f (char) } and overload
// resolution chooses A: : £ (int)
AB::f('c’); // as above but resolution chooses B: : £ (char)

AB: :X++; // x is not declared directly in 2B, and
// is not declared in A or B, so the rules are
// applied recursively to Y and z,
// S is { } so the program is ill-formed
AB: :i++; // 1iis not declared directly in AB so the rules are
// applied recursively to 2 and B,
// Sis{A::1,B::1i}sothe use is ambiguous
// and the program is ill-formed
AB::h(16.8); // his not declared directly in AB and
// not declared directly in A or B so the rules are
// applied recursively to Y and z,
// Sis{Y::h(int), Z: :h(double) } and overload
// resolution chooses Z: : h (double)

}

The same declaration found more than once is not an ambiguity (because it is still a unique declaration).
For example:

namespace A {
int a;
}

namespace B {
using namespace A;

namespace C {
using namespace A;

namespace BC {
using namespace B;
using namespace C;

}

void £()

{
}

BC::a++; //OKZSiS{A::a,A::a}

namespace D {
using A::a;
}

namespace BD {
using namespace B;
using namespace D;

3-18 Basic concepts DRAFT: 11 April 2004 3.4.3.2 Namespace members

void g()

{
}

Because each referenced namespace is searched at most once, the following is well-defined:

BD: :a++; //OK:Sis{A::a,A::a}

namespace B {
int b;
}

namespace A {
using namespace B;
int a;

}

namespace B {
using namespace A;

void f£()

{
A::a++; // OK: adeclared directly ina, sis{a::a}
B::a++; // OK: both A and B searched (once), Sis{A::a}
A::b++; // OK: both A and B searched (once), Sis{B::b}
B::b++; // OK: b declared directly inB, Sis{B: :b }

}

—end example]

During the lookup of a qualified namespace member name, if the lookup finds more than one declaration of
the member, and if one declaration introduces a class name or enumeration name and the other declarations
either introduce the same object, the same enumerator or a set of functions, the non-type name hides the
class or enumeration name if and only if the declarations are from the same namespace; otherwise (the dec-
larations are from different namespaces), the program is ill-formed. [Example:

namespace A {
struct x { };
int x;
int y;

}

namespace B {
struct y {};
}

namespace C
using namespace A;
using namespace B;
int 1 = C::x; // OK, A: :x (of type int)
int j = C::y; // ambiguous, A: :yOrB: :y
}

—end example]

In a declaration for a namespace member in which the declarator-id is a qualified-id, given that the quali-
fied-id for the namespace member has the form

nested-name-specifier unqualified-id
the unqualified-id shall name a member of the namespace designated by the nested-name-specifier. [Exam-
ple:

3.4.3.2 Namespace members DRAFT: 11 April 2004 Basic concepts 3-19

namespace A {
namespace B {
void f1(int) ;

using namespace B;

}

void A::f1(int) { } // ill-formed, £1 is not a member of A
—end example] However, in such namespace member declarations, the nested-name-specifier may rely on
using-directives to implicitly provide the initial part of the nested-name-specifier. [Example:

namespace A {

namespace B {
void £1(int);
}

}

namespace C {
namespace D
void f1(int) ;

}

using namespace A;
using namespace C::D;
void B::fl(int){} // OK, definesA: :B: : £1 (int)

—end example]
3.4.4 Elaborated type specifiers [basic.lookup.elab]

An elaborated-type-specifier (7.1.5.3) may be used to refer to a previously declared class-name or enum-
name even though the name has been hidden by a non-type declaration (3.3.7).

If the elaborated-type-specifier has no nested-name-specifier, and unless the elaborated-type-specifier
appears in a declaration with the following form:

class-key identifier ;

the identifier is looked up according to 3.4.1 but ignoring any non-type names that have been declared. If
the elaborated-type-specifier is introduced by the enum keyword and this lookup does not find a previously
declared type-name, the elaborated-type-specifier is ill-formed. If the elaborated-type-specifier is intro-
duced by a class-key and this lookup does not find a previously declared type-name, or if the elaborated-
type-specifier appears in a declaration with the form:

class-key identifier ;
the elaborated-type-specifier is a declaration that introduces the class-name as described in 3.3.1.

If the elaborated-type-specifier has a nested-name-specifier, qualified name lookup is performed, as
described in 3.4.3, but ignoring any non-type names that have been declared. If this name lookup does not
find a previously declared type-name, the elaborated-type-specifier is ill-formed. [Example:

struct Node ({
struct Node* Next; // OK: Refers to Node at global scope
struct Data* Data; // OK: Declares type Data
// at global scope and member Data

3-20 Basic concepts DRAFT: 11 April 2004 3.4.4 Elaborated type specifiers

struct Data {

struct Node* Node; // OK: Refers to Node at global scope
friend struct ::Glob; // error: Glob is not declared
// cannot introduce a qualified type (7.1.5.3)
friend struct Glob; // OK: Refers to (as yet) undeclared Glob
// at global scope.
/* ... %/
}i
struct Base ({
struct Data; // OK: Declares nested Data
struct ::Datax* thatData; // OK: Refersto : :Data
struct Base::Data* thisData; // OK: Refers to nested Data
friend class ::Data; // OK: global Data is a friend
friend class Data; // OK: nested Data is a friend
struct Data { /* ... */ }; // Defines nested Data
}i
struct Data; // OK: Redeclares Data at global scope
struct ::Data; // error: cannot introduce a qualified type (7.1.5.3)
struct Base::Data; // error: cannot introduce a qualified type (7.1.5.3)
struct Base::Datum; // error: Datum undefined
struct Base::Data* pBase; // OK: refers to nested Data

—end example]
3.4.5 Class member access [basic.lookup.classref]

In a class member access expression (5.2.5), if the . or -> token is immediately followed by an identifier
followed by a <, the identifier must be looked up to determine whether the < is the beginning of a template
argument list (14.2) or a less-than operator. The identifier is first looked up in the class of the object
expression. If the identifier is not found, it is then looked up in the context of the entire postfix-expression
and shall name a class or function template. If the lookup in the class of the object expression finds a tem-
plate, the name is also looked up in the context of the entire postfix-expression and

— if the name is not found, the name found in the class of the object expression is used, otherwise

— if the name is found in the context of the entire postfix-expression and does not name a class template,
the name found in the class of the object expression is used, otherwise

— if the name found is a class template, it must refer to the same entity as the one found in the class of
the object expression, otherwise the program is ill-formed.

If the id-expression in a class member access (5.2.5) is an unqualified-id, and the type of the object expres-
sion is of a class type C (or of pointer to a class type C), the unqualified-id is looked up in the scope of class
C. If the type of the object expression is of pointer to scalar type, the unqualified-id is looked up in the con-
text of the complete postfix-expression.

If the unqualified-id is "type-name, and the type of the object expression is of a class type C (or of pointer to
a class type C), the type-name is looked up in the context of the entire postfix-expression and in the scope of
class C. The type-name shall refer to a class-name. If type-name is found in both contexts, the name shall
refer to the same class type. If the type of the object expression is of scalar type, the type-name is looked
up in the scope of the complete postfix-expression.

If the id-expression in a class member access is a qualified-id of the form

the class-name-or-namespace-name following the . or -> operator is looked up both in the context of the
entire postfix-expression and in the scope of the class of the object expression. If the name is found only in
the scope of the class of the object expression, the name shall refer to a class-name. If the name is found
only in the context of the entire postfix-expression, the name shall refer to a class-name or namespace-
name. If the name is found in both contexts, the class-name-or-namespace-name shall refer to the same

3.4.5 Class member access DRAFT: 11 April 2004 Basic concepts 3-21

entity. [Note: the result of looking up the class-name-or-namespace-name is not required to be a unique
base class of the class type of the object expression, as long as the entity or entities named by the qualified-
id are members of the class type of the object expression and are not ambiguous according to 10.2.

struct A {

int a;
}i
struct B: virtual A { };
struct C: B { };
struct D: B { };
struct E: public C, public D { };
struct F: public A { };
void £() {
E e;
e.B::a = 0; // OK,onlyoneA: :ainkE
F f£;
f.A::a = 1; // OK, A: :a is a member of F
}
—end note]

If the qualified-id has the form

the class-name-or-namespace-name is looked up in global scope as a class-name or namespace-name.

If the nested-name-specifier contains a class template-id (14.2), its template-arguments are evaluated in the
context in which the entire postfix-expression occurs.

If the id-expression is a conversion-function-id, its conversion-type-id shall denote the same type in both the
context in which the entire postfix-expression occurs and in the context of the class of the object expression
(or the class pointed to by the pointer expression).

3.4.6 Using-directives and namespace aliases [basic.lookup.udir]

When looking up a hamespace-name in a using-directive or namespace-alias-definition, only namespace
names are considered.

3.5 Program and linkage [basic.link]

A program consists of one or more translation units (clause 2) linked together. A translation unit consists
of a sequence of declarations.

translation-unit:
declaration-seqy

A name is said to have linkage when it might denote the same object, reference, function, type, template,
namespace or value as a name introduced by a declaration in another scope:

— When a name has external linkage, the entity it denotes can be referred to by names from scopes of
other translation units or from other scopes of the same translation unit.

— When a name has internal linkage, the entity it denotes can be referred to by names from other scopes
in the same translation unit.

— When a name has no linkage, the entity it denotes cannot be referred to by names from other scopes.
A name having namespace scope (3.3.5) has internal linkage if it is the name of
— an object, reference, function or function template that is explicitly declared static or,

— an object or reference that is explicitly declared const and neither explicitly declared extern nor
previously declared to have external linkage; or

3-22 Basic concepts DRAFT: 11 April 2004 3.5 Program and linkage

— adata member of an anonymous union.

A name having namespace scope has external linkage if it is the name of
— an object or reference, unless it has internal linkage; or

— afunction, unless it has internal linkage; or

— anamed class (clause 9), or an unnamed class defined in a typedef declaration in which the class has
the typedef name for linkage purposes (7.1.3); or

— anamed enumeration (7.2), or an unnamed enumeration defined in a typedef declaration in which the
enumeration has the typedef name for linkage purposes (7.1.3); or

— an enumerator belonging to an enumeration with external linkage; or
— atemplate, unless it is a function template that has internal linkage (clause 14); or
— anamespace (7.3), unless it is declared within an unnamed namespace.

In addition, a member function, a static data member, a named class or enumeration of class scope, or an
unnamed class or enumeration defined in a class-scope typedef declaration such that the class or enumera-
tion has the typedef name for linkage purposes (7.1.3), has external linkage if the name of the class has
external linkage.

The name of a function declared in block scope, and the name of an object declared by a block scope
extern declaration, have linkage. If there is a visible declaration of an entity with linkage having the
same name and type, ignoring entities declared outside the innermost enclosing namespace scope, the block
scope declaration declares that same entity and receives the linkage of the previous declaration. If there is
more than one such matching entity, the program is ill-formed. Otherwise, if no matching entity is found,
the block scope entity receives external linkage.

[Example:
static void f£();
static int i = 0; //1
void g() {
extern void f(); // internal linkage
int 1i; //2: i has no linkage
{
extern void f£(); // internal linkage
extern int 1i; //3: external linkage
1
1

There are three objects named 1 in this program. The object with internal linkage introduced by the decla-
ration in global scope (line //1), the object with automatic storage duration and no linkage introduced by
the declaration on line //2, and the object with static storage duration and external linkage introduced by
the declaration on line / /3.]

When a block scope declaration of an entity with linkage is not found to refer to some other declaration,
then that entity is a member of the innermost enclosing namespace. However such a declaration does not
introduce the member name in its namespace scope. [Example:

namespace X {
void p()
{
q(); // error: g not yet declared
extern void g() ; // qis a member of namespace X

10

11

3.5 Program and linkage DRAFT: 11 April 2004 Basic concepts 3-23

void middle ()

{
q(); // error: g not yet declared
}
void gq() { /* ... */ } // definition of X: : g
!
void g() { /* ... */ } // some other, unrelated g

—end example]

Names not covered by these rules have no linkage. Moreover, except as noted, a name declared in a local
scope (3.3.2) has no linkage. A name with no linkage (notably, the name of a class or enumeration declared
in a local scope (3.3.2)) shall not be used to declare an entity with linkage. If a declaration uses a typedef
name, it is the linkage of the type name to which the typedef refers that is considered. [Example:

void f£()
{
struct A { int x; }; // no linkage
extern A a; // ill-formed
typedef A B;
extern B b; // ill-formed
1

—end example] This implies that names with no linkage cannot be used as template arguments (14.3).

Two names that are the same (clause 3) and that are declared in different scopes shall denote the same
object, reference, function, type, enumerator, template or namespace if

— both names have external linkage or else both names have internal linkage and are declared in the
same translation unit; and

— both names refer to members of the same namespace or to members, not by inheritance, of the same
class; and

— when both names denote functions, the parameter-type-lists of the functions (8.3.5) are identical; and
— when both names denote function templates, the signatures (14.5.5.1) are the same.

After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types
specified by all declarations referring to a given object or function shall be identical, except that declara-
tions for an array object can specify array types that differ by the presence or absence of a major array
bound (8.3.4). A violation of this rule on type identity does not require a diagnostic.

[Note: linkage to non-C+ declarations can be achieved using a linkage-specification (7.5).]
3.6 Start and termination [basic.start]
3.6.1 Main function [basic.start.main]

A program shall contain a global function called main, which is the designated start of the program. It is
implementation-defined whether a program in a freestanding environment is required to define a main
function. [Note: in a freestanding environment, start-up and termination is implementation-defined; start-
up contains the execution of constructors for objects of namespace scope with static storage duration; ter-
mination contains the execution of destructors for objects with static storage duration.]

An implementation shall not predefine the main function. This function shall not be overloaded. It shall
have a return type of type int, but otherwise its type is implementation-defined. All implementations shall
allow both of the following definitions of main:

int main() { /* ... */ }

and

3-24 Basic concepts DRAFT: 11 April 2004 3.6.1 Main function

int main(int argc, char* argv([]) { /* ... */ }

In the latter form argc shall be the number of arguments passed to the program from the environment in
which the program is run. If argc is nonzero these arguments shall be supplied in argv [0] through
argv[argc-1] as pointers to the initial characters of null-terminated multibyte strings (NTMBSs)
(17.3.2.1.3.2) and argv [0] shall be the pointer to the initial character of a NTMBS that represents the
name used to invoke the program or "". The value of argc shall be nonnegative. The value of
argv [argc] shall be 0. [Note: it is recommended that any further (optional) parameters be added after
argv. |

The function main shall not be used (3.2) within a program. The linkage (3.5) of main is implementa-
tion-defined. A program that declares main to be inline or static is ill-formed. The name main is
not otherwise reserved. [Example: member functions, classes, and enumerations can be called main, as
can entities in other namespaces.]

Calling the function std: :exit (int) declared in <cstdlib> (18.3) terminates the program without
leaving the current block and hence without destroying any objects with automatic storage duration (12.4).
If std: :exit is called to end a program during the destruction of an object with static storage duration,
the program has undefined behavior.

A return statement in main has the effect of leaving the main function (destroying any objects with auto-
matic storage duration) and calling std: : exit with the return value as the argument. If control reaches
the end of main without encountering a return statement, the effect is that of executing

return 0;

3.6.2 Initialization of non-local objects [basic.start.init]

Objects with static storage duration (3.7.1) shall be zero-initialized (8.5) before any other initialization
takes place. Zero-initialization and initialization with a constant expression are collectively called static
initialization; all other initialization is dynamic initialization. Objects of POD types (3.9) with static stor-
age duration initialized with constant expressions (5.19) shall be initialized before any dynamic initial-
ization takes place. Dynamic initialization of an object is either ordered or unordered. Definitions of
explicitly specialized class template static data members have ordered initialization. Other class template
static data members (i.e., implicitly or explicitly instantiated specializations) have unordered initialization.
Other objects defined in namespace scope have ordered initialization. Objects defined within a single trans-
lation unit and with ordered initialization shall be initialized in the order of their definitions in the transla-
tion unit. The order of initialization is unspecified for objects with unordered initialization and for objects
defined in different translation units. [Note: 8.5.1 describes the order in which aggregate members are ini-
tialized. The initialization of local static objects is described in 6.7.]

An implementation is permitted to perform the initialization of an object of namespace scope with static
storage duration as a static initialization even if such initialization is not required to be done statically, pro-
vided that

— the dynamic version of the initialization does not change the value of any other object of namespace
scope with static storage duration prior to its initialization, and

— the static version of the initialization produces the same value in the initialized object as would be pro-
duced by the dynamic initialization if all objects not required to be initialized statically were initialized
dynamically.

[Note: as a consequence, if the initialization of an object obj1 refers to an object obj2 of namespace
scope with static storage duration potentially requiring dynamic initialization and defined later in the same
translation unit, it is unspecified whether the value of obj2 used will be the value of the fully initialized
obj2 (because obj2 was statically initialized) or will be the value of obj2 merely zero-initialized. For
example,

3.6.2 Initialization of non-local objects DRAFT: 11 April 2004 Basic concepts 3-25

inline double fd() { return 1.0; }
extern double di;
double d2 = di; // unspecified:
// may be statically initialized to 0.0 or
// dynamically initialized to 1. 0
double dl = fd(); // may be initialized staticallyto 1.0

—end note]

It is implementation-defined whether or not the dynamic initialization (8.5, 9.4, 12.1, 12.6.1) of an object of
namespace scope is done before the first statement of main. If the initialization is deferred to some point
in time after the first statement of main, it shall occur before the first use of any function or object defined
in the same translation unit as the object to be initialized.*? [Example:

// —Filel—

#include "a.h"

#include "b.h"

B b;
A::A(){

b.Use() ;
}
// —File2 —
#include "a.h"
A a;
// —File3 —

#include "a.h"
#include "b.h"
extern A a;
extern B b;

int main()
a.Use () ;
b.Use() ;

}

It is implementation-defined whether either a or b is initialized before main is entered or whether the ini-
tializations are delayed until a is first used in main. In particular, if a is initialized before main is
entered, it is not guaranteed that b will be initialized before it is used by the initialization of a, that is,
before A: : A is called. If, however, a is initialized at some point after the first statement of main, b will be
initialized priortoitsuse in A: : A,]

If construction or destruction of a non-local static object ends in throwing an uncaught exception, the result
istocall std: :terminate (18.6.3.3).

3.6.3 Termination [basic.start.term]

Destructors (12.4) for initialized objects of static storage duration (declared at block scope or at namespace
scope) are called as a result of returning from main and as a result of calling std: :exit (18.3). These
objects are destroyed in the reverse order of the completion of their constructor or of the completion of their
dynamic initialization. If an object is initialized statically, the object is destroyed in the same order as if the
object was dynamically initialized. For an object of array or class type, all subobjects of that object are
destroyed before any local object with static storage duration initialized during the construction of the sub-
objects is destroyed.

If a function contains a local object of static storage duration that has been destroyed and the function is
called during the destruction of an object with static storage duration, the program has undefined behavior
if the flow of control passes through the definition of the previously destroyed local object.

32) An object defined in namespace scope having initialization with side-effects must be initialized even if it is not used (3.7.1).

3-26 Basic concepts DRAFT: 11 April 2004 3.6.3 Termination

If a function is registered with std::atexit (see <cstdlibs>, 18.3) then following the call to
std: :exit, any objects with static storage duration initialized prior to the registration of that function
shall not be destroyed until the registered function is called from the termination process and has com-
pleted. For an object with static storage duration constructed after a function is registered with
std: :atexit, then following the call to std: :exit, the registered function is not called until the
execution of the object’s destructor has completed. If std: :atexit is called during the construction of
an object, the complete object to which it belongs shall be destroyed before the registered function is called.

Calling the function std: :abort () declared in <cstdlib> terminates the program without executing
destructors for objects of automatic or static storage duration and without calling the functions passed to
std::atexit ().

3.7 Storage duration [basic.stc]

Storage duration is the property of an object that defines the minimum potential lifetime of the storage con-
taining the object. The storage duration is determined by the construct used to create the object and is one
of the following:

— static storage duration
— automatic storage duration
— dynamic storage duration

Static and automatic storage durations are associated with objects introduced by declarations (3.1) and
implicitly created by the implementation (12.2). The dynamic storage duration is associated with objects
created with operator new (5.3.4).

The storage class specifiers static and auto are related to storage duration as described below.

The storage duration categories apply to references as well. The lifetime of a reference is its storage dura-
tion.

3.7.1 Static storage duration [basic.stc.static]

All objects which neither have dynamic storage duration nor are local have static storage duration. The
storage for these objects shall last for the duration of the program (3.6.2, 3.6.3).

If an object of static storage duration has initialization or a destructor with side effects, it shall not be elimi-
nated even if it appears to be unused, except that a class object or its copy may be eliminated as specified in
12.8.

The keyword static can be used to declare a local variable with static storage duration. [Note: 6.7
describes the initialization of local static variables; 3.6.3 describes the destruction of local static
variables.]

The keyword static applied to a class data member in a class definition gives the data member static
storage duration.

3.7.2 Automatic storage duration [basic.stc.auto]

Local objects explicitly declared auto or register or not explicitly declared static or extern have
automatic storage duration. The storage for these objects lasts until the block in which they are created
exits.

[Note: these objects are initialized and destroyed as described in 6.7.]

If a named automatic object has initialization or a destructor with side effects, it shall not be destroyed
before the end of its block, nor shall it be eliminated as an optimization even if it appears to be unused,
except that a class object or its copy may be eliminated as specified in 12.8.

3.7.3 Dynamic storage duration DRAFT: 11 April 2004 Basic concepts 3-27

3.7.3 Dynamic storage duration [basic.stc.dynamic]

Objects can be created dynamically during program execution (1.9), using new-expressions (5.3.4), and
destroyed using delete-expressions (5.3.5). A C+ implementation provides access to, and management of,
dynamic storage via the global allocation functions operator new and operator newl[] and the
global deallocation functions operator delete and operator deletel].

The library provides default definitions for the global allocation and deallocation functions. Some global
allocation and deallocation functions are replaceable (18.4.1). A C+ program shall provide at most one
definition of a replaceable allocation or deallocation function. Any such function definition replaces the
default version provided in the library (17.4.3.4). The following allocation and deallocation functions
(18.4) are implicitly declared in global scope in each translation unit of a program

void* operator new(std::size t) throw(std::bad alloc);
void* operator newl[] (std::size t) throw(std::bad alloc);
void operator delete(void*) throw() ;

void operator delete[] (void*) throw() ;

These implicit declarations introduce only the function names operator new, operator newl[],
operator delete, operator delete[]. [Note: the implicit declarations do not introduce the
names std, std: :bad _alloc, and std: :size_t, or any other names that the library uses to declare
these names. Thus, a new-expression, delete-expression or function call that refers to one of these functions
without including the header <news> is well-formed. However, referring to std, std: :bad _alloc, and
std::size t is ill-formed unless the name has been declared by including the appropriate header.]
Allocation and/or deallocation functions can also be declared and defined for any class (12.5).

Any allocation and/or deallocation functions defined in a C+ program, including the default versions in the
library, shall conform to the semantics specified in 3.7.3.1 and 3.7.3.2.

3.7.3.1 Allocation functions [basic.stc.dynamic.allocation]

An allocation function shall be a class member function or a global function; a program is ill-formed if an
allocation function is declared in a namespace scope other than global scope or declared static in global
scope. The return type shall be void=*. The first parameter shall have type std: :size t (18.1). The
first parameter shall not have an associated default argument (8.3.6). The value of the first parameter shall
be interpreted as the requested size of the allocation. An allocation function can be a function template.
Such a template shall declare its return type and first parameter as specified above (that is, template parame-
ter types shall not be used in the return type and first parameter type). Template allocation functions shall
have two or more parameters.

The allocation function attempts to allocate the requested amount of storage. If it is successful, it shall
return the address of the start of a block of storage whose length in bytes shall be at least as large as the
requested size. There are no constraints on the contents of the allocated storage on return from the alloca-
tion function. The order, contiguity, and initial value of storage allocated by successive calls to an alloca-
tion function is unspecified. The pointer returned shall be suitably aligned so that it can be converted to a
pointer of any complete object type and then used to access the object or array in the storage allocated
(until the storage is explicitly deallocated by a call to a corresponding deallocation function). Even if the
size of the space requested is zero, the request can fail. If the request succeeds, the value returned shall be a
non-null pointer value (4.10) po different from any previously returned value p1, unless that value p1 was
subsequently passed to an o)perator delete. The effect of dereferencing a pointer returned as a request
for zero size is undefined. >

An allocation function that fails to allocate storage can invoke the currently installed new-handler function
(18.4.2.2), if any. [Note: A program-supplied allocation function can obtain the address of the currently
installed new-handler function using the std: : set _new handler function (18.4.2.3).] If an alloca-
tion function declared with an empty exception-specification (15.4), throw (), fails to allocate storage, it
shall return a null pointer. Any other allocation function that fails to allocate storage shall only indicate

33) The intent is to have operator new () implementable by calling std: :malloc () or std::calloc (), so the rules are
substantially the same. C++ differs from C in requiring a zero request to return a non-null pointer.

3-28 Basic concepts DRAFT: 11 April 2004 3.7.3.1 Allocation functions

failure by throwing an exception of class std::bad alloc (18.4.2.1) or a class derived from
std::bad _alloc.

A global allocation function is only called as the result of a new expression (5.3.4), or called directly using
the function call syntax (5.2.2), or called indirectly through calls to the functions in the C+ standard
library. [Note: in particular, a global allocation function is not called to allocate storage for objects with
static storage duration (3.7.1), for objects of type std: :type info (5.2.8), for the copy of an object
thrown by a throw expression (15.1).]

3.7.3.2 Deallocation functions [basic.stc.dynamic.deallocation]

Deallocation functions shall be class member functions or global functions; a program is ill-formed if de-
allocation functions are declared in a namespace scope other than global scope or declared static in global
scope.

Each deallocation function shall return void and its first parameter shall be void=*. A deallocation func-
tion can have more than one parameter. If a class T has a member deallocation function named operator
delete with exactly one parameter, then that function is a usual (non-placement) deallocation function. If
class T does not declare such an operator delete but does declare a member deallocation function
named operator delete with exactly two parameters, the second of which has type std::size t
(18.1), then this function is a usual deallocation function. Similarly, if a class T has a member deallocation
function named operator delete [] with exactly one parameter, then that function is a usual (non-
placement) deallocation function. If class T does not declare such an operator delete[] but does
declare a member deallocation function named operator delete [] with exactly two parameters, the
second of which has type std::size t, then this function is a usual deallocation function. A de-
allocation function can be an instance of a function template. Neither the first parameter nor the return type
shall depend on a template parameter. [Note: that is, a deallocation function template shall have a first
parameter of type void* and a return type of void (as specified above).] A deallocation function tem-
plate shall have two or more function parameters. A template instance is never a usual deallocation func-
tion, regardless of its signature.

The value of the first argument supplied to one of the deallocation functions provided in the standard library
may be a null pointer value; if so, the call to the deallocation function has no effect. Otherwise, the value
supplied to operator delete (void*) in the standard library shall be one of the values returned by a
previous invocation of either operator new(std::size t) Or operator new(std::size t,
const std::nothrow t&) in the standard library, and the value supplied to operator
delete[] (void¥) in the standard library shall be one of the values returned by a previous invocation of
either operator newl[] (std::size t) oOr operator newl[] (std::size t, const
std: :nothrow té&) in the standard library.

If the argument given to a deallocation function in the standard library is a pointer that is not the null
pointer value (4.10), the deallocation function shall deallocate the storage referenced by the pointer, render-
ing invalid all pointers referring to any part of the deallocated storage. The effect of using an invalid
pointer value (including passing it to a deallocation function) is undefined.>¥

3.7.4 Duration of sub-objects [basic.stc.inherit]

The storage duration of member subobjects, base class subobjects and array elements is that of their com-
plete object (1.8).

3.8 Object Lifetime [basic.life]

The lifetime of an object is a runtime property of the object. The lifetime of an object of type T begins
when:

— storage with the proper alignment and size for type T is obtained, and

— if T is a class type and the constructor invoked to create the object is non-trivial (12.1), the constructor
call has completed. [Note: the initialization can be performed by a constructor call or, in the case of

34) On some implementations, it causes a system-generated runtime fault.

3.8 Object Lifetime DRAFT: 11 April 2004 Basic concepts 3-29

an aggregate with an implicitly-declared non-trivial default constructor, an aggregate initialization
(8.5.1).]

The lifetime of an object of type T ends when:
— if T is a class type with a non-trivial destructor (12.4), the destructor call starts, or
— the storage which the object occupies is reused or released.

[Note: the lifetime of an array object or of an object of POD type (3.9) starts as soon as storage with proper
size and alignment is obtained, and its lifetime ends when the storage which the array or object occupies is
reused or released. 12.6.2 describes the lifetime of base and member subobjects.]

The properties ascribed to objects throughout this International Standard apply for a given object only dur-
ing its lifetime. [Note: in particular, before the lifetime of an object starts and after its lifetime ends there
are significant restrictions on the use of the object, as described below, in 12.6.2 and in 12.7. Also, the
behavior of an object under construction and destruction might not be the same as the behavior of an object
whose lifetime has started and not ended. 12.6.2 and 12.7 describe the behavior of objects during the con-
struction and destruction phases.]

A program may end the lifetime of any object by reusing the storage which the object occupies or by
explicitly calling the destructor for an object of a class type with a non-trivial destructor. For an object of a
class type with a non-trivial destructor, the program is not required to call the destructor explicitly before
the storage which the object occupies is reused or released; however, if there is no explicit call to the de-
structor or if a delete-expression (5.3.5) is not used to release the storage, the destructor shall not be implic-
itly called and any program that depends on the side effects produced by the destructor has undefined
behavior.

Before the lifetime of an object has started but after the storage which the object will occupy has been
allocated®® or, after the lifetime of an object has ended and before the storage which the object occupied is
reused or released, any pointer that refers to the storage location where the object will be or was located
may be used but only in limited ways. Such a pointer refers to allocated storage (3.7.3.2), and using the
pointer as if the pointer were of type voidx, is well-defined. Such a pointer may be dereferenced but the
resulting lvalue may only be used in limited ways, as described below. If the object will be or was of a
class type with a non-trivial destructor, and the pointer is used as the operand of a delete-expression, the
program has undefined behavior. If the object will be or was of a non-POD class type, the program has
undefined behavior if:

— the pointer is used to access a non-static data member or call a non-static member function of the
object, or

— the pointer is implicitly converted (4.10) to a pointer to a base class type, or

— the pointer is used as the operand of a static cast (5.2.9) (except when the conversion is to
void*, or to void* and subsequently to char*, or unsigned char¥).

— the pointer is used as the operand of a dynamic cast (5.2.7). [Example:

#include <cstdlib>

struct B {
virtual void £ () ;
void mutate () ;
virtual “B();

}i
struct D1 : B { void £(); };
struct D2 B { void £(); };

39FmemmM&bdmemequWMMnMagmmnmhaofmmPODd%st(HJ)

3-30 Basic concepts DRAFT: 11 April 2004 3.8 Object Lifetime

void B::mutate()
new (this) D2; // reuses storage — ends the lifetime of *this
£(); / / undefined behavior
. = this; // OK, this points to valid memory
}
void g() {

void* p = std::malloc(sizeof (D1) + sizeof (D2));
B* pb = new (p) D1;
pb->mutate () ;

&pb; // OK: pb points to valid memory
void* g = pb; // OK: pb points to valid memory
pb->f () ; / / undefined behavior, lifetime of *pb has ended

}

—end example]

Similarly, before the lifetime of an object has started but after the storage which the object will occupy has
been allocated or, after the lifetime of an object has ended and before the storage which the object occupied
is reused or released, any lvalue which refers to the original object may be used but only in limited ways.
Such an Ivalue refers to allocated storage (3.7.3.2), and using the properties of the lvalue which do not
depend on its value is well-defined. If an lvalue-to-rvalue conversion (4.1) is applied to such an Ivalue, the
program has undefined behavior; if the original object will be or was of a non-POD class type, the program
has undefined behavior if:

— the Ivalue is used to access a non-static data member or call a non-static member function of the
object, or

— the Ivalue is implicitly converted (4.10) to a reference to a base class type, or

— the Ivalue is used as the operand of a static cast (5.2.9) except when the conversion is ultimately
tocv charé& or cv unsigned charg, or

— the Ivalue is used as the operand of a dynamic cast (5.2.7) or as the operand of typeid.

If, after the lifetime of an object has ended and before the storage which the object occupied is reused or
released, a new object is created at the storage location which the original object occupied, a pointer that
pointed to the original object, a reference that referred to the original object, or the name of the original
object will automatically refer to the new object and, once the lifetime of the new object has started, can be
used to manipulate the new object, if:

— the storage for the new object exactly overlays the storage location which the original object occupied,
and

— the new object is of the same type as the original object (ignoring the top-level cv-qualifiers), and

— the type of the original object is not const-qualified, and, if a class type, does not contain any non-
static data member whose type is const-qualified or a reference type, and

— the original object was a most derived object (1.8) of type T and the new object is a most derived
object of type T (that is, they are not base class subobjects). [Example:

struct C {
int 1i;
void £();
const C& operator=(const C&) ;

3.8 Object Lifetime DRAFT: 11 April 2004 Basic concepts 3-31

const C& C::operator=(const C& other)

{
if (this != &other) {
this->~C(); // lifetime of *this ends
new (this) C(other); // new object of type C created
£(); // well-defined
}
return *this;
}
C cl;
C c2;
cl = c2; / / well-defined
cl.f(); / / well-defined; c1 refers to a new object of type C

—end example]

If a program ends the lifetime of an object of type T with static (3.7.1) or automatic (3.7.2) storage duration
and if T has a non-trivial destructor,36) the program must ensure that an object of the original type occupies
that same storage location when the implicit destructor call takes place; otherwise the behavior of the pro-
gram is undefined. This is true even if the block is exited with an exception. [Example:

class T { };
struct B {

“B();
}i
void h() {
B b;
new (&b) T;
} // undefined behavior at block exit

—end example]

Creating a new object at the storage location that a const object with static or automatic storage duration
occupies or, at the storage location that such a const object used to occupy before its lifetime ended
results in undefined behavior. [Example:

struct B {
B();
“B();
}i
const B b;
void h() {
b."B();
new (&b) const B; // undefined behavior
}
—end example]
3.9 Types [basic.types]

[Note: 3.9 and the subclauses thereof impose requirements on implementations regarding the representation
of types. There are two kinds of types: fundamental types and compound types. Types describe objects
(1.8), references (8.3.2), or functions (8.3.5).]

For any object (other than a base-class subobject) of POD type T, whether or not the object holds a valid
value of type T, the underlying bytes (1.7) making up the object can be copied into an array of char or

36) that is, an object for which a destructor will be called implicitly—either either upon exit from the block for an object with auto-
matic storage duration or upon exit from the program for an object with static storage duration.

3-32 Basic concepts DRAFT: 11 April 2004 3.9 Types

unsigned char.®”) If the content of the array of char or unsigned char is copied back into the

object, the object shall subsequently hold its original value. [Example:

#define N sizeof (T)
char buf [N] ;

T obj; // obj initialized to its original value
std: :memcpy (buf, &obj, N); / / between these two calls to std: : memcpy,
// obj might be modified
std: :memcpy (&obj, buf, N); // at this point, each subobject of obj of scalar type

// holds its original value
—end example]

For any POD type T, if two pointers to T point to distinct T objects obj 1 and obij 2, where neither obj1
nor obj2 is a base-class subobject, if the value of ob7j1 is copied into obij2, using the std: :memcpy
library function, ob7j 2 shall subsequently hold the same value as obj1. [Example:
T* tlp;
T* t2p;
// provided that t2p points to an initialized object ...
std: :memcpy (tlp, t2p, sizeof (T)) ;// atthis point, every subobject of POD type in *t1p contains
// the same value as the corresponding subobject in *t2p

—end example]

The object representation of an object of type T is the sequence of N unsigned char objects taken up by
the object of type T, where N equals sizeof (T). The value representation of an object is the set of bits
that hold the value of type T. For POD types, the value representation is a set of bits in the object represen-
tation that determines a value, which is one discrete element of an implementation-defined set of values.®

Object types have alignment requirements (3.9.1, 3.9.2). The alignment of a complete object type is an
implementation-defined integer value representing a number of bytes; an object is allocated at an address
that meets the alignment requirements of its object type.

A class that has been declared but not defined, or an array of unknown size or of incomplete element type,
is an incompletely-defined object type.39) Incompletely-defined object types and the void types are incom-
plete types (3.9.1). Objects shall not be defined to have an incomplete type.

A class type (such as “class X”) might be incomplete at one point in a translation unit and complete later
on; the type “class X” is the same type at both points. The declared type of an array object might be an
array of incomplete class type and therefore incomplete; if the class type is completed later on in the trans-
lation unit, the array type becomes complete; the array type at those two points is the same type. The
declared type of an array object might be an array of unknown size and therefore be incomplete at one point
in a translation unit and complete later on; the array types at those two points (“array of unknown bound of
T” and “array of N T”) are different types. The type of a pointer to array of unknown size, or of a type
defined by a typedef declaration to be an array of unknown size, cannot be completed. [Example:

class X; // X is an incomplete type

extern X* xp; // xp is a pointer to an incomplete type
extern int arr([]; // the type of arr is incomplete

typedef int UNKAI[]; // UNKA is an incomplete type

UNKA* arrp; // arrp is a pointer to an incomplete type

UNKA** arrpp;

37) By using, for example, the library functions (17.4.1.2) std: :memcpy Or std: :memmove.
8) The intent is that the memory model of C+ is compatible with that of ISO/IEC 9899 Programming Language C.
9) The size and layout of an instance of an incompletely-defined object type is unknown.

10

11

3.9 Types DRAFT: 11 April 2004 Basic concepts 3-33

void foo()

{
Xp++; // ill-formed: X is incomplete
arrp++; // ill-formed: incomplete type
arrpp++; // OK: sizeof UNKA* is known

1

struct X { int i; }; // now X is a complete type

int arr[10]; // now the type of arr is complete

X x;

void bar ()

{
Xp = &X; // OK; type is “pointer to X”
arrp = &arr; // ill-formed: different types
Xp++; // OK: X is complete
arrp++; // ill-formed: UNKA can’t be completed

}

—end example]

[Note: the rules for declarations and expressions describe in which contexts incomplete types are prohib-
ited.]

An object type is a (possibly cv-qualified) type that is not a function type, not a reference type, and not a
void type.

Arithmetic types (3.9.1), enumeration types, pointer types, and pointer to member types (3.9.2), and cv-
qualified versions of these types (3.9.3) are collectively called scalar types. Scalar types, POD-struct types,
POD-union types (clause 9), arrays of such types and cv-qualified versions of these types (3.9.3) are collec-
tively called POD types.

If two types T1 and T2 are the same type, then T1 and T2 are layout-compatible types. [Note: Layout-
compatible enumerations are described in 7.2. Layout-compatible POD-structs and POD-unions are
described in 9.2.]

3.9.1 Fundamental types [basic.fundamental]

Objects declared as characters (char) shall be large enough to store any member of the implementation’s
basic character set. If a character from this set is stored in a character object, the integral value of that char-
acter object is equal to the value of the single character literal form of that character. It is implementation-
defined whether a char object can hold negative values. Characters can be explicitly declared unsigned
or signed. Plain char, signed char, and unsigned char are three distinct types. A char, a
signed char, and an unsigned char occupy the same amount of storage and have the same align-
ment requirements (3.9); that is, they have the same object representation. For character types, all bits of
the object representation participate in the value representation. For unsigned character types, all possible
bit patterns of the value representation represent numbers. These requirements do not hold for other types.
In any particular implementation, a plain char object can take on either the same values as a
signed char oranunsigned char; which one is implementation-defined.

LI TS LT

There are four signed integer types: “signed char”, “short int”, “int”, and “long int.” In this
list, each type provides at least as much storage as those preceding it in the list. Plain ints have the natu-
ral size suggested by the architecture of the execution environment*® ; the other signed integer types are
provided to meet special needs.

For each of the signed integer types, there exists a corresponding (but different) unsigned integer type:
“unsigned char”, “unsigned short int”, “unsigned int”, and “unsigned long
int,” each of which occupies the same amount of storage and has the same alignment requirements (3.9)

40) that is, large enough to contain any value in the range of INT MINand INT MAX, as defined in the header <climitss>.

10

3-34 Basic concepts DRAFT: 11 April 2004 3.9.1 Fundamental types

as the corresponding signed integer type41) ; that is, each signed integer type has the same object represen-
tation as its corresponding unsigned integer type. The range of nonnegative values of a signed integer type
is a subrange of the corresponding unsigned integer type, and the value representation of each correspond-
ing signed/unsigned type shall be the same.

Unsigned integers, declared unsigned, shall obey the laws of arithmetic modulo 2" where n is the num-
ber of bits in the value representation of that particular size of integer.42)

Type wchar t is a distinct type whose values can represent distinct codes for all members of the largest
extended character set specified among the supported locales (22.1.1). Type wchar_t shall have the same
size, signedness, and alignment requirements (3.9) as one of the other integral types, called its underlying

type.

Values of type bool are either true or false. ™ [Note: there are no signed, unsigned, short, or
long bool types or values.] As described below, bool values behave as integral types. Values of type
bool participate in integral promotions (4.5).

43)

Types bool, char, wchar_t, and the signed and unsigned integer types are collectively called integral
types.44) A synonym for integral type is integer tk?e. The representations of integral types shall define val-
ues by use of a pure binary numeration system.) [Example: this International Standard permits 2’s com-
plement, 1’s complement and signed magnitude representations for integral types.]

There are three floating point types: £1loat, double, and long double. The type double provides
at least as much precision as £1oat, and the type long double provides at least as much precision as
double. The set of values of the type £1oat is a subset of the set of values of the type double; the set
of values of the type double is a subset of the set of values of the type 1ong double. The value repre-
sentation of floating-point types is implementation-defined. Integral and floating types are collectively
called arithmetic types. Specializations of the standard template std: :numeric limits (18.2) shall
specify the maximum and minimum values of each arithmetic type for an implementation.

The void type has an empty set of values. The void type is an incomplete type that cannot be completed.
It is used as the return type for functions that do not return a value. Any expression can be explicitly con-
verted to type cv void (5.4). An expression of type void shall be used only as an expression statement
(6.2), as an operand of a comma expression (5.18), as a second or third operand of ?: (5.16), as the
operand of typeid, or as the expression in a return statement (6.6.3) for a function with the return type
void.

[Note: even if the implementation defines two or more basic types to have the same value representation,
they are nevertheless different types.]

3.9.2 Compound types [basic.compound]
Compound types can be constructed in the following ways:
— arrays of objects of a given type, 8.3.4;

— functions, which have parameters of given types and return void or references or objects of a given
type, 8.3.5;

41) See 7.1.5.2 regarding the correspondence between types and the sequences of type-specifiers that designate them.

42) This implies that unsigned arithmetic does not overflow because a result that cannot be represented by the resulting unsigned inte-
ger type is reduced modulo the number that is one greater than the largest value that can be represented by the resulting unsigned inte-
ger type.

43) Using a boo1l value in ways described by this International Standard as *““undefined,” such as by examining the value of an unini-
tialized automatic variable, might cause it to behave as if it is neither t rue nor false.

44) Therefore, enumerations (7.2) are not integral; however, enumerations can be promoted to int, unsigned int, long, Or
unsigned long, as specified in 4.5.

45) A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive bits are
additive, begin with 1, and are multiplied by successive integral power of 2, except perhaps for the bit with the highest position.
(Adapted from the American National Dictionary for Information Processing Systems.)

3.9.2 Compound types DRAFT: 11 April 2004 Basic concepts 3-35

— pointers to void or objects or functions (including static members of classes) of a given type, 8.3.1;
— references to objects or functions of a given type, 8.3.2;

— classes containing a sequence of objects of various types (clause 9), a set of types, enumerations and
functions for manipulating these objects (9.3), and a set of restrictions on the access to these entities
(clause 11);

— unions, which are classes capable of containing objects of different types at different times, 9.5;

— enumerations, which comprise a set of named constant values. Each distinct enumeration constitutes a
different enumerated type, 7.2;

— pointers to non-static*®

given class, 8.3.3.

class members, which identify members of a given type within objects of a

These methods of constructing types can be applied recursively; restrictions are mentioned in 8.3.1, 8.3.4,
8.3.5,and 8.3.2.

A pointer to objects of type T is referred to as a “pointer to T.” [Example: a pointer to an object of type
int is referred to as “pointer to int” and a pointer to an object of class X is called a “pointer to X.”]
Except for pointers to static members, text referring to “pointers” does not apply to pointers to members.
Pointers to incomplete types are allowed although there are restrictions on what can be done with them
(3.9). A valid value of an object pointer type represents either the address of a byte in memory (1.7) or a
null pointer (4.10). If an object of type T is located at an address 2, a pointer of type cv T* whose value is
the address A is said to point to that object, regardless of how the value was obtained. [Note: for instance,
the address one past the end of an array (5.7) would be considered to point to an unrelated object of the
array’s element type that might be located at that address.] The value representation of pointer types is
implementation-defined. Pointers to cv-qualified and cv-unqualified versions (3.9.3) of layout-compatible
types shall have the same value representation and alignment requirements (3.9).

Objects of cv-qualified (3.9.3) or cv-unqualified type void* (pointer to void), can be used to point to
objects of unknown type. A void* shall be able to hold any object pointer. A cv-qualified or cv-unquali-
fied (3.9.3) void=* shall have the same representation and alignment requirements as a cv-qualified or cv-
unqualified charx*.

3.9.3 CV-qualifiers [basic.type.qualifier]

A type mentioned in 3.9.1 and 3.9.2 is a cv-unqualified type. Each type which is a cv-unqualified complete
or incomplete object type or is void (3.9) has three corresponding cv-qualified versions of its type: a
const-qualified version, a volatile-qualified version, and a const-volatile-qualified version. The term object
type (1.8) includes the cv-qualifiers specified when the object is created. The presence of a const speci-
fier in a decl-specifier-seq declares an object of const-qualified object type; such object is called a const
object. The presence of a volatile specifier in a decl-specifier-seq declares an object of volatile-quali-
fied object type; such object is called a volatile object. The presence of both cv-qualifiers in a decl-speci-
fier-seq declares an object of const-volatile-qualified object type; such object is called a const volatile
object. The cv-qualified or cv-unqualified versions of a type are distinct types; however, they shall have the
same representation and alignment requirements (3.9).47

A compound type (3.9.2) is not cv-qualified by the cv-qualifiers (if any) of the types from which it is com-
pounded. Any cv-qualifiers applied to an array type affect the array element type, not the array type (8.3.4).

Each non-static, non-mutable, non-reference data member of a const-qualified class object is const-quali-
fied, each non-static, non-reference data member of a volatile-qualified class object is volatile-qualified and
similarly for members of a const-volatile class. See 8.3.5 and 9.3.2 regarding cv-qualified function types.

46) Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.

47 The same representation and alignment requirements are meant to imply interchangeability as arguments to functions, return val-
ues from functions, and members of unions.

4

3-36 Basic concepts DRAFT: 11 April 2004 3.9.3 CV-qualifiers

There is a (partial) ordering on cv-qualifiers, so that a type can be said to be more cv-qualified than another.
Table 6 shows the relations that constitute this ordering.

Table 6—relations on const and volatile

no cv-qualifier < const

no cv-qualifier < volatile

no cv-qualifier < const volatile
const < const volatile

volatile < const volatile

In this International Standard, the notation cv (or cvl, cv2, etc.), used in the description of types, represents
an arbitrary set of cv-qualifiers, i.e., one of {const}, {volatile}, {const, volatile}, or the
empty set. Cv-qualifiers applied to an array type attach to the underlying element type, so the notation
“cv T,” where T is an array type, refers to an array whose elements are so-qualified. Such array types can
be said to be more (or less) cv-qualified than other types based on the cv-qualification of the underlying ele-
ment types.

3.10 Lvalues and rvalues [basic.lval]
Every expression is either an Ivalue or an rvalue.

An Ivalue refers to an object or function. Some rvalue expressions—those of class or cv-qualified class
type—also refer to objects.48)

[Note: some built-in operators and function calls yield Ivalues. [Example: if E is an expression of pointer
type, then *E is an lvalue expression referring to the object or function to which E points. As another
example, the function

inte £();
yields an Ivalue, so the call £ () is an Ivalue expression.]]

[Note: some built-in operators expect Ivalue operands. [Example: built-in assignment operators all expect
their left hand operands to be Ivalues.] Other built-in operators yield rvalues, and some expect them.
[Example: the unary and binary + operators expect rvalue arguments and yield rvalue results.] The discus-
sion of each built-in operator in clause 5 indicates whether it expects Ivalue operands and whether it yields
an Ivalue.]

The result of calling a function that does not return a reference is an rvalue. User defined operators are
functions, and whether such operators expect or yield lvalues is determined by their parameter and return

types.

An expression which holds a temporary object resulting from a cast to a nonreference type is an rvalue (this
includes the explicit creation of an object using functional notation (5.2.3)).

Whenever an lvalue appears in a context where an rvalue is expected, the lvalue is converted to an rvalue;
see4.1,4.2,and 4.3.

The discussion of reference initialization in 8.5.3 and of temporaries in 12.2 indicates the behavior of Ival-
ues and rvalues in other significant contexts.

Class rvalues can have cv-qualified types; non-class rvalues always have cv-unqualified types. Rvalues
shall always have complete types or the void type; in addition to these types, lvalues can also have incom-
plete types.

48) Expressions such as invocations of constructors and of functions that return a class type refer to objects, and the implementation
can invoke a member function upon such objects, but the expressions are not Ivalues.

10

11

12

13

14

15

3.10 Lvalues and rvalues DRAFT: 11 April 2004 Basic concepts 3-37

An lvalue for an object is necessary in order to modify the object except that an rvalue of class type can
also be used to modify its referent under certain circumstances. [Example: a member function called for an
object (9.3) can modify the object.]

Functions cannot be modified, but pointers to functions can be modifiable.

A pointer to an incomplete type can be modifiable. At some point in the program when the pointed to type
is complete, the object at which the pointer points can also be modified.

The referent of a const-qualified expression shall not be modified (through that expression), except that if
it is of class type and has a mutable component, that component can be modified (7.1.5.1).

If an expression can be used to modify the object to which it refers, the expression is called modifiable. A
program that attempts to modify an object through a nonmodifiable lvalue or rvalue expression is ill-
formed.

If a program attempts to access the stored value of an object through an Ivalue of other than one of the fol-
lowing types the behavior is undefined*®):

— the dynamic type of the object,

— acv-qualified version of the dynamic type of the object,

— atype similar (as defined in 4.4) to the dynamic type of the object,

— atype that is the signed or unsigned type corresponding to the dynamic type of the object,

— atype that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic type
of the object,

— an aggregate or union type that includes one of the aforementioned types among its members (includ-
ing, recursively, a member of a subaggregate or contained union),

— atype that is a (possibly cv-qualified) base class type of the dynamic type of the object,

— achar orunsigned char type.

49) The intent of this list is to specify those circumstances in which an object may or may not be aliased.

4 Standard conversions [conv]

Standard conversions are implicit conversions defined for built-in types. Clause 4 enumerates the full set of
such conversions. A standard conversion sequence is a sequence of standard conversions in the following
order:

— Zero or one conversion from the following set: lvalue-to-rvalue conversion, array-to-pointer conver-
sion, and function-to-pointer conversion.

— Zero or one conversion from the following set: integral promotions, floating point promotion, integral
conversions, floating point conversions, floating-integral conversions, pointer conversions, pointer to
member conversions, and boolean conversions.

— Zero or one qualification conversion.

[Note: a standard conversion sequence can be empty, i.e., it can consist of no conversions.] A standard
conversion sequence will be applied to an expression if necessary to convert it to a required destination

type.
[Note: expressions with a given type will be implicitly converted to other types in several contexts:

— When used as operands of operators. The operator’s requirements for its operands dictate the destina-
tion type (clause 5).

— When used in the condition of an if statement or iteration statement (6.4, 6.5). The destination type
is bool.

— When used in the expression of a switch statement. The destination type is integral (6.4).

— When used as the source expression for an initialization (which includes use as an argument in a func-
tion call and use as the expression in a return statement). The type of the entity being initialized is
(generally) the destination type. See 8.5, 8.5.3.

—end note]

An expression e can be implicitly converted to a type T if and only if the declaration “T t=e;” is well-
formed, for some invented temporary variable t (8.5). The effect of the implicit conversion is the same as
performing the declaration and initialization and then using the temporary variable as the result of the con-
version. The result is an lvalue if T is a reference type (8.3.2), and an rvalue otherwise. The expression e
is used as an Ivalue if and only if the initialization uses it as an Ivalue.

[Note: For user-defined types, user-defined conversions are considered as well; see 12.3. In general, an
implicit conversion sequence (13.3.3.1) consists of a standard conversion sequence followed by a user-
defined conversion followed by another standard conversion sequence.

There are some contexts where certain conversions are suppressed. For example, the Ivalue-to-rvalue con-
version is not done on the operand of the unary & operator. Specific exceptions are given in the descriptions
of those operators and contexts.]

4-2 Standard conversions DRAFT: 11 April 2004 4.1 Lvalue-to-rvalue conversion

4.1 Lvalue-to-rvalue conversion [conv.lval]

An lvalue (3.10) of a non-function, non-array type T can be converted to an rvalue. If T is an incomplete
type, a program that necessitates this conversion is ill-formed. If the object to which the Ivalue refers is not
an object of type T and is not an object of a type derived from T, or if the object is uninitialized, a program
that necessitates this conversion has undefined behavior. If T is a non-class type, the type of the rvalue is
the cv-unqualified version of T. Otherwise, the type of the rvalue is T.

The value contained in the object indicated by the Ivalue is the rvalue result. When an lvalue-to-rvalue con-
version occurs within the operand of sizeof (5.3.3) the value contained in the referenced object is not
accessed, since that operator does not evaluate its operand.

[Note: See also 3.10.]
4.2 Array-to-pointer conversion [conv.array]

An Ivalue or rvalue of type “array of N T” or “array of unknown bound of T” can be converted to an rvalue
of type “pointer to T.” The result is a pointer to the first element of the array.

A string literal (2.13.4) that is not a wide string literal can be converted to an rvalue of type “pointer to
char”; a wide string literal can be converted to an rvalue of type “pointer to wchar t”. In either case,
the result is a pointer to the first element of the array. This conversion is considered only when there is an
explicit appropriate pointer target type, and not when there is a general need to convert from an Ivalue to an
rvalue. [Note: this conversion is deprecated. See Annex D.] For the purpose of ranking in overload reso-
lution (13.3.3.1.1), this conversion is considered an array-to-pointer conversion followed by a qualification
conversion (4.4). [Example: "abc" is converted to “pointer to const char” as an array-to-pointer con-
version, and then to “pointer to char” as a qualification conversion.]

4.3 Function-to-pointer conversion [conv.func]

An Ivalue of function type T can be converted to an rvalue of type “pointer to T.” The result is a pointer to
the function.>!

[Note: See 13.4 for additional rules for the case where the function is overloaded.]
4.4 Qualification conversions [conv.qual]

An rvalue of type “pointer to cvl T” can be converted to an rvalue of type “pointer to cv2 T if “cv2 T” is
more cv-qualified than “cvl T.”

An rvalue of type “pointer to member of X of type cvl T” can be converted to an rvalue of type “pointer to
member of X of type cv2 T” if “cv2 T” is more cv-qualified than “cvl T.”

[Note: Function types (including those used in pointer to member function types) are never cv-qualified
(8.3.5).]

A conversion can add cv-qualifiers at levels other than the first in multi-level pointers, subject to the follow-
ing rules:>?
Two pointer types T1 and T2 are similar if there exists a type T and integer n > 0 such that:

T1is cvyg pointerto cvyy pointerto --- cvy o4 pointerto cvy , T
and
T2 is cv, pointer to cv,; pointer to - - - cv, 4 pointerto cv,, T

where each cv; ; is const, volatile, const volatile, or nothing. The n-tuple of cv-qualifiers
after the first in a pointer type, e.g., cvyy, CVyy, ---, CVy, in the pointer type T1, is called the cv-

50) In G+ class rvalues can have cv-qualified types (because they are objects). This differs from ISO C, in which non-lvalues never
have cv-qualified types.

1 This conversion never applies to nonstatic member functions because an lvalue that refers to a nonstatic member function cannot
be obtained.

52) These rules ensure that const-safety is preserved by the conversion.

4.4 Qualification conversions DRAFT: 11 April 2004 Standard conversions 4-3

qualification signature of the pointer type. An expression of type T1 can be converted to type T2 if and
only if the following conditions are satisfied:

— the pointer types are similar.
— forevery j >0, if const isin cvy j then const isin cvy j, and similarly for volatile.

— ifthe cvy j and cv, ; are different, then const is in every cv, for 0 <k < j.
[Note: if a program could assign a pointer of type T** to a pointer of type const T** (that is, if line //1
below was allowed), a program could inadvertently modify a const object (as it is done on line //2). For
example,

int main() {
const char ¢ = '¢’;
char* pc;
const char** pcc = &pc; //1: not allowed
*pcc = &C;
*pc = 'C’; //2: modifies a const object
}
—end note]

A multi-level pointer to member type, or a multi-level mixed pointer and pointer to member type has the
form:
cvoPytocvyP;to---cvp4Ppqtocv, T
where P; is either a pointer or pointer to member and where T is not a pointer type or pointer to member
type.
Two multi-level pointer to member types or two multi-level mixed pointer and pointer to member types T1
and T2 are similar if there exists a type T and integer n > 0 such that:
TliscvigPgotocvyPyto---cvypgPpgtocvy, T
and

T2iscvygPgtocv, Py to- - cvypgPpgtocvy, T

For similar multi-level pointer to member types and similar multi-level mixed pointer and pointer to mem-
ber types, the rules for adding cv-qualifiers are the same as those used for similar pointer types.

4.5 Integral promotions [conv.prom]

An rvalue of type char, signed char, unsigned char, short int, or unsigned short
int can be converted to an rvalue of type int if int can represent all the values of the source type; other-
wise, the source rvalue can be converted to an rvalue of type unsigned int.

An rvalue of type wchar_t (3.9.1) can be converted to an rvalue of the first of the following types that can
represent all the values of its underlying type: int, unsigned int, long, or unsigned long. An
rvalue of an enumeration type (7.2) can be converted to an rvalue of the first of the following types that can
represent all the values of the enumeration (i.e., the values in the range b, t0 bnay @s described in 7.2):
int, unsigned int, long, or unsigned long.

An rvalue for an integral bit-field (9.6) can be converted to an rvalue of type int if int can represent all
the values of the bit-field; otherwise, it can be converted to unsigned int if unsigned int can rep-
resent all the values of the bit-field. If the bit-field is larger yet, no integral promotion applies to it. If the
bit-field has an enumerated type, it is treated as any other value of that type for promotion purposes.

An rvalue of type bool can be converted to an rvalue of type int, with false becoming zero and true
becoming one.

These conversions are called integral promotions.

4-4 Standard conversions DRAFT: 11 April 2004 4.5 Integral promotions

4.6 Floating point promotion [conv.fpprom]
An rvalue of type £1oat can be converted to an rvalue of type double. The value is unchanged.

This conversion is called floating point promotion.

4.7 Integral conversions [conv.integral]

An rvalue of an integer type can be converted to an rvalue of another integer type. An rvalue of an enumer-
ation type can be converted to an rvalue of an integer type.

If the destination type is unsigned, the resulting value is the least unsigned integer congruent to the source
integer (modulo 2" where n is the number of bits used to represent the unsigned type). [Note: In a two’s
complement representation, this conversion is conceptual and there is no change in the bit pattern (if there
is no truncation).]

If the destination type is signed, the value is unchanged if it can be represented in the destination type (and
bit-field width); otherwise, the value is implementation-defined.

If the destination type is bool, see 4.12. If the source type is bool, the value false is converted to zero
and the value true is converted to one.

The conversions allowed as integral promotions are excluded from the set of integral conversions.
4.8 Floating point conversions [conv.double]

An rvalue of floating point type can be converted to an rvalue of another floating point type. If the source
value can be exactly represented in the destination type, the result of the conversion is that exact representa-
tion. If the source value is between two adjacent destination values, the result of the conversion is an
implementation-defined choice of either of those values. Otherwise, the behavior is undefined.

The conversions allowed as floating point promotions are excluded from the set of floating point conver-
sions.

4.9 Floating-integral conversions [conv.fpint]

An rvalue of a floating point type can be converted to an rvalue of an integer type. The conversion trun-
cates; that is, the fractional part is discarded. The behavior is undefined if the truncated value cannot be
represented in the destination type. [Note: If the destination type is bool, see 4.12.]

An rvalue of an integer type or of an enumeration type can be converted to an rvalue of a floating point
type. The result is exact if possible. Otherwise, it is an implementation-defined choice of either the next
lower or higher representable value. [Note: loss of precision occurs if the integral value cannot be repre-
sented exactly as a value of the floating type.] If the source type is bool, the value false is converted to
zero and the value true is converted to one.

4.10 Pointer conversions [conv.ptr]

A null pointer constant is an integral constant expression (5.19) rvalue of integer type that evaluates to zero.
A null pointer constant can be converted to a pointer type; the result is the null pointer value of that type
and is distinguishable from every other value of pointer to object or pointer to function type. Two null
pointer values of the same type shall compare equal. The conversion of a null pointer constant to a pointer
to cv-qualified type is a single conversion, and not the sequence of a pointer conversion followed by a qual-
ification conversion (4.4).

An rvalue of type “pointer to cv T,” where T is an object type, can be converted to an rvalue of type
“pointer to cv void.” The result of converting a “pointer to cv T” to a “pointer to cv void” points to the
start of the storage location where the object of type T resides, as if the object is a most derived object (1.8)
of type T (that is, not a base class subobject).

An rvalue of type “pointer to cv D,” where D is a class type, can be converted to an rvalue of type “pointer
to cv B,” where B is a base class (clause 10) of D. If B is an inaccessible (clause 11) or ambiguous (10.2)
base class of D, a program that necessitates this conversion is ill-formed. The result of the conversion is a

4.10 Pointer conversions DRAFT: 11 April 2004 Standard conversions 4-5

pointer to the base class sub-object of the derived class object. The null pointer value is converted to the
null pointer value of the destination type.

4.11 Pointer to member conversions [conv.mem]

A null pointer constant (4.10) can be converted to a pointer to member type; the result is the null member
pointer value of that type and is distinguishable from any pointer to member not created from a null pointer
constant. Two null member pointer values of the same type shall compare equal. The conversion of a null
pointer constant to a pointer to member of cv-qualified type is a single conversion, and not the sequence of
a pointer to member conversion followed by a qualification conversion (4.4).

An rvalue of type “pointer to member of B of type cv T,” where B is a class type, can be converted to an
rvalue of type “pointer to member of D of type cv T,” where D is a derived class (clause 10) of B. If Bis an
inaccessible (clause 11), ambiguous (10.2) or virtual (10.1) base class of D, a program that necessitates this
conversion is ill-formed. The result of the conversion refers to the same member as the pointer to member
before the conversion took place, but it refers to the base class member as if it were a member of the
derived class. The result refers to the member in D’s instance of B. Since the result has type “pointer to
member of D of type cv T,” it can be dereferenced with a D object. The result is the same as if the pointer to
member of B were dereferenced with the B sub-object of D. The null member pointer value is converted to
the null member pointer value of the destination type.5

4.12 Boolean conversions [conv.bool]

An rvalue of arithmetic, enumeration, pointer, or pointer to member type can be converted to an rvalue of
type bool. A zero value, null pointer value, or null member pointer value is converted to false; any
other value is converted to true.

53) The rule for conversion of pointers to members (from pointer to member of base to pointer to member of derived) appears inverted
compared to the rule for pointers to objects (from pointer to derived to pointer to base) (4.10, clause 10). This inversion is necessary
to ensure type safety. Note that a pointer to member is not a pointer to object or a pointer to function and the rules for conversions of
such pointers do not apply to pointers to members. In particular, a pointer to member cannot be converted to a voidx*.

5 EXpressions [expr]

[Note: Clause 5 defines the syntax, order of evaluation, and meaning of expressions. An expression is a
sequence of operators and operands that specifies a computation. An expression can result in a value and
can cause side effects.

Operators can be overloaded, that is, given meaning when applied to expressions of class type (clause 9) or
enumeration type (7.2). Uses of overloaded operators are transformed into function calls as described in
13.5. Overloaded operators obey the rules for syntax specified in clause 5, but the requirements of operand
type, Ivalue, and evaluation order are replaced by the rules for function call. Relations between operators,
such as ++a meaning a+=1, are not guaranteed for overloaded operators (13.5), and are not guaranteed for
operands of type bool. —end note]

Clause 5 defines the effects of operators when applied to types for which they have not been overloaded.
Operator overloading shall not modify the rules for the built-in operators, that is, for operators applied to
types for which they are defined by this Standard. However, these built-in operators participate in overload
resolution, and as part of that process user-defined conversions will be considered where necessary to con-
vert the operands to types appropriate for the built-in operator. If a built-in operator is selected, such con-
versions will be applied to the operands before the operation is considered further according to the rules in
clause 5; see 13.3.1.2, 13.6.

Except where noted, the order of evaluation of operands of individual operators and subexpressions of indi-
vidual expressions, and the order in which side effects take place, is unspecified.54) Between the previous
and next sequence point a scalar object shall have its stored value modified at most once by the evaluation
of an expression. Furthermore, the prior value shall be accessed only to determine the value to be stored.
The requirements of this paragraph shall be met for each allowable ordering of the subexpressions of a full
expression; otherwise the behavior is undefined. [Example:

i = v[i++]; // the behavior is undefined

i =7, i++, i++; // i becomes 9

i = ++41i + 1; // the behavior is undefined

i =1+ 1; // the value of i is incremented

—end example]

If during the evaluation of an expression, the result is not mathematically defined or not in the range of rep-
resentable values for its type, the behavior is undefined, unless such an expression is a constant expression
(5.19), in which case the program is ill-formed. [Note: most existing implementations of C+ ignore integer
overflows. Treatment of division by zero, forming a remainder using a zero divisor, and all floating point
exceptions vary among machines, and is usually adjustable by a library function.]

If an expression initially has the type “reference to T” (8.3.2, 8.5.3), the type is adjusted to “T” prior to any
further analysis, the expression designates the object or function denoted by the reference, and the expres-
sion is an lvalue.

An expression designating an object is called an object-expression.

54) The precedence of operators is not directly specified, but it can be derived from the syntax.

10

5-2 Expressions DRAFT: 11 April 2004 5 Expressions

Whenever an Ivalue expression appears as an operand of an operator that expects an rvalue for that operand,
the lvalue-to-rvalue (4.1), array-to-pointer (4.2), or function-to-pointer (4.3) standard conversions are
applied to convert the expression to an rvalue. [Note: because cv-qualifiers are removed from the type of an
expression of non-class type when the expression is converted to an rvalue, an lvalue expression of type
const int can, for example, be used where an rvalue expression of type int is required.]

Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield
result types in a similar way. The purpose is to yield a common type, which is also the type of the result.
This pattern is called the usual arithmetic conversions, which are defined as follows:

— If either operand is of type Long double, the other shall be converted to 1ong double.
— Otherwise, if either operand is double, the other shall be converted to double.

— Otherwise, if either operand is £1oat, the other shall be converted to £1oat.
— Otherwise, the integral promotions (4.5) shall be performed on both operands.55)
— Then, if either operand is unsigned long the other shall be converted to unsigned long.

— Otherwise, if one operand is a long int and the other unsigned int, then if a long int can
represent all the values of an unsigned int, the unsigned int shall be converted to a long
int; otherwise both operands shall be converted to unsigned long int.

— Otherwise, if either operand is 1ong, the other shall be converted to 1ong.
— Otherwise, if either operand is unsigned, the other shall be converted to unsigned.
[Note: otherwise, the only remaining case is that both operands are int]

The values of the floating operands and the results of floating expressions may be represented in greater
precision and range than that required by the type; the types are not changed thereby.se)

5.1 Primary expressions [expr.prim]
Primary expressions are literals, names, and names qualified by the scope resolution operator : :.

primary-expression:
literal
this
(expression)
id-expression

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
~ class-name
template-id

A literal is a primary expression. Its type depends on its form (2.13). A string literal is an lvalue; all other
literals are rvalues.

The keyword this names a pointer to the object for which a nonstatic member function (9.3.2) is invoked.
The keyword this shall be used only inside a nonstatic class member function body (9.3) or in a construc-
tor mem-initializer (12.6.2). The type of the expression is a pointer to the function’s class (9.3.2), possibly
with cv-qualifiers on the class type. The expression is an rvalue.

55) As a consequence, operands of type bool, wchar_t, or an enumerated type are converted to some integral type.
6) The cast and assignment operators must still perform their specific conversions as described in 5.4, 5.2.9 and 5.17.

10

5.1 Primary expressions DRAFT: 11 April 2004 Expressions 5-3

The operator : : followed by an identifier, a qualified-id, or an operator-function-id is a primary-expres-
sion. Its type is specified by the declaration of the identifier, qualified-id, or operator-function-id. The
result is the entity denoted by the identifier, qualified-id, or operator-function-id. The result is an lvalue if
the entity is a function or variable. The identifier, qualified-id, or operator-function-id shall have global
namespace scope or be visible in global scope because of a using-directive (7.3.4). [Note: the use of : :
allows a type, an object, a function, an enumerator, or a namespace declared in the global namespace to be
referred to even if its identifier has been hidden (3.4.3).]

A parenthesized expression is a primary expression whose type and value are identical to those of the
enclosed expression. The presence of parentheses does not affect whether the expression is an lvalue. The
parenthesized expression can be used in exactly the same contexts as those where the enclosed expression
can be used, and with the same meaning, except as otherwise indicated.

An id-expression is a restricted form of a primary-expression. [Note: an id-expression can appear after .
and - > operators (5.2.5).]

An identifier is an id-expression provided it has been suitably declared (clause 7). [Note: for operator-func-
tion-ids, see 13.5; for conversion-function-ids, see 12.3.2; for template-ids, see 14.2. A class-name prefixed
by ~ denotes a destructor; see 12.4. Within the definition of a nonstatic member function, an identifier that
names a nonstatic member is transformed to a class member access expression (9.3.1).] The type of the
expression is the type of the identifier. The result is the entity denoted by the identifier. The result is an
Ivalue if the entity is a function, variable, or data member.
qualified-id:

: 1 op NESted-name-specifier template,y unqualified-id

:: identifier

: : operator-function-id

: template-id

nested-name-specifier:
type-name : :
namespace-name : :
nested-name-specifier identifier : :
nested-name-specifier templateg, template-id : :

A nested-name-specifier that names a class, optionally followed by the keyword template (14.2), and
then followed by the name of a member of either that class (9.2) or one of its base classes (clause 10), is a
qualified-id; 3.4.3.1 describes name lookup for class members that appear in qualified-ids. The result is the
member. The type of the result is the type of the member. The result is an Ivalue if the member is a static
member function or a data member. [Note: a class member can be referred to using a qualified-id at any
point in its potential scope (3.3.6).] Where class-name : : class-name is used, and the two class-names
refer to the same class, this notation names the constructor (12.1). Where class-name : : ~ class-name is
used, the two class-names shall refer to the same class; this notation names the destructor (12.4). [Note: a
typedef-name that names a class is a class-name (9.1).]

A nested-name-specifier that names a namespace (7.3), followed by the name of a member of that name-
space (or the name of a member of a namespace made visible by a using-directive) is a qualified-id; 3.4.3.2
describes name lookup for namespace members that appear in qualified-ids. The result is the member. The
type of the result is the type of the member. The result is an Ivalue if the member is a function or a vari-
able.

In a qualified-id, if the id-expression is a conversion-function-id, its conversion-type-id shall denote the
same type in both the context in which the entire qualified-id occurs and in the context of the class denoted
by the nested-name-specifier.

An id-expression that denotes a nonstatic data member or nonstatic member function of a class can only be
used:

— as part of a class member access (5.2.5) in which the object-expression refers to the member’s class or
a class derived from that class, or

5-4 Expressions DRAFT: 11 April 2004 5.1 Primary expressions

— to form a pointer to member (5.3.1), or

— in the body of a nonstatic member function of that class or of a class derived from that class (9.3.1), or
— inamem-initializer for a constructor for that class or for a class derived from that class (12.6.2).

5.2 Postfix expressions [expr.post]

Postfix expressions group left-to-right.

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (expression-listy,)
simple-type-specifier (expression-list,,)
typename-specifier (expression-list,,)
postfix-expression . template,, id-expression
postfix-expression -> template,y id-expression
postfix-expression . pseudo-destructor-name
postfix-expression -> pseudo-destructor-name
postfix-expression ++
postfix-expression - -
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

expression-list:
assignment-expression
expression-list , assignment-expression

pseudo-destructor-name:
: 1o Nested-name-specifier,,, type-name :: ~ type-name
: 1o Nested-name-specifier template template-id :: ~ type-name
: :opt Nested-name-specifiery, ~ type-name

5.2.1 Subscripting [expr.sub]

A postfix expression followed by an expression in square brackets is a postfix expression. One of the
expressions shall have the type “pointer to T” and the other shall have enumeration or integral type. The
result is an Ivalue of type “T.” The type “T” shall be a completely-defined object type.57) The expression
E1 [E2] is identical (by definition) to * ((E1) + (E2)). [Note: see 5.3 and 5.7 for details of * and + and
8.3.4 for details of arrays.]

5.2.2 Function call [expr.call]

There are two kinds of function call: ordinary function call and member function®® (9.3) call. A function
call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of
expressions which constitute the arguments to the function. For an ordinary function call, the postfix
expression shall be either an Ivalue that refers to a function (in which case the function-to-pointer standard
conversion (4.3) is suppressed on the postfix expression), or it shall have pointer to function type. Calling a
function through an expression whose function type has a language linkage that is different from the lan-
guage linkage of the function type of the called function’s definition is undefined (7.5). For a member
function call, the postfix expression shall be an implicit (9.3.1, 9.4) or explicit class member access (5.2.5)
whose id-expression is a function member name, or a pointer-to-member expression (5.5) selecting a func-
tion member. The first expression in the postfix expression is then called the object expression, and the call
is as a member of the object pointed to or referred to. In the case of an implicit class member access, the

57) This is true even if the subscript operator is used in the following common idiom: &x [0] .
58) A static member function (9.4) is an ordinary function.

5.2.2 Function call DRAFT: 11 April 2004 Expressions 5-5

implied object is the one pointed to by this. [Note: a member function call of the form £ () is interpreted
as (*this) .f£ () (see 9.3.1).] If a function or member function name is used, the name can be over-
loaded (clause 13), in which case the appropriate function shall be selected according to the rules in 13.3.
The function called in a member function call is normally selected according to the static type of the object
expression (clause 10), but if that function is virtual and is not specified using a qualified-id then the
function actually called will be the final overrider (10.3) of the selected function in the dynamic type of the
object expression [Note: the dynamic type is the type of the object pointed or referred to by the current
value of the object expression. 12.7 describes the behavior of virtual function calls when the object-expres-
sion refers to an object under construction or destruction.]

[Note: if a function or member function name is used, and name lookup (3.4) does not find a declaration of
that name, the program is ill-formed. No function is implicitly declared by such a call.]

The type of the function call expression is the return type of the statically chosen function (i.e., ignoring the
virtual keyword), even if the type of the function actually called is different. This type shall be a com-
plete object type, a reference type or the type void.

When a function is called, each parameter (8.3.5) shall be initialized (8.5, 12.8, 12.1) with its corresponding
argument. If the function is a nonstatic member function, the “this” parameter of the function (9.3.2)
shall be initialized with a pointer to the object of the call, converted as if by an explicit type conversion
(5.4). [Note: There is no access checking on this conversion; the access checking is done as part of the
(possibly implicit) class member access operator. See 11.2.] When a function is called, the parameters
that have object type shall have completely-defined object type. [Note: this still allows a parameter to be a
pointer or reference to an incomplete class type. However, it prevents a passed-by-value parameter to have
an incomplete class type.] During the initialization of a parameter, an implementation may avoid the con-
struction of extra temporaries by combining the conversions on the associated argument and/or the con-
struction of temporaries with the initialization of the parameter (see 12.2). The lifetime of a parameter ends
when the function in which it is defined returns. The initialization and destruction of each parameter occurs
within the context of the calling function. [Example: the access of the constructor, conversion functions or
destructor is checked at the point of call in the calling function. If a constructor or destructor for a function
parameter throws an exception, the search for a handler starts in the scope of the calling function; in partic-
ular, if the function called has a function-try-block (clause 15) with a handler that could handle the excep-
tion, this handler is not considered.] The value of a function call is the value returned by the called func-
tion except in a virtual function call if the return type of the final overrider is different from the return type
of the statically chosen function, the value returned from the final overrider is converted to the return type
of the statically chosen function.

[Note: a function can change the values of its non-const parameters, but these changes cannot affect the val-
ues of the arguments except where a parameter is of a reference type (8.3.2); if the reference is to a const-
qualified type, const cast is required to be used to cast away the constness in order to modify the argu-
ment’s value. Where a parameter is of const reference type a temporary object is introduced if needed
(7.1.5, 2.13, 2.13.4, 8.3.4, 12.2). In addition, it is possible to modify the values of nonconstant objects
through pointer parameters.]

A function can be declared to accept fewer arguments (by declaring default arguments (8.3.6)) or more
arguments (by using the ellipsis, . . . 8.3.5) than the number of parameters in the function definition (8.4).
[Note: this implies that, except where the ellipsis (. . .) is used, a parameter is available for each argument.

]

When there is no parameter for a given argument, the argument is passed in such a way that the receiving
function can obtain the value of the argument by invoking va_arg (18.7). The Ivalue-to-rvalue (4.1),
array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the argument
expression. After these conversions, if the argument does not have arithmetic, enumeration, pointer, pointer
to member, or class type, the program is ill-formed. If the argument has a non-POD class type (clause 9),
the behavior is undefined. If the argument has integral or enumeration type that is subject to the integral
promotions (4.5), or a floating point type that is subject to the floating point promotion (4.6), the value of
the argument is converted to the promoted type before the call. These promotions are referred to as the

10

5-6 Expressions DRAFT: 11 April 2004 5.2.2 Function call

default argument promotions.

The order of evaluation of arguments is unspecified. All side effects of argument expression evaluations
take effect before the function is entered. The order of evaluation of the postfix expression and the argu-
ment expression list is unspecified.

Recursive calls are permitted, except to the function named main (3.6.1).
A function call is an Ivalue if and only if the result type is a reference.
5.2.3 Explicit type conversion (functional notation) [expr.type.conv]

A simple-type-specifier (7.1.5) followed by a parenthesized expression-list constructs a value of the speci-
fied type given the expression list. If the expression list is a single expression, the type conversion expres-
sion is equivalent (in definedness, and if defined in meaning) to the corresponding cast expression (5.4). If
the simple-type-specifier specifies a class type, the class type shall be complete. If the expression list speci-
fies more than a single value, the type shall be a class with a suitably declared constructor (8.5, 12.1), and
the expression T (x1, x2, ...) isequivalent in effect to the declaration T t (x1, x2, ...); for
some invented temporary variable t, with the result being the value of t as an rvalue.

The expression T (), where T is a simple-type-specifier (7.1.5.2) for a non-array complete object type or
the (possibly cv-qualified) void type, creates an rvalue of the specified type, which is value-initialized (8.5;
no initialization is done for the void () case). [Note: if T is a non-class type that is cv-qualified, the cv-
qualifiers are ignored when determining the type of the resulting rvalue (3.10).]

5.2.4 Pseudo destructor call [expr.pseudo]

The use of a pseudo-destructor-name after a dot . or arrow - > operator represents the destructor for the
non-class type named by type-name. The result shall only be used as the operand for the function call oper-
ator (), and the result of such a call has type void. The only effect is the evaluation of the postfix-expres-
sion before the dot or arrow.

The left hand side of the dot operator shall be of scalar type. The left hand side of the arrow operator shall
be of pointer to scalar type. This scalar type is the object type. The type designated by the pseudo-
destructor-name shall be the same as the object type. Furthermore, the two type-names in a pseudo-
destructor-name of the form

“lopt NESted-name-specifier,, type-name :: ~ type-name

shall designate the same scalar type. The cv-unqualified versions of the object type and of the type desig-
nated by the pseudo-destructor-name shall be the same type.

5.2.5 Class member access [expr.ref]

A postfix expression followed by a dot . or an arrow - >, optionally followed by the keyword template
(14.8.1), and then followed by an id-expression, is a postfix expression. The postfix expression before the
dot or arrow is evaluated;59) the result of that evaluation, together with the id-expression, determine the
result of the entire postfix expression.

For the first option (dot) the type of the first expression (the object expression) shall be “class object” (of a
complete type). For the second option (arrow) the type of the first expression (the pointer expression) shall
be “pointer to class object” (of a complete type). In these cases, the id-expression shall name a member of
the class or of one of its base classes. [Note: because the name of a class is inserted in its class scope
(clause 9), the name of a class is also considered a nested member of that class.] [Note: 3.4.5 describes
how names are looked up after the . and - > operators.]

If E1 has the type “pointer to class X,” then the expression E1->E2 is converted to the equivalent form
(* (E1)) .E2; the remainder of 5.2.5 will address only the first option (dot)so). Abbreviating object-
expression.id-expression as E1 . E2, then the type and Ivalue properties of this expression are determined as

59) This evaluation happens even if the result is unnecessary to determine the value of the entire postfix expression, for example if the
id-expression denotes a static member.

60) Note that if E1 has the type “pointer to class X”, then (* (E1)) is an Ivalue.

5.2.5 Class member access DRAFT: 11 April 2004 Expressions 5-7

follows. In the remainder of 5.2.5, cq represents either const or the absence of const; vq represents
either volatile or the absence of volatile. cv represents an arbitrary set of cv-qualifiers, as defined
in 3.9.3.

If 2 is declared to have type “reference to T”, then E1.E2 is an Ivalue; the type of E1.E2 is T. Other-
wise, one of the following rules applies.

— If E2 is a static data member, and the type of E2 is T, then E1.E2 is an lvalue; the expression desig-
nates the named member of the class. The type of E1.E2 is T.

— If E2 is a non-static data member, and the type of £1 is “cql vql X”, and the type of E2 is “cq2 vg2
T”, the expression designates the named member of the object designated by the first expression. If
E1 isan lvalue, then E1 . E2 is an lvalue; otherwise, it is an rvalue. Let the notation vg12 stand for the
“union” of vgl and vg2 ; that is, if vgl or vg2 is volatile, then vgql2 is volatile. Similarly, let
the notation cq12 stand for the “union” of cql and cq2; that is, if cql or cg2 is const, then cql2 is
const. If E2 is declared to be a mutable member, then the type of E1.E2 is “vql2 T”. If E2 is
not declared to be a mutable member, then the type of E1.E2 is “cql2 vql2 T”.

— If E2 is a (possibly overloaded) member function, function overload resolution (13.3) is used to deter-
mine whether E1 . E2 refers to a static or a non-static member function.

— If it refers to a static member function, and the type of E2 is “function of parameter-type-list
returning T”, then E1 . E2 is an Ivalue; the expression designates the static member function. The
type of E1.E2 is the same type as that of E2, namely “function of parameter-type-list returning
T

— Otherwise, if E1.E2 refers to a non-static member function, and the type of £2 is “function of
parameter-type-list cv returning T”, then E1.E2 is not an lvalue. The expression designates a
non-static member function. The expression can be used only as the left-hand operand of a mem-
ber function call (9.3). [Note: any redundant set of parentheses surrounding the expression is
ignored (5.1).] The type of E1 . E2 is “function of parameter-type-list cv returning T”.

— If E2 is a nested type, the expression E1 . E2 is ill-formed.

— If E2 is a member enumerator, and the type of E2 is T, the expression E1.E2 is not an lvalue. The
type of EL.E2 IS T.

[Note: “class objects” can be structures (9.2) and unions (9.5). Classes are discussed in clause 9.]
5.2.6 Increment and decrement [expr.post.incr]

The value obtained by applying a postfix ++ is the value that the operand had before applying the operator.
[Note: the value obtained is a copy of the original value] The operand shall be a modifiable Ivalue. The
type of the operand shall be an arithmetic type or a pointer to a complete object type. After the result is
noted, the value of the object is modified by adding 1 to it, unless the object is of type bool, in which case
it is set to true. [Note: this use is deprecated, see Annex D.] The result is an rvalue. The type of the
result is the cv-unqualified version of the type of the operand. See also 5.7 and 5.17.

The operand of postfix - - is decremented analogously to the postfix ++ operator, except that the operand
shall not be of type bool. [Note: For prefix increment and decrement, see 5.3.2.]

5.2.7 Dynamic cast [expr.dynamic.cast]

The result of the expression dynamic cast<T> (v) is the result of converting the expression v to type
T. T shall be a pointer or reference to a complete class type, or “pointer to cv void”. Types shall not be
defined ina dynamic cast. The dynamic_ cast operator shall not cast away constness (5.2.11).

If T is a pointer type, v shall be an rvalue of a pointer to complete class type, and the result is an rvalue of
type T. If T is a reference type, v shall be an Ivalue of a complete class type, and the result is an Ivalue of
the type referred to by T.

5-8 Expressions DRAFT: 11 April 2004 5.2.7 Dynamic cast

If the type of v is the same as the required result type (which, for convenience, will be called R in this
description), or it is the same as R except that the class object type in R is more cv-qualified than the class
object type in v, the result is v (converted if necessary).

If the value of v is a null pointer value in the pointer case, the result is the null pointer value of type R.

If T is “pointer to cvl B” and v has type “pointer to cv2 D” such that B is a base class of D, the result is a
pointer to the unique B sub-object of the D object pointed to by v. Similarly, if T is “reference to cvl B”
and v has type “cv2 D” such that B is a base class of D, the result is an Ivalue for the uniqueGl) B sub-object
of the D object referred to by v. In both the pointer and reference cases, cvl shall be the same cv-qualifica-
tion as, or greater cv-qualification than, cv2, and B shall be an accessible unambiguous base class of D.
[Example:

struct B {};
struct D : B {};
void foo (D* dp)

{
}

—end example]

B* Dbp = dynamic_cast<B*>(dp) ; // equivalent to B* bp = dp;

Otherwise, v shall be a pointer to or an Ivalue of a polymorphic type (10.3).

If T is “pointer to cv void,” then the result is a pointer to the most derived object pointed to by v. Other-
wise, a run-time check is applied to see if the object pointed or referred to by v can be converted to the type
pointed or referred to by T.

The run-time check logically executes as follows:

— If, in the most derived object pointed (referred) to by v, v points (refers) to a public base class sub-
object of a T object, and if only one object of type T is derived from the sub-object pointed (referred)
to by v, the result is a pointer (an Ivalue referring) to that T object.

— Otherwise, if v points (refers) to a public base class sub-object of the most derived object, and the
type of the most derived object has a base class, of type T, that is unambiguous and public, the
result is a pointer (an Ivalue referring) to the T sub-object of the most derived object.

— Otherwise, the run-time check fails.

The value of a failed cast to pointer type is the null pointer value of the required result type. A failed cast to
reference type throws std: :bad_cast (18.5.2).

61) The most derived object (1.8) pointed or referred to by v can contain other B objects as base classes, but these are ignored.

5.2.7 Dynamic cast DRAFT: 11 April 2004 Expressions 5-9

[Example:

class A { virtual void £(); };

class B { virtual void g(); };

class D : public virtual A, private B {};

void g{()

{
D d;
B* bp = (B*)&d; // cast needed to break protection
A* ap = &4d; // public derivation, no cast needed
D& dr = dynamic_cast<D&> (*bp) ; // fails
ap = dynamic_cast<A*> (bp) ; // fails
bp = dynamic cast<B*>(ap) ; // fails
ap = dynamic cast<A*s> (&d) ; // succeeds
bp = dynamic_cast<B*>(&d) ; // fails

!

class E : public D, public B {};

class F : public E, public D {};

void h{()

{
F f;
A* ap = &f; // succeeds: finds unique A
D* dp = dynamic_cast<D*>(ap); // fails: yields o

// £ has two D sub-objects
Ex ep = (E*)ap; // ill-formed:
// cast from virtual base

E* epl = dynamic_cast<E*>(ap); // succeeds

1

—end example] [Note: 12.7 describes the behavior of a dynamic_cast applied to an object under con-
struction or destruction.]

5.2.8 Type identification [expr.typeid]

The result of a typeid expression is an Ivalue of static type const std: :type info (18.5.1) and
dynamic type const std::type info or const name where name is an |mplementat|on -defined
class derived from std: : type info which preserves the behavior described in 18.5.1. 62) The lifetime
of the object referred to by the Ivalue extends to the end of the program. Whether or not the destructor is
called for the std: : type info object at the end of the program is unspecified.

When typeid is applied to an Ivalue expression whose type is a polymorphic class type (10.3), the result
refers to a std: :type_ info object representing the type of the most derived object (1.8) (that is, the
dynamic type) to which the Ivalue refers. If the lvalue expression is obtained by applying the unary * oper-
ator to a pointer63) and the pointer is a null pointer value (4.10), the typeid expression throws the
std: :bad_typeid exception (18.5.3).

When typeid is applied to an expression other than an Ivalue of a polymorphic class type, the result
refers to a std::type info object representing the static type of the expression. Lvalue-to-rvalue
(4.1), array-to-pointer (4.2), and function-to-pointer (4.3) conversions are not applied to the expression. If
the type of the expression is a class type, the class shall be completely-defined. The expression is not eval-
uated.

When typeid is applied to a type-id, the result refers to a std: :type info object representing the
type of the type-id. If the type of the type-id is a reference type, the result of the typeid expression refers
to a std: :type_ info object representing the referenced type. If the type of the type-id is a class type
or a reference to a class type, the class shall be completely-defined. Types shall not be defined in the type-
id.

62) The recommended name for such a class is extended_type info.

63) If p is an expression of pointer type, then *p, (*p), * (p), ((*p)), * ((p)), and so on all meet this requirement.

5-10 Expressions DRAFT: 11 April 2004 5.2.8 Type identification

The top-level cv-qualifiers of the Ivalue expression or the type-id that is the operand of typeid are always
ignored. [Example:

class D { ... };
D di;
const D d2;

typeid(dl) == typeid(d2); // yields true
typeid (D) == typeid(const D) ; // yields true
typeid(D) == typeid(d2); // yields true
typeid (D) == typeid(const D&) ; // yields true

—end example]

If the header <typeinfos> (18.5.1) is not included prior to a use of typeid, the program is ill-formed.
[Note: 12.7 describes the behavior of typeid applied to an object under construction or destruction.]
5.2.9 Static cast [expr.static.cast]

The result of the expression static_cast<Ts> (v) is the result of converting the expression v to type T.
If T is a reference type, the result is an Ivalue; otherwise, the result is an rvalue. Types shall not be defined
inastatic_cast. The static_cast operator shall not cast away constness (5.2.11).

An expression e can be explicitly converted to a type T using a static_cast of the form
static_cast<T> (e) if the declaration “T t (e) ;" is well-formed, for some invented temporary vari-
able t (8.5). The effect of such an explicit conversion is the same as performing the declaration and initial-
ization and then using the temporary variable as the result of the conversion. The result is an Ivalue if T is a
reference type (8.3.2), and an rvalue otherwise. The expression e is used as an lIvalue if and only if the
initialization uses it as an Ivalue.

Otherwise, the static_cast shall perform one of the conversions listed below. No other conversion
shall be performed explicitly using a static_cast.

Any expression can be explicitly converted to type “cv void.” The expression value is discarded. [Note:
however, if the value is in a temporary variable (12.2), the destructor for that variable is not executed until
the usual time, and the value of the variable is preserved for the purpose of executing the destructor.] The
Ivalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not
applied to the expression.

An lvalue of type “cvl B”, where B is a class type, can be cast to type “reference to cv2 D”, where D is a
class derived (clause 10) from B, if a valid standard conversion from “pointer to D” to “pointer to B” exists
(4.10), cv2 is the same cv-qualification as, or greater cv-qualification than, cvl, and B is not a virtual base
class of D. The result is an Ivalue of type “cv2 D.” If the Ivalue of type “cvl B is actually a sub-object of
an object of type D, the Ivalue refers to the enclosing object of type D. Otherwise, the result of the cast is
undefined. [Example:

struct B {};
struct D : public B {};

D d;
B &br = d;
static_cast<D&> (br) ; // produces lvalue to the original d object

—end example]

The inverse of any standard conversion sequence (clause 4), other than the Ivalue-to-rvalue (4.1), array-to-
pointer (4.2), function-to-pointer (4.3), and boolean (4.12) conversions, can be performed explicitly using
static cast. The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) conver-
sions are applied to the operand. Such a static_ cast is subject to the restriction that the explicit con-
version does not cast away constness (5.2.11), and the following additional rules for specific cases:

10

5.2.9 Static cast DRAFT: 11 April 2004 Expressions 5-11

A value of integral or enumeration type can be explicitly converted to an enumeration type. The value is
unchanged if the original value is within the range of the enumeration values (7.2). Otherwise, the resulting
enumeration value is unspecified.

An rvalue of type “pointer to cvl B”, where B is a class type, can be converted to an rvalue of type “pointer
to cv2 D”, where D is a class derived (clause 10) from B, if a valid standard conversion from “pointer to D”
to “pointer to B” exists (4.10), cv2 is the same cv-qualification as, or greater cv-qualification than, cvl, and
B is not a virtual base class of D. The null pointer value (4.10) is converted to the null pointer value of the
destination type. If the rvalue of type “pointer to cvl B” points to a B that is actually a sub-object of an
object of type D, the resulting pointer points to the enclosing object of type D. Otherwise, the result of the
cast is undefined.

An rvalue of type “pointer to member of D of type cvl T” can be converted to an rvalue of type “pointer to
member of B of type cv2 T”, where B is a base class (clause 10) of D, if a valid standard conversion from
“pointer to member of B of type T” to “pointer to member of D of type T” exists (4.11), and cv2 is the same
cv-qualification as, or greater cv-qualification than, cv1.8¥ The null member pointer value (4.11) is con-
verted to the null member pointer value of the destination type. If class B contains the original member, or
is a base or derived class of the class containing the original member, the resulting pointer to member
points to the original member. Otherwise, the result of the cast is undefined. [Note: although class B need
not contain the original member, the dynamic type of the object on which the pointer to member is derefer-
enced must contain the original member; see 5.5.]

An rvalue of type “pointer to cvl void” can be converted to an rvalue of type “pointer to cv2 T,” where T
is an object type and cv2 is the same cv-qualification as, or greater cv-qualification than, cvl. A value of
type pointer to object converted to “pointer to cv void” and back to the original pointer type will have its
original value.

5.2.10 Reinterpret cast [expr.reinterpret.cast]

The result of the expression reinterpret cast<T> (v) is the result of converting the expression v to
type T. If T is a reference type, the result is an Ivalue; otherwise, the result is an rvalue and the lvalue-to-
rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the
the expression v. Types shall not be defined in a reinterpret cast. Conversions that can be per-
formed explicitly using reinterpret cast are listed below. No other conversion can be performed
explicitly using reinterpret cast.

The reinterpret cast operator shall not cast away constness. [Note: see 5.2.11 for the definition of
““casting away constness”. Subject to the restrictions in this section, an expression may be cast to its own
type usinga reinterpret cast operator.]

The mapping performed by reinterpret cast is implementation-defined. [Note: it might, or might
not, produce a representation different from the original value.]

A pointer can be explicitly converted to any integral type large enough to hold it. The mapping function is
implementation-defined [Note: it is intended to be unsurprising to those who know the addressing structure
of the underlying machine.]

A value of integral type or enumeration type can be explicitly converted to a pointer.65) A pointer converted
to an integer of sufficient size (if any such exists on the implementation) and back to the same pointer type
will have its original value; mappings between pointers and integers are otherwise implementation-defined.

A pointer to a function can be explicitly converted to a pointer to a function of a different type. The effect
of calling a function through a pointer to a function type (8.3.5) that is not the same as the type used in the
definition of the function is undefined. Except that converting an rvalue of type “pointer to T1” to the type
“pointer to T2” (where T1 and T2 are function types) and back to its original type yields the original
pointer value, the result of such a pointer conversion is unspecified. [Note: see also 4.10 for more details of

64) Function types (including those used in pointer to member function types) are never cv-qualified; see 8.3.5 .

Converting an integral constant expression (5.19) with value zero always yields a null pointer (4.10), but converting other expres-
sions that happen to have value zero need not yield a null pointer.

10

5-12 Expressions DRAFT: 11 April 2004 5.2.10 Reinterpret cast

pointer conversions.]

A pointer to an object can be explicitly converted to a pointer to an object of different type.ﬁe) Except that
converting an rvalue of type “pointer to T1” to the type “pointer to T2” (where T1 and T2 are object types
and where the alignment requirements of T2 are no stricter than those of T1) and back to its original type
yields the original pointer value, the result of such a pointer conversion is unspecified.

The null pointer value (4.10) is converted to the null pointer value of the destination type.

An rvalue of type “pointer to member of X of type T1” can be explicitly converted to an rvalue of type
“pointer to member of Y of type T2” if T1 and T2 are both function types or both object types.67) The null
member pointer value (4.11) is converted to the null member pointer value of the destination type. The
result of this conversion is unspecified, except in the following cases:

— converting an rvalue of type “pointer to member function” to a different pointer to member function
type and back to its original type yields the original pointer to member value.

— converting an rvalue of type “pointer to data member of X of type T1” to the type “pointer to data
member of Y of type T2” (where the alignment requirements of T2 are no stricter than those of T1)
and back to its original type yields the original pointer to member value.

An Ivalue expression of type T1 can be cast to the type “reference to T2” if an expression of type “pointer
to T1” can be explicitly converted to the type “pointer to T2” using a reinterpret cast. Thatis, a
reference cast reinterpret cast<T&>(x) has the same effect as the conversion *reinter-
pret cast<T*> (&x) with the built-in & and * operators. The result is an lvalue that refers to the same
object as the source lvalue, but with a different type. No temgjorary is created, no copy is made, and con-
structors (12.1) or conversion functions (12.3) are not called.%®

5.2.11 Const cast [expr.const.cast]

The result of the expression const cast<T> (v) is of type T. If T is a reference type, the result is an
Ivalue; otherwise, the result is an rvalue and, the Ivalue-to-rvalue (4.1), array-to-pointer (4.2), and function-
to-pointer (4.3) standard conversions are performed on the expression v. Types shall not be defined in a
const cast. Conversions that can be performed explicitly using const cast are listed below. No
other conversion shall be performed explicitly using const_cast.

[Note: Subject to the restrictions in this section, an expression may be cast to its own type using a
const cast operator.]

For two pointer types T1 and T2 where

T1is cvyg pointer to cvy ; pointerto --- cvy o4 pointerto cvy , T
and

T2 is cv,q pointer to cv,; pointer to - - - cv, 4 pointerto cv,, T

where T is any object type or the void type and where cvy and cv, may be different cv-qualifications,
an rvalue of type T1 may be explicitly converted to the type T2 using a const cast. The result of a
pointer const_cast refers to the original object.

An lvalue of type T1 can be explicitly converted to an Ivalue of type T2 using the cast
const cast<T2&> (Where T1 and T2 are object types) if a pointer to T1 can be explicitly converted to
the type pointer to T2 using a const_cast. The result of a reference const cast refers to the origi-
nal object.

66) The types may have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away const-
ness.

67) T1 and T2 may have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away con-
stness.

68) This is sometimes referred to as a type pun.

10

11

12

5.2.11 Const cast DRAFT: 11 April 2004 Expressions 5-13

For a const_cast involving pointers to data members, multi-level pointers to data members and multi-
level mixed pointers and pointers to data members (4.4), the rules for const cast are the same as those
used for pointers; the “member” aspect of a pointer to member is ignored when determining where the cv-
qualifiers are added or removed by the const cast. The result of a pointer to data member
const_cast refers to the same member as the original (uncast) pointer to data member.

A null pointer value (4.10) is converted to the null pointer value of the destination type. The null member
pointer value (4.11) is converted to the null member pointer value of the destination type.

[Note: Depending on the type of the object, a write operation through the E)ointer, Ivalue or pointer to data
member resulting from a const_cast that casts away a const-qualifier69 may produce undefined behav-
ior (7.1.5.1).]

The following rules define the process known as casting away constness. In these rules Tn and Xn repre-
sent types. For two pointer types:

X1is Tlcvyy *---cvyy * where T1 is not a pointer type
X208 T2CV,1 * - CVo)y * where T2 is not a pointer type

K is min(N, M)

casting from X1 to X2 casts away constness if, for a non-pointer type T there does not exist an implicit con-
version (clause 4) from:

Tevy (n—k+1) * CVi(N—Kk+2) * " - CViN *

to
TeVo (M—k+1) * CVo (M—K42) * " ** CVom *

Casting from an Ivalue of type T1 to an Ivalue of type T2 using a reference cast casts away constness if a
cast from an rvalue of type “pointer to T1” to the type “pointer to T2 casts away constness.

Casting from an rvalue of type “pointer to data member of X of type T1” to the type “pointer to data mem-
ber of v of type T2” casts away constness if a cast from an rvalue of type “pointer to T1” to the type
“pointer to T2” casts away constness.

For multi-level pointer to members and multi-level mixed pointers and pointer to members (4.4), the “mem-
ber” aspect of a pointer to member level is ignored when determining if a const cv-qualifier has been cast
away.

[Note: some conversions which involve only changes in cv-qualification cannot be done using
const_cast. For instance, conversions between pointers to functions are not covered because such con-
versions lead to values whose use causes undefined behavior. For the same reasons, conversions between
pointers to member functions, and in particular, the conversion from a pointer to a const member function
to a pointer to a non-const member function, are not covered.]|

69) const_cast is not limited to conversions that cast away a const-qualifier.

5-14 Expressions DRAFT: 11 April 2004 5.2.11 Const cast

5.3 Unary expressions [expr.unary]

Expressions with unary operators group right-to-left.

unary-expression:
postfix-expression
++ cast-expression
- - cast-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & + - |

5.3.1 Unary operators [expr.unary.op]

The unary * operator performs indirection: the expression to which it is applied shall be a pointer to an
object type, or a pointer to a function type and the result is an Ivalue referring to the object or function to
which the expression points. If the type of the expression is “pointer to T,” the type of the result is “T.”
[Note: a pointer to an incomplete type (other than cv void) can be dereferenced. The Ivalue thus obtained
can be used in limited ways (to initialize a reference, for example); this Ivalue must not be converted to an
rvalue, see 4.1.]

The result of the unary & operator is a pointer to its operand. The operand shall be an Ivalue or a qualified-
id. In the first case, if the type of the expression is “T,” the type of the result is “pointer to T.” In particular,
the address of an object of type “cv T” is “pointer to cv T,” with the same cv-qualifiers. For a qualified-id,
if the member is a static member of type “T”, the type of the result is plain “pointer to T.” If the member is
a nonstatic member of class C of type T, the type of the result is “pointer to member of class C of type
T.” [Example:

struct A { int i; };

struct B : A { };

. &B::i ... // hastype int A: :*

—end example] [Note: a pointer to member formed from a mutable nonstatic data member (7.1.1) does
not reflect the mut able specifier associated with the nonstatic data member.]

A pointer to member is only formed when an explicit & is used and its operand is a qualified-id not
enclosed in parentheses. [Note: that is, the expression & (qualified-id), where the qualified-id is
enclosed in parentheses, does not form an expression of type “pointer to member.” Neither does quali -
fied-id, because there is no implicit conversion from a qualified-id for a nonstatic member function to
the type “pointer to member function” as there is from an Ivalue of function type to the type “pointer to
function” (4.3). Nor is sunqualified-id a pointer to member, even within the scope of the unquali-
fied-id’s class.]

The address of an object of incomplete type can be taken, but if the complete type of that object is a class
type that declares operator& () as a member function, then the behavior is undefined (and no diagnostic
is required). The operand of & shall not be a bit-field.

The address of an overloaded function (clause 13) can be taken only in a context that uniquely determines
which version of the overloaded function is referred to (see 13.4). [Note: since the context might determine
whether the operand is a static or nonstatic member function, the context can also affect whether the
expression has type “pointer to function” or “pointer to member function.”]

The operand of the unary + operator shall have arithmetic, enumeration, or pointer type and the result is the
value of the argument. Integral promotion is performed on integral or enumeration operands. The type of
the result is the type of the promoted operand.

5.3.1 Unary operators DRAFT: 11 April 2004 Expressions 5-15

The operand of the unary - operator shall have arithmetic or enumeration type and the result is the negation
of its operand. Integral promotion is performed on integral or enumeration operands. The negative of an
unsigned quantity is computed by subtracting its value from 2", where n is the number of bits in the pro-
moted operand. The type of the result is the type of the promoted operand.

The operand of the logical negation operator ! is implicitly converted to bool (clause 4); its value is
true if the converted operand is false and £alse otherwise. The type of the result is bool.

The operand of ~ shall have integral or enumeration type; the result is the one’s complement of its operand.
Integral promotions are performed. The type of the result is the type of the promoted operand. There is an
ambiguity in the unary-expression “X (), where X is a class-name. The ambiguity is resolved in favor of
treating ~ as a unary complement rather than treating ~X as referring to a destructor.

5.3.2 Increment and decrement [expr.pre.incr]

The operand of prefix ++ is modified by adding 1, or set to true if it is bool (this use is deprecated).
The operand shall be a modifiable Ivalue. The type of the operand shall be an arithmetic type or a pointer
to a completely-defined object type. The result is the updated operand; it is an Ivalue, and it is a bit-field if
the operand is a bit-field. If x is not of type bool, the expression ++x is equivalent to x+=1. [Note: see
the discussions of addition (5.7) and assignment operators (5.17) for information on conversions.]

The operand of prefix -- is modified by subtracting 1. The operand shall not be of type bool. The
requirements on the operand of prefix - - and the properties of its result are otherwise the same as those of
prefix ++. [Note: For postfix increment and decrement, see 5.2.6.]

5.3.3 Sizeof [expr.sizeof]

The sizeof operator yields the number of bytes in the object representation of its operand. The operand
is either an expression, which is not evaluated, or a parenthesized type-id. The sizeof operator shall not
be applied to an expression that has function or incomplete type, or to an enumeration type before all its
enumerators have been declared, or to the parenthesized name of such types, or to an lvalue that designates
a bit-field. sizeof (char), sizeof (signed char) and sizeof (unsigned char) are 1; the
result of sizeof applied to any other fundamental type (3.9.1) is implementation-defined. [Note: in par-
ticular, sizeof (bool) and sizeof (wchar t) are implementation-defined.70)] [Note: See 1.7 for
the definition of byte and 3.9 for the definition of object representation.]

When applied to a reference or a reference type, the result is the size of the referenced type. When applied
to a class, the result is the number of bytes in an object of that class including any padding required for
placing objects of that type in an array. The size of a most derived class shall be greater than zero (1.8).
The result of applying sizeof to a base class subobject is the size of the base class type.71) When applied
to an array, the result is the total number of bytes in the array. This implies that the size of an array of n
elements is n times the size of an element.

The sizeof operator can be applied to a pointer to a function, but shall not be applied directly to a func-
tion.

The Ivalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not
applied to the operand of sizeof.

Types shall not be defined in a sizeof expression.

The result is a constant of type std: :size t. [Note: std::size_ t is defined in the standard header
<cstddef>(18.1).]

70) sizeof (bool) is not required to be 1.

) The actual size of a base class subobject may be less than the result of applying sizeof to the subobject, due to virtual base
classes and less strict padding requirements on base class subobjects.

5-16 Expressions DRAFT: 11 April 2004 5.3.4 New

5.3.4 New [expr.new]

The new-expression attempts to create an object of the type-id (8.1) or new-type-id to which it is applied.
The type of that object is the allocated type. This type shall be a complete object type, but not an abstract
class type or array thereof (1.8, 3.9, 10.4). [Note: because references are not objects, references cannot be
created by new-expressions.] [Note: the type-id may be a cv-qualified type, in which case the object cre-
ated by the new-expression has a cv-qualified type.]

new-expression:
:1gp new new-placementy, new-type-id new-initializer,,
1o new new-placementy, (type-id) new-initializerqy

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declarator,

new-declarator:
ptr-operator new-declarator
direct-new-declarator

direct-new-declarator:
[expression]
direct-new-declarator [constant-expression 1]

new-initializer:
(expression-listy,)

Entities created by a new-expression have dynamic storage duration (3.7.3). [Note: the lifetime of such an
entity is not necessarily restricted to the scope in which it is created.] If the entity is a non-array object, the
new-expression returns a pointer to the object created. If it is an array, the new-expression returns a pointer
to the initial element of the array.

The new-type-id in a new-expression is the longest possible sequence of new-declarators. [Note: this pre-
vents ambiguities between declarator operators &, *, [1, and their expression counterparts.] [Example:

new int * 1i; // syntax error: parsed as (new int*) i
// notas (new int) *i

The * is the pointer declarator and not the multiplication operator.]

[Note: parentheses in a new-type-id of a new-expression can have surprising effects. [Example:
new int (*[10]) (); // error

is ill-formed because the binding is
(new int) (*[101) (); // error

Instead, the explicitly parenthesized version of the new operator can be used to create objects of compound
types (3.9.2):

new (int (*[10]) ());
allocates an array of 10 pointers to functions (taking no argument and returning int).]]
The type-specifier-seq shall not contain class declarations, or enumeration declarations.

When the allocated object is an array (that is, the direct-new-declarator syntax is used or the new-type-id or
type-id denotes an array type), the new-expression yields a pointer to the initial element (if any) of the array.
[Note: both new int and new int[10] have type int* and the type of new int [i] [10] is
int (*) [10].]

10

11

12

13

5.3.4 New DRAFT: 11 April 2004 Expressions 5-17

Every constant-expression in a direct-new-declarator shall be an integral constant expression (5.19) and
evaluate to a strictly positive value. The expression in a direct-new-declarator shall have integral or enu-
meration type (3.9.1) with a non-negative value. [Example: if n is a variable of type int, then
new float [n] [5] is well-formed (because n is the expression of a direct-new-declarator), but
new float [5] [n] is ill-formed (because n is not a constant-expression). If n is negative, the effect of
new float [n] [5] isundefined.]

When the value of the expression in a direct-new-declarator is zero, the allocation function is called to allo-
cate an array with no elements.

A new-expression obtains storage for the object by calling an allocation function (3.7.3.1). If the new-
expression terminates by throwing an exception, it may release storage by calling a deallocation function
(3.7.3.2). If the allocated type is a non-array type, the allocation function’s name is operator new and
the deallocation function’s name is operator delete. If the allocated type is an array type, the alloca-
tion function’s name is operator new([] and the deallocation function’s name is
operator delete[]. [Note: an implementation shall provide default definitions for the global alloca-
tion functions (3.7.3, 18.4.1.1, 18.4.1.2). A C+ program can provide alternative definitions of these func-
tions (17.4.3.4) and/or class-specific versions (12.5).]

If the new-expression begins with a unary : : operator, the allocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a class type T or array thereof, the allocation function’s
name is looked up in the scope of T. If this lookup fails to find the name, or if the allocated type is not a
class type, the allocation function’s name is looked up in the global scope.

A new-expression passes the amount of space requested to the allocation function as the first argument of
type std: :size t. That argument shall be no less than the size of the object being created; it may be
greater than the size of the object being created only if the object is an array. For arrays of char and
unsigned char, the difference between the result of the new-expression and the address returned by the
allocation function shall be an integral multiple of the most stringent alignment requirement (3.9) of any
object type whose size is no greater than the size of the array being created. [Note: Because allocation
functions are assumed to return pointers to storage that is appropriately aligned for objects of any type, this
constraint on array allocation overhead permits the common idiom of allocating character arrays into which
objects of other types will later be placed.]

The new-placement syntax is used to supply additional arguments to an allocation function. If used, over-
load resolution is performed on a function call created by assembling an argument list consisting of the
amount of space requested (the first argument) and the expressions in the new-placement part of the new-
expression (the second and succeeding arguments). The first of these arguments has type std: :size t
and the remaining arguments have the corresponding types of the expressions in the new-placement.

[Example:

— new Tresultsinacall of operator new(sizeof (T)),

— new(2,f) Tresultsinacall of operator new(sizeof (T),2,f),

— new T[5] resultsinacall of operator newl] (sizeof (T) *5+x), and

— mnew(2,f) TI[5] resultsinacall of operator new(] (sizeof (T) *5+y,2,f).

Here, x and y are non-negative unspecified values representing array allocation overhead; the result of the
new-expression will be offset by this amount from the value returned by operator new[]. This over-
head may be applied in all array new-expressions, including those referencing the library function
operator newl[] (std::size t, void*) and other placement allocation functions. The amount
of overhead may vary from one invocation of new to another.]

[Note: unless an allocation function is declared with an empty exception-specification (15.4), throw (), it
indicates failure to allocate storage by throwing a bad_alloc exception (clause 15, 18.4.2.1); it returns a
non-null pointer otherwise. If the allocation function is declared with an empty exception-specification,
throw (), it returns null to indicate failure to allocate storage and a non-null pointer otherwise.] If the

14

15

16

17

18

19

20

5-18 Expressions DRAFT: 11 April 2004 5.3.4 New

allocation function returns null, initialization shall not be done, the deallocation function shall not be called,
and the value of the new-expression shall be null.

[Note: when the allocation function returns a value other than null, it must be a pointer to a block of storage
in which space for the object has been reserved. The block of storage is assumed to be appropriately
aligned and of the requested size. The address of the created object will not necessarily be the same as that
of the block if the object is an array.]

A new-expression that creates an object of type T initializes that object as follows:
— If the new-initializer is omitted:

— If T is a (possibly cv-qualified) non-POD class type (or array thereof), the object is default-initial-
ized (8.5). If T is a const-qualified type, the underlying class type shall have a user-declared
default constructor.

— Otherwise, the object created has indeterminate value. If T is a const-qualified type, or a (possi-
bly cv-qualified) POD class type (or array thereof) containing (directly or indirectly) a member of
const-qualified type, the program is ill-formed,;

— If the new-initializer is of the form (), the item is value-initialized (8.5);

— If the new-initializer is of the form (expression-list) and T is a class type, the appropriate constructor is
called, using expression-list as the arguments (8.5);

— If the new-initializer is of the form (expression-list) and T is an arithmetic, enumeration, pointer, or
pointer-to-member type and expression-list comprises exactly one expression, then the object is initial-
ized to the (possibly converted) value of the expression (8.5);

— Otherwise the new-expression is ill-formed.

If the new-expression creates an object or an array of objects of class type, access and ambiguity control are
done for the allocation function, the deallocation function (12.5), and the constructor (12.1). If the new
expression creates an array of objects of class type, access and ambiguity control are done for the destructor
(12.4).

If any part of the object initialization described above’? terminates by throwing an exception and a suitable
deallocation function can be found, the deallocation function is called to free the memory in which the
object was being constructed, after which the exception continues to propagate in the context of the new-
expression. If no unambiguous matching deallocation function can be found, propagating the exception
does not cause the object’s memory to be freed. [Note: This is appropriate when the called allocation func-
tion does not allocate memory; otherwise, it is likely to result in a memory leak.]

If the new-expression begins with a unary : : operator, the deallocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a class type T or an array thereof, the deallocation func-
tion’s name is looked up in the scope of T. If this lookup fails to find the name, or if the allocated type is
not a class type or array thereof, the deallocation function’s name is looked up in the global scope.

A declaration of a placement deallocation function matches the declaration of a placement allocation func-
tion if it has the same number of parameters and, after parameter transformations (8.3.5), all parameter
types except the first are identical. Any non-placement deallocation function matches a non-placement
allocation function. If the lookup finds a single matching deallocation function, that function will be called,;
otherwise, no deallocation function will be called.

If a new-expression calls a deallocation function, it passes the value returned from the allocation function
call as the first argument of type void=. If a placement deallocation function is called, it is passed the
same additional arguments as were passed to the placement allocation function, that is, the same arguments
as those specified with the new-placement syntax. If the implementation is allowed to make a copy of any
argument as part of the call to the allocation function, it is allowed to make a copy (of the same original
value) as part of the call to the deallocation function or to reuse the copy made as part of the call to the

72) This may include evaluating a new-initializer and/or calling a constructor.

21

5.3.4 New DRAFT: 11 April 2004 Expressions 5-19

allocation function. If the copy is elided in one place, it need not be elided in the other.

Whether the allocation function is called before evaluating the constructor arguments or after evaluating the
constructor arguments but before entering the constructor is unspecified. It is also unspecified whether the
arguments to a constructor are evaluated if the allocation function returns the null pointer or exits using an
exception.

5.3.5 Delete [expr.delete]

The delete-expression operator destroys a most derived object (1.8) or array created by a new-expression.

delete-expression:
1oy delete cast-expression
iy delete [] cast-expression
The first alternative is for non-array objects, and the second is for arrays. The operand shall have a pointer
type, or a class type having a single conversion function (12.3.2) to a pointer type. The result has type

void.

If the operand has a class type, the operand is converted to a pointer type by calling the above-mentioned
conversion function, and the converted operand is used in place of the original operand for the remainder of
this section. In either alternative, if the value of the operand of delete is the null pointer the operation
has no effect. In the first alternative (delete object), the value of the operand of delete shall be a pointer
to a non-array object or a pointer to a sub-object (1.8) representing a base class of such an object (clause
10). If not, the behavior is undefined. In the second alternative (delete array), the value of the operand of
delete shall be the pointer value which resulted from a previous array new-expression.73) If not, the
behavior is undefined. [Note: this means that the syntax of the delete-expression must match the type of the
object allocated by new, not the syntax of the new-expression.] [Note: a pointer to a const type can be
the operand of a delete-expression; it is not necessary to cast away the constness (5.2.11) of the pointer
expression before it is used as the operand of the delete-expression.]

In the first alternative (delete object), if the static type of the operand is different from its dynamic type, the
static type shall be a base class of the operand’s dynamic type and the static type shall have a virtual de-
structor or the behavior is undefined. In the second alternative (delete array) if the dynamic type of the
object to be deleted differs from its static type, the behavior is undefined.”

The cast-expression in a delete-expression shall be evaluated exactly once. If the delete-expression calls the
implementation deallocation function (3.7.3.2), and if the operand of the delete expression is not the null
pointer constant, the deallocation function will deallocate the storage referenced by the pointer thus render-
ing the pointer invalid. [Note: the value of a pointer that refers to deallocated storage is indeterminate.]

If the object being deleted has incomplete class type at the point of deletion and the complete class has a
non-trivial destructor or a deallocation function, the behavior is undefined.

The delete-expression will invoke the destructor (if any) for the object or the elements of the array being
deleted. In the case of an array, the elements will be destroyed in order of decreasing address (that is, in
reverse order of the completion of their constructor; see 12.6.2).

The delete-expression will call a deallocation function (3.7.3.2). [Note: The deallocation function is called
regardless of whether the destructor for the object or some element of the array throws an exception.]

[Note: An implementation provides default definitions of the global deallocation functions
operator delete () for non-arrays (18.4.1.1) and operator delete[] () for arrays (18.4.1.2).
A C+ program can provide alternative definitions of these functions (17.4.3.4), and/or class-specific ver-
sions (12.5).] When the keyword delete in a delete-expression is preceded by the unary : : operator, the
global deallocation function is used to deallocate the storage.

) For non-zero-length arrays, this is the same as a pointer to the first element of the array created by that new-expression. Zero-
length arrays do not have a first element.

) This implies that an object cannot be deleted using a pointer of type void* because there are no objects of type void.

5-20 Expressions DRAFT: 11 April 2004 5.3.5 Delete

Access and ambiguity control are done for both the deallocation function and the destructor (12.4, 12.5).
5.4 Explicit type conversion (cast notation) [expr.cast]

The result of the expression (T) cast-expression is of type T. The result is an lvalue if T is a reference
type, otherwise the result is an rvalue. [Note: if T is a non-class type that is cv-qualified, the cv-qualifiers
are ignored when determining the type of the resulting rvalue; see 3.10.]

An explicit type conversion can be expressed using functional notation (5.2.3), a type conversion operator
(dynamic cast, static cast, reinterpret cast, const cast), or the cast notation.

cast-expression:
unary-expression
(type-id) cast-expression

Types shall not be defined in casts.

Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed.
The conversions performed by

— aconst_cast (5.2.11),

— astatic_cast (5.2.9),

— astatic_cast followed by a const_cast,

— areinterpret_cast (5.2.10), or

— areinterpret cast followed by a const_cast,

can be performed using the cast notation of explicit type conversion. The same semantic restrictions and
behaviors apply. If a conversion can be interpreted in more than one of the ways listed above, the interpre-
tation that appears first in the list is used, even if a cast resulting from that interpretation is ill-formed. If a
conversion can be interpreted in more than one way as a static_cast followed by a const_cast, the
conversion is ill-formed. [Example:

struct A {};
struct I1 : A {};
struct I2 : A {};
struct D : I1, I2 {};
A *foo(D *p) {
return (A*) (p); // ill-formed static_cast interpretation
}

—end example]

The operand of a cast using the cast notation can be an rvalue of type “pointer to incomplete class type”.
The destination type of a cast using the cast notation can be “pointer to incomplete class type”. In such
cases, even if there is a inheritance relationship between the source and destination classes, whether the
static cast orreinterpret cast interpretation is used is unspecified.

In addition to those conversions, the following static cast and reinterpret cast operations
(optionally followed by a const cast operation) may be performed using the cast notation of explicit
type conversion, even if the base class type is not accessible:

— a pointer to an object of derived class type or an Ivalue of derived class type may be explicitly con-
verted to a pointer or reference to an unambiguous base class type, respectively;

— a pointer to member of derived class type may be explicitly converted to a pointer to member of an
unambiguous non-virtual base class type;

— a pointer to an object of non-virtual base class type, an Ivalue of non-virtual base class type, or a
pointer to member of non-virtual base class type may be explicitly converted to a pointer, a reference,
or a pointer to member of a derived class type, respectively.

5.4 Explicit type conversion (cast notation) DRAFT: 11 April 2004 Expressions 5-21

5.5 Pointer-to-member operators [expr.mptr.oper]

The pointer-to-member operators - >* and . * group left-to-right.

pm-expression:
cast-expression
pm-expression . * cast-expression
pm-expression ->* cast-expression

The binary operator . * binds its second operand, which shall be of type “pointer to member of T” (where
T is a completely-defined class type) to its first operand, which shall be of class T or of a class of which T is
an unambiguous and accessible base class. The result is an object or a function of the type specified by the
second operand.

The binary operator - >* binds its second operand, which shall be of type “pointer to member of T” (where
T is a completely-defined class type) to its first operand, which shall be of type “pointer to T” or “pointer to
a class of which T is an unambiguous and accessible base class.” The result is an object or a function of the
type specified by the second operand.

If the dynamic type of the object does not contain the member to which the pointer refers, the behavior is
undefined.

The restrictions on cv-qualification, and the manner in which the cv-qualifiers of the operands are combined
to produce the cv-qualifiers of the result, are the same as the rules for E1 . E2 given in 5.2.5. [Note: it is not
possible to use a pointer to member that refers to a mutable member to modify a const class object.
For example,

struct S {
mutable int 1i;

const S cs;
int S::* pm = &S::i; // pm refersto mutable member S: : i
cs.*pm = 88; // ill-formed: cs is a const object

]

If the result of . * or ->* is a function, then that result can be used only as the operand for the function
call operator (). [Example:

(ptr_to_obj->*ptr to mfct) (10) ;

calls the member function denoted by ptr to mfct for the object pointed to by ptr to obj.] The
result of a .* expression is an Ivalue only if its first operand is an Ivalue and its second operand is a
pointer to data member. The result of an - >* expression is an Ivalue only if its second operand is a pointer
to data member. If the second operand is the null pointer to member value (4.11), the behavior is unde-
fined.

5.6 Multiplicative operators [expr.mul]
The multiplicative operators *, /, and % group left-to-right.

multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

The operands of * and / shall have arithmetic or enumeration type; the operands of % shall have integral or
enumeration type. The usual arithmetic conversions are performed on the operands and determine the type
of the result.

The binary * operator indicates multiplication.

5-22 Expressions DRAFT: 11 April 2004 5.6 Multiplicative operators

The binary / operator yields the quotient, and the binary % operator yields the remainder from the division
of the first expression by the second. If the second operand of / or % is zero the behavior is undefined; oth-
erwise (a/b)*b + a%b is equal to a. If both operands are nonnegative then the remainder is nonneg-
ative; if not, the sign of the remainder is implementation-defined75).

5.7 Additive operators [expr.add]

The additive operators + and - group left-to-right. The usual arithmetic conversions are performed for
operands of arithmetic or enumeration type.

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

For addition, either both operands shall have arithmetic or enumeration type, or one operand shall be a
pointer to a completely defined object type and the other shall have integral or enumeration type.

For subtraction, one of the following shall hold:
— both operands have arithmetic or enumeration type; or

— both operands are pointers to cv-qualified or cv-unqualified versions of the same completely defined
object type; or

— the left operand is a pointer to a completely defined object type and the right operand has integral or
enumeration type.

The result of the binary + operator is the sum of the operands. The result of the binary - operator is the dif-
ference resulting from the subtraction of the second operand from the first.

For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the first
element of an array of length one with the type of the object as its element type.

When an expression that has integral type is added to or subtracted from a pointer, the result has the type of
the pointer operand. If the pointer operand points to an element of an array object, and the array is large
enough, the result points to an element offset from the original element such that the difference of the sub-
scripts of the resulting and original array elements equals the integral expression. In other words, if the
expression P points to the i-th element of an array object, the expressions (P) +N (equivalently, N+ (P))
and (P) -N (where N has the value n) point to, respectively, the i+n-th and i—n-th elements of the array
object, provided they exist. Moreover, if the expression P points to the last element of an array object, the
expression (P) +1 points one past the last element of the array object, and if the expression Q points one
past the last element of an array object, the expression (Q) -1 points to the last element of the array object.
If both the pointer operand and the result point to elements of the same array object, or one past the last ele-
ment of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined.

When two pointers to elements of the same array object are subtracted, the result is the difference of the
subscripts of the two array elements. The type of the result is an implementation-defined signed integral
type; this type shall be the same type that is defined as std: :ptrdiff t in the <cstddef> header
(18.1). As with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is
undefined. In other words, if the expressions P and Q point to, respectively, the i-th and j-th elements of an
array object, the expression (P) - (Q) has the value i—j provided the value fits in an object of type
std::ptrdiff t. Moreover, if the expression P points either to an element of an array object or one
past the last element of an array object, and the expression Q points to the last element of the same array
object, the expression ((Q) +1) - (P) has the same value as ((Q) - (P))+1andas - ((P) - ((Q)+1)),
and has the value zero if the expression P points one past the last element of the array object, even though
the expression (Q) +1 does not point to an element of the array object. Unless both pointers point to ele-
ments of the same array object, or one past the last element of the array object, the behavior is undefined.”®

79) According to work underway toward the revision of 1ISO C, the preferred algorithm for integer division follows the rules defined in
the 1SO Fortran standard, ISO/IEC 1539:1991, in which the quotient is always rounded toward zero.

76) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the integral

5.7 Additive operators DRAFT: 11 April 2004 Expressions 5-23

If the value O is added to or subtracted from a pointer value, the result compares equal to the original
pointer value. If two pointers point to the same object or both point one past the end of the same array or
both are null, and the two pointers are subtracted, the result compares equal to the value 0 converted to the
type std: :ptrdiff t.

5.8 Shift operators [expr.shift]
The shift operators << and >> group left-to-right.

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

The operands shall be of integral or enumeration type and integral promotions are performed. The type of
the result is that of the promoted left operand. The behavior is undefined if the right operand is negative, or
greater than or equal to the length in bits of the promoted left operand.

The value of E1 << E2 is E1 (interpreted as a bit pattern) left-shifted £2 bit positions; vacated bits are
zero-filled. If E1 has an unsigned type, the value of the result is £1 multiplied by the quantity 2 raised to
the power E2, reduced modulo ULONG MAX+1 if E1 has type unsigned long, UINT MAX+1 otherwise.
[Note: the constants ULONG MAX and UINT MAX are defined in the header <climitss).]

The value of E1 >> E2 is E1 right-shifted £2 bit positions. If £1 has an unsigned type or if E1 has a
signed type and a nonnegative value, the value of the result is the integral part of the quotient of E1 divided
by the quantity 2 raised to the power E2. If E1 has a signed type and a negative value, the resulting value is
implementation-defined.

5.9 Relational operators [expr.rel]

The relational operators group left-to-right. [Example: a<b<c means (a<b)<c and not
(a<b) && (b<c).]

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The operands shall have arithmetic, enumeration or pointer type. The operators < (less than), > (greater
than), <= (less than or equal to), and >= (greater than or equal to) all yield false or true. The type of
the result is bool.

The usual arithmetic conversions are performed on operands of arithmetic or enumeration type. Pointer
conversions (4.10) and qualification conversions (4.4) are performed on pointer operands (or on a pointer
operand and a null pointer constant) to bring them to their composite pointer type. If one operand is a null
pointer constant, the composite pointer type is the type of the other operand. Otherwise, if one of the
operands has type “pointer to cvl void”, then the other has type “pointer to cv2 T” and the composite
pointer type is “pointer to cvl2 void”, where cv12 is the union of cvl and cv2. Otherwise, the composite
pointer type is a pointer type similar (4.4) to the type of one of the operands, with a cv-qualification signa-
ture (4.4) that is the union of the cv-qualification signatures of the operand types. [Note: this implies that
any pointer can be compared to a null pointer constant and that any object pointer can be compared to a
pointer to (possibly cv-qualified) void.] [Example:

value of the expression added to or subtracted from the converted pointer is first multiplied by the size of the object originally pointed
to, and the resulting pointer is converted back to the original type. For pointer subtraction, the result of the difference between the
character pointers is similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which might overlap another object in the program)
just after the end of the object in order to satisfy the “one past the last element” requirements.

5-24 Expressions DRAFT: 11 April 2004 5.9 Relational operators

void *p;

const int *qg;

int **pi;

const int *const *pci;
void ct ()

{

P <= g; // Both converted to const void * before comparison
pi <= pci; // Both converted to const int *const * before comparison

}

—end example] Pointers to objects or functions of the same type (after pointer conversions) can be com-
pared, with a result defined as follows:

— If two pointers p and g of the same type point to the same object or function, or both point one past
the end of the same array, or are both null, then p<=g and p>=g both yield true and p<g and p>g
both yield false.

— If two pointers p and g of the same type point to different objects that are not members of the same
object or elements of the same array or to different functions, or if only one of them is null, the results
of p<q, p>q, p<=q, and p>=q are unspecified.

— If two pointers point to nonstatic data members of the same object, or to subobjects or array elements
of such members, recursively, the pointer to the later declared member compares greater provided the
two members are not separated by an access-specifier label (11.1) and provided their class is not a
union.

— If two pointers point to nonstatic data members of the same object separated by an access-specifier
label (11.1) the result is unspecified.

— If two pointers point to data members of the same union object, they compare equal (after conversion
to void*, if necessary). If two pointers point to elements of the same array or one beyond the end of
the array, the pointer to the object with the higher subscript compares higher.

— Other pointer comparisons are unspecified.

5.10 Equality operators [expr.eq]

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

The == (equal to) and the ! = (not equal to) operators have the same semantic restrictions, conversions, and
result type as the relational operators except for their lower precedence and truth-value result. [Note: a<b
== c<d is true whenever a<b and c<d have the same truth-value.] Pointers to objects or functions of
the same type (after pointer conversions) can be compared for equality. Two pointers of the same type
compare equal if and only if they are both null, both point to the same function, or both represent the same
address (3.9.2).

In addition, pointers to members can be compared, or a pointer to member and a null pointer constant.
Pointer to member conversions (4.11) and qualification conversions (4.4) are performed to bring them to a
common type. If one operand is a null pointer constant, the common type is the type of the other operand.
Otherwise, the common type is a pointer to member type similar (4.4) to the type of one of the operands,
with a cv-qualification signature (4.4) that is the union of the cv-qualification signatures of the operand
types. [Note: this implies that any pointer to member can be compared to a null pointer constant.] If both
operands are null, they compare equal. Otherwise if only one is null, they compare unequal. Otherwise if
either is a pointer to a virtual member function, the result is unspecified. Otherwise they compare equal if
and only if they would refer to the same member of the same most derived object (1.8) or the same subob-
ject if they were dereferenced with a hypothetical object of the associated class type. [Example:

5.10 Equality operators DRAFT: 11 April 2004 Expressions 5-25

struct B {

int £();

}i

struct L : B { };

struct R : B { };

struct D : L, R { };

int (B::*pb) () = &B::f;

int (L::*pl) () = pb;

int (R::*pr) () = pb;

int (D::*pdl) () = pl;

int (D::*pdr) () = pr;

bool x = (pdl == pdr); // false
—end example]
5.11 Bitwise AND operator [expr.bit.and]

and-expression:
equality-expression
and-expression & equality-expression

The usual arithmetic conversions are performed; the result is the bitwise function of the operands. The operator
applies only to integral or enumeration operands.

5.12 Bitwise exclusive OR operator [expr.xor]

exclusive-or-expression:
and-expression
exclusive-or-expression

~

and-expression

The usual arithmetic conversions are performed; the result is the bitwise exclusive function of the operands. The
operator applies only to integral or enumeration operands.

5.13 Bitwise inclusive OR operator [expr.or]

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise inclusive function of its operands. The
operator applies only to integral or enumeration operands.

5.14 Logical AND operator [expr.log.and]

logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression

The && operator groups left-to-right. The operands are both implicitly converted to type bool (clause 4).
The result is t rue if both operands are true and £alse otherwise. Unlike &, && guarantees left-to-right
evaluation: the second operand is not evaluated if the first operand is false.

The result is a bool. All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

5.15 Logical OR operator [expr.log.or]

logical-or-expression:
logical-and-expression
logical-or-expression | | logical-and-expression

5-26 Expressions DRAFT: 11 April 2004 5.15 Logical OR operator

The | | operator groups left-to-right. The operands are both implicitly converted to bool (clause 4). It
returns true if either of its operands is true, and false otherwise. Unlike |, | | guarantees left-to-
right evaluation; moreover, the second operand is not evaluated if the first operand evaluates to true.

The result is a bool. All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

5.16 Conditional operator [expr.cond]

conditional-expression:
logical-or-expression
logical-or-expression 2 expression : assignment-expression

Conditional expressions group right-to-left. The first expression is implicitly converted to bool (clause 4).
It is evaluated and if it is true, the result of the conditional expression is the value of the second expres-
sion, otherwise that of the third expression. All side effects of the first expression except for destruction of
temporaries (12.2) happen before the second or third expression is evaluated. Only one of the second and
third expressions is evaluated.

If either the second or the third operand has type (possibly cv-qualified) void, then the Ivalue-to-rvalue
(4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the second
and third operands, and one of the following shall hold:

— The second or the third operand (but not both) is a throw-expression (15.1); the result is of the type of
the other and is an rvalue.

— Both the second and the third operands have type void; the result is of type void and is an rvalue.
[Note: this includes the case where both operands are throw-expressions.]

Otherwise, if the second and third operand have different types, and either has (possibly cv-qualified) class
type, an attempt is made to convert each of those operands to the type of the other. The process for deter-
mining whether an operand expression E1 of type T1 can be converted to match an operand expression E2
of type T2 is defined as follows:

— If E2 is an Ivalue: E1 can be converted to match E2 if E1 can be implicitly converted (clause 4) to the
type “reference to T2”, subject to the constraint that in the conversion the reference must bind directly
(8.5.3) to E1.

— If E2 is an rvalue, or if the conversion above cannot be done:

— if E1 and E2 have class type, and the underlying class types are the same or one is a base class of
the other: E1 can be converted to match E2 if the class of T2 is the same type as, or a base class
of, the class of T1, and the cv-qualification of T2 is the same cv-qualification as, or a greater cv-
qualification than, the cv-qualification of T1. If the conversion is applied, E1 is changed to an
rvalue of type T2 that still refers to the original source class object (or the appropriate subobject
thereof). [Note: that is, no copy is made.]

— Otherwise (i.e., if E1 or E2 has a nonclass type, or if they both have class types but the underly-
ing classes are not either the same or one a base class of the other): £E1 can be converted to match
E2 if E1 can be implicitly converted to the type that expression E2 would have if E2 were con-
verted to an rvalue (or the type it has, if E2 is an rvalue).

Using this process, it is determined whether the second operand can be converted to match the third
operand, and whether the third operand can be converted to match the second operand. If both can be
converted, or one can be converted but the conversion is ambiguous, the program is ill-formed. If nei-
ther can be converted, the operands are left unchanged and further checking is performed as described
below. If exactly one conversion is possible, that conversion is applied to the chosen operand and the
converted operand is used in place of the original operand for the remainder of this section.

5.16 Conditional operator DRAFT: 11 April 2004 Expressions 5-27

If the second and third operands are Ivalues and have the same type, the result is of that type and is an
Ivalue and it is a bit-field if the second or the third operand is a bit-field, or if both are bit-fields.

Otherwise, the result is an rvalue. If the second and third operand do not have the same type, and either has
(possibly cv-qualified) class type, overload resolution is used to determine the conversions (if any) to be
applied to the operands (13.3.1.2, 13.6). If the overload resolution fails, the program is ill-formed. Other-
wise, the conversions thus determined are applied, and the converted operands are used in place of the orig-
inal operands for the remainder of this section.

Lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are per-
formed on the second and third operands. After those conversions, one of the following shall hold:

— The second and third operands have the same type; the result is of that type.

— The second and third operands have arithmetic or enumeration type; the usual arithmetic conversions
are performed to bring them to a common type, and the result is of that type.

— The second and third operands have pointer type, or one has pointer type and the other is a null pointer
constant; pointer conversions (4.10) and qualification conversions (4.4) are performed to bring them to
their composite pointer type (5.9). The result is of the composite pointer type.

— The second and third operands have pointer to member type, or one has pointer to member type and
the other is a null pointer constant; pointer to member conversions (4.11) and qualification conversions
(4.4) are performed to bring them to a common type, whose cv-qualification shall match the cv-qualifi-
cation of either the second or the third operand. The result is of the common type.

5.17 Assignment and compound assignment operators [expr.ass]

The assignment operator (=) and the compound assignment operators all group right-to-left. All require a
modifiable Ivalue as their left operand and return an Ivalue with the type and value of the left operand after
the assignment has taken place. The result in all cases is a bit-field if the left operand is a bit-field.

assignment-expression:
conditional-expression
logical-or-expression assignment-operator assignment-expression
throw-expression

assignment-operator : one of

= * = /= %= += -= >>= <<= &= =

In simple assignment (=), the value of the expression replaces that of the object referred to by the left
operand.

If the left operand is not of class type, the expression is implicitly converted (clause 4) to the cv-unqualified
type of the left operand.

If the left operand is of class type, the class shall be complete. Assignment to objects of a class is defined
by the copy assignment operator (12.8, 13.5.3).

[Note: For class objects, assignment is not in general the same as initialization (8.5, 12.1, 12.6, 12.8).]

When the left operand of an assignment operator denotes a reference to T, the operation assigns to the
object of type T denoted by the reference.

The behavior of an expression of the form E1 op= E2 is equivalent to E1 =E1 op E2 except that E1 is
evaluated only once. In += and -=, E1 shall either have arithmetic type or be a pointer to a possibly cv-
qualified completely defined object type. In all other cases, E1 shall have arithmetic type.

If the value being stored in an object is accessed from another object that overlaps in any way the storage of
the first object, then the overlap shall be exact and the two objects shall have the same type, otherwise the
behavior is undefined.

5-28 Expressions DRAFT: 11 April 2004 5.17
Assignment and compound assignment operators

5.18 Comma operator [expr.comma]
The comma operator groups left-to-right.

expression:
assignment-expression
expression , assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is
discarded. The Ivalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conver-
sions are not applied to the left expression. All side effects (1.9) of the left expression, except for the de-
struction of temporaries (12.2), are performed before the evaluation of the right expression. The type and
value of the result are the type and value of the right operand; the result is an Ivalue if the right operand is
an lvalue, and is a bit-field if the right operand is an Ivalue and a bit-field.

In contexts where comma is given a special meaning, [Example: in lists of arguments to functions (5.2.2)
and lists of initializers (8.5)] the comma operator as described in clause 5 can appear only in parentheses.
[Example:

f(a, (t=3, t+2), c);
has three arguments, the second of which has the value 5.]
5.19 Constant expressions [expr.const]

In several places, G+ requires expressions that evaluate to an integral or enumeration constant: as array
bounds (8.3.4, 5.3.4), as case expressions (6.4.2), as bit-field lengths (9.6), as enumerator initializers (7.2),
as static member initializers (9.4.2), and as integral or enumeration non-type template arguments (14.3).

constant-expression:
conditional-expression

An integral constant-expression can involve only literals of arithmetic types (2.13, 3.9.1), enumerators,
const variables or static data members of integral or enumeration types initialized with constant expres-
sions (8.5), non-type template parameters of integral or enumeration types, and sizeof expressions.
Floating literals (2.13.3) can appear only if they are cast to integral or enumeration types. Only type con-
versions to integral or enumeration types can be used. In particular, except in sizeof expressions, func-
tions, class objects, pointers, or references shall not be used, and assignment, increment, decrement, func-
tion-call, or comma operators shall not be used.

Other expressions are considered constant-expressions only for the purpose of non-local static object
initialization (3.6.2). Such constant expressions shall evaluate to one of the following:

— anull pointer value (4.10),

— anull member pointer value (4.11),
— an arithmetic constant expression,
— an address constant expression,

— areference constant expression,

— an address constant expression for a complete object type, plus or minus an integral constant expres-
sion, or

— apointer to member constant expression.

An arithmetic constant expression shall satisfy the requirements for an integral constant expression, except
that

— floating literals need not be cast to integral or enumeration type, and

— conversions to floating point types are permitted.

5.19 Constant expressions DRAFT: 11 April 2004 Expressions 5-29

An address constant expression is a pointer to an Ivalue designating an object of static storage duration, a
string literal (2.13.4), or a function. The pointer shall be created explicitly, using the unary & operator, or
implicitly using a non-type template parameter of pointer type, or using an expression of array (4.2) or
function (4.3) type. The subscripting operator [] and the class member access . and - > operators, the &
and * unary operators, and pointer casts (except dynamic casts, 5.2.7) can be used in the creation of an
address constant expression, but the value of an object shall not be accessed by the use of these operators.
If the subscripting operator is used, one of its operands shall be an integral constant expression. An expres-
sion that designates the address of a subobject of a non-POD class object (clause 9) is not an address con-
stant expression (12.7). Function calls shall not be used in an address constant expression, even if the func-
tion is inline and has a reference return type.

A reference constant expression is an lvalue designating an object of static storage duration, a non-type
template parameter of reference type, or a function. The subscripting operator [], the class member access

and - > operators, the & and * unary operators, and reference casts (except those invoking user-defined
conversion functions (12.3.2) and except dynamic casts (5.2.7)) can be used in the creation of a refer-
ence constant expression, but the value of an object shall not be accessed by the use of these operators. If
the subscripting operator is used, one of its operands shall be an integral constant expression. An lvalue
expression that designates a member or base class of a non-POD class object (clause 9) is not a reference
constant expression (12.7). Function calls shall not be used in a reference constant expression, even if the
function is inline and has a reference return type.

A pointer to member constant expression shall be created using the unary & operator applied to a qualified-
id operand (5.3.1), optionally preceded by a pointer to member cast (5.2.9).

6 Statements [stmt.stmt]

Except as indicated, statements are executed in sequence.

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

6.1 Labeled statement [stmt.label]

A statement can be labeled.

labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

An identifier label declares the identifier. The only use of an identifier label is as the target of a goto. The
scope of a label is the function in which it appears. Labels shall not be redeclared within a function. A
label can be used in a goto statement before its definition. Labels have their own name space and do not
interfere with other identifiers.

Case labels and default labels shall occur only in switch statements.
6.2 Expression statement [stmt.expr]
Expression statements have the form

expression-statement:
expression, ;

The expression is evaluated and its value is discarded. The lvalue-to-rvalue (4.1), array-to-pointer (4.2),
and function-to-pointer (4.3) standard conversions are not applied to the expression. All side effects from
an expression statement are completed before the next statement is executed. An expression statement with
the expression missing is called a null statement. [Note: Most statements are expression statements—usu-
ally assignments or function calls. A null statement is useful to carry a label just before the } of a com-
pound statement and to supply a null body to an iteration statement such as a while statement (6.5.1).]

6.3 Compound statement or block [stmt.block]

So that several statements can be used where one is expected, the compound statement (also, and equiv-
alently, called “block™) is provided.

compound-statement:
{ statement-seqqy }

6-2 Statements DRAFT: 11 April 2004 6.3 Compound statement or block

statement-seq:
statement
statement-seq statement

A compound statement defines a local scope (3.3). [Note: a declaration is a statement (6.7).]
6.4 Selection statements [stmt.select]

Selection statements choose one of several flows of control.

selection-statement:
if (condition) statement
if (condition) statement else statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator = assignment-expression

In clause 6, the term substatement refers to the contained statement or statements that appear in the syntax
notation. The substatement in a selection-statement (each substatement, in the else form of the if state-
ment) implicitly defines a local scope (3.3). If the substatement in a selection-statement is a single state-
ment and not a compound-statement, it is as if it was rewritten to be a compound-statement containing the
original substatement. [Example:

if (%)
int 1i;
can be equivalently rewritten as

if (x) {
int i;
}

Thus after the i £ statement, i is no longer in scope.]

The rules for conditions apply both to selection-statements and to the for and while statements (6.5).
The declarator shall not specify a function or an array. The type-specifier-seq shall not contain typedef
and shall not declare a new class or enumeration.

A name introduced by a declaration in a condition (either introduced by the type-specifier-seq or the
declarator of the condition) is in scope from its point of declaration until the end of the substatements con-
trolled by the condition. If the name is re-declared in the outermost block of a substatement controlled by
the condition, the declaration that re-declares the name is ill-formed. [Example:

if (int x = £()) {

int x; // ill-formed, redeclaration of x
!
else {

int x; // ill-formed, redeclaration of x
1

—end example]

The value of a condition that is an initialized declaration in a statement other than a switch statement is
the value of the declared variable implicitly converted to type bool. If that conversion is ill-formed, the
program is ill-formed. The value of a condition that is an initialized declaration in a switch statement is
the value of the declared variable if it has integral or enumeration type, or of that variable implicitly con-
verted to integral or enumeration type otherwise. The value of a condition that is an expression is the value
of the expression, implicitly converted to bool for statements other than switch; if that conversion is ill-
formed, the program is ill-formed. The value of the condition will be referred to as simply “the condition”
where the usage is unambiguous.

6.4 Selection statements DRAFT: 11 April 2004 Statements 6-3

If a condition can be syntactically resolved as either an expression or the declaration of a local name, it is
interpreted as a declaration.

6.4.1 The if statement [stmt.if]

If the condition (6.4) yields true the first substatement is executed. If the else part of the selection state-
ment is present and the condition yields £alse, the second substatement is executed. In the second form
of i f statement (the one including else7)73 if the first substatement is also an if statement then that inner
if statement shall contain an else part.

6.4.2 The switch statement [stmt.switch]

The switch statement causes control to be transferred to one of several statements depending on the value
of a condition.

The condition shall be of integral type, enumeration type, or of a class type for which a single conversion
function to integral or enumeration type exists (12.3). If the condition is of class type, the condition is con-
verted by calling that conversion function, and the result of the conversion is used in place of the original
condition for the remainder of this section. Integral promotions are performed. Any statement within the
switch statement can be labeled with one or more case labels as follows:

case constant-expression :

where the constant-expression shall be an integral constant-expression. The integral constant-expression
(5.19) is implicitly converted to the promoted type of the switch condition. No two of the case constants in
the same switch shall have the same value after conversion to the promoted type of the switch condition.

There shall be at most one label of the form

default
within a switch statement.

Switch statements can be nested; a case or default label is associated with the smallest switch enclos-
ing it.

When the switch statement is executed, its condition is evaluated and compared with each case constant.
If one of the case constants is equal to the value of the condition, control is passed to the statement follow-
ing the matched case label. If no case constant matches the condition, and if there is a default label,
control passes to the statement labeled by the default label. If no case matches and if there is no default
then none of the statements in the switch is executed.

case and default labels in themselves do not alter the flow of control, which continues unimpeded
across such labels. To exit from a switch, see break, 6.6.1. [Note: usually, the substatement that is the
subject of a switch is compound and case and default labels appear on the top-level statements con-
tained within the (compound) substatement, but this is not required. Declarations can appear in the sub-
statement of a switch-statement.]

6.5 Iteration statements [stmt.iter]

Iteration statements specify looping.

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement condition,, ; expressiony,) statement

for-init-statement:
expression-statement
simple-declaration

[Note: a for-init-statement ends with a semicolon.]

m In other words, the el se is associated with the nearest un-elsed i f.

6-4 Statements DRAFT: 11 April 2004 6.5 Iteration statements

2 The substatement in an iteration-statement implicitly defines a local scope (3.3) which is entered and exited
each time through the loop.
3 If the substatement in an iteration-statement is a single statement and not a compound-statement, it is as if it
was rewritten to be a compound-statement containing the original statement. [Example:
while (--x >= 0)
int i;

can be equivalently rewritten as

while (--x >= 0) {

int i;
}
Thus after the while statement, i is no longer in scope.]
4 [Note: The requirements on conditions in iteration statements are described in 6.4. —end note]
6.5.1 The while statement [stmt.while]
1 In the while statement the substatement is executed repeatedly until the value of the condition (6.4)

becomes false. The test takes place before each execution of the substatement.

2 When the condition of a while statement is a declaration, the scope of the variable that is declared extends
from its point of declaration (3.3.1) to the end of the while statement. A while statement of the form

while (T t = x) statement

is equivalent to

label:
{ // start of condition scope
T t = x;
if (v) {
statement
goto label;
1
1 // end of condition scope

The object created in a condition is destroyed and created with each iteration of the loop. [Example:

struct A {

int wval;

A(int i) : val(i) { }

a0 {}

operator bool() { return val != 0; }
}i
int i = 1;
while (A a = i) {

/7.

i =0;

}

In the while-loop, the constructor and destructor are each called twice, once for the condition that succeeds
and once for the condition that fails.]

6.5.2 The do statement [stmt.do]
1 The expression is implicitly converted to boo1l; if that is not possible, the program is ill-formed.
2 In the do statement the substatement is executed repeatedly until the value of the expression becomes

false. The test takes place after each execution of the statement.

6.5.3 The for statement DRAFT: 11 April 2004 Statements 6-5

6.5.3 The for statement [stmt.for]

The for statement

for (for-init-statement condition,, ; expression,,) statement

is equivalent to

{
for-init-statement
while (condition) {
statement
expression ;
}
}

except that names declared in the for-init-statement are in the same declarative-region as those declared in
the condition, and except that a cont inue in statement (not enclosed in another iteration statement) will
execute expression before re-evaluating condition. [Note: Thus the first statement specifies initialization for
the loop; the condition (6.4) specifies a test, made before each iteration, such that the loop is exited when
the condition becomes £alse; the expression often specifies incrementing that is done after each iteration.

]

Either or both of the condition and the expression can be omitted. A missing condition makes the implied
while clause equivalent to while (true).

If the for-init-statement is a declaration, the scope of the name(s) declared extends to the end of the for-
statement. [Example:

int i = 42;

int al[1l0];

for (int 1 = 0; 1 < 10; 1i++)
ali] = 1i;

int j = i; // 3 =42
—end example]
6.6 Jump statements [stmt.jump]

Jump statements unconditionally transfer control.

jump-statement:
break ;
continue ;
return expressiony ;
goto identifier ;

On exit from a scope (however accomplished), destructors (12.4) are called for all constructed objects with
automatic storage duration (3.7.2) (named objects or temporaries) that are declared in that scope, in the
reverse order of their declaration. Transfer out of a loop, out of a block, or back past an initialized variable
with automatic storage duration involves the destruction of variables with automatic storage duration that
are in scope at the point transferred from but not at the point transferred to. (See 6.7 for transfers into
blocks). [Note: However, the program can be terminated (by calling std::exit() or
std: :abort () (18.3), for example) without destroying class objects with automatic storage duration.]

6.6.1 The break statement [stmt.break]

The break statement shall occur only in an iteration-statement or a switch statement and causes termi-
nation of the smallest enclosing iteration-statement or switch statement; control passes to the statement
following the terminated statement, if any.

6-6 Statements DRAFT: 11 April 2004 6.6.1 The break statement

6.6.2 The continue statement [stmt.cont]

The continue statement shall occur only in an iteration-statement and causes control to pass to the loop-
continuation portion of the smallest enclosing iteration-statement, that is, to the end of the loop. More pre-
cisely, in each of the statements

while (foo) { do { for (;;) |
{ { {
/] ... /] ... //
} } }
contin: ; contin: ; contin: ;
} } while (foo); }

a continue not contained in an enclosed iteration statement is equivalent to goto contin.
6.6.3 The return statement [stmt.return]
A function returns to its caller by the return statement.

A return statement without an expression can be used only in functions that do not return a value, that is, a
function with the return type void, a constructor (12.1), or a destructor (12.4). A return statement with an
expression of non-void type can be used only in functions returning a value; the value of the expression is
returned to the caller of the function. The expression is implicitly converted to the return type of the func-
tion in which it appears. A return statement can involve the construction and copy of a temporary object
(12.2). Flowing off the end of a function is equivalent to a return with no value; this results in undefined
behavior in a value-returning function.

A return statement with an expression of type “cv void” can be used only in functions with a return type
of cv void; the expression is evaluated just before the function returns to its caller.

6.6.4 The goto statement [stmt.goto]

The goto statement unconditionally transfers control to the statement labeled by the identifier. The identi-
fier shall be a label (6.1) located in the current function.

6.7 Declaration statement [stmt.dcl]

A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
block-declaration

If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration
is hidden for the remainder of the block, after which it resumes its force.

Variables with automatic storage duration (3.7.2) are initialized each time their declaration-statement is
executed. Variables with automatic storage duration declared in the block are destroyed on exit from the
block (6.6).

It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A pro-
gram that jumps78) from a point where a local variable with automatic storage duration is not in scope to a
point where it is in scope is ill-formed unless the variable has POD type (3.9) and is declared without an
initializer (8.5).

78) The transfer from the condition of a switch statement to a case label is considered a jump in this respect.

6.7 Declaration statement DRAFT: 11 April 2004 Statements 6-7

[Example:
void f()
{
/1]
goto 1x; // ill-formed: jump into scope of a
/1
ly:
X a=1;
/1]
1x:
goto 1ly; // OK, jump implies destructor
// call for a followed by construction
// again immediately following label 1y
}

—end example]

The zero-initialization (8.5) of all local objects with static storage duration (3.7.1) is performed before any
other initialization takes place. A local object of POD type (3.9) with static storage duration initialized
with constant-expressions is initialized before its block is first entered. An implementation is permitted to
perform early initialization of other local objects with static storage duration under the same conditions that
an implementation is permitted to statically initialize an object with static storage duration in namespace
scope (3.6.2). Otherwise such an object is initialized the first time control passes through its declaration;
such an object is considered initialized upon the completion of its initialization. If the initialization exits by
throwing an exception, the initialization is not complete, so it will be tried again the next time control enters
the declaration. If control re-enters the declaration (recursively) while the object is being initialized, the
behavior is undefined. [Example:

int foo(int 1)

{

static int s = foo(2*i); // recursive call — undefined
return i+1;

}

—end example]

The destructor for a local object with static storage duration will be executed if and only if the variable was
constructed. [Note: 3.6.3 describes the order in which local objects with static storage duration are
destroyed.]

6.8 Ambiguity resolution [stmt.ambig]

There is an ambiguity in the grammar involving expression-statements and declarations: An expression-
statement with a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indistin-
guishable from a declaration where the first declarator starts with a (. In those cases the statement is a
declaration. [Note: To disambiguate, the whole statement might have to be examined to determine if it is
an expression-statement or a declaration. This disambiguates many examples. [Example: assuming T is a
simple-type-specifier (7.1.5),

T(a)->m = 7; // expression-statement
T(a)++; // expression-statement
T(a,5)<<c; // expression-statement
T (*d) (int) ; // declaration
T (e) [5]; // declaration
T(£) = {1, 2 }; // declaration
T (*g) (double (3)) ; // declaration

In the last example above, g, which is a pointer to T, is initialized to double (3). This is of course ill-
formed for semantic reasons, but that does not affect the syntactic analysis. —end example]

6-8 Statements DRAFT: 11 April 2004 6.8 Ambiguity resolution

2 The remaining cases are declarations. [Example:

class T {

/]
public:

T();

T (int) ;

T(int, int);
}i
T(a); // declaration
T(*b) () ; // declaration
T(c)=7; // declaration
T(d),e, £=3; // declaration
extern int h;
T(g) (h,2); // declaration

—end example] —end note]

3 The disambiguation is purely syntactic; that is, the meaning of the names occurring in such a statement,
beyond whether they are type-names or not, is not generally used in or changed by the disambiguation.
Class templates are instantiated as necessary to determine if a qualified name is a type-name. Disambigua-
tion precedes parsing, and a statement disambiguated as a declaration may be an ill-formed declaration. If,
during parsing, a name in a template parameter is bound differently than it would be bound during a trial
parse, the program is ill-formed. No diagnostic is required. [Note: This can occur only when the name is
declared earlier in the declaration.] [Example:

struct T1 {
Tl operator () (int x) { return Tl (x); }
int operator=(int x) { return x; }
T1(int) { }

}i

struct T2 { T2(int){ } };

int a, (*(*b) (T2)) (int), c, d4d;

void £() {
// disambiguation requires this to be parsed
// as a declaration

Tl(a) = 3,
T2 (4), // T2 will be declared as
(* (*b) (T2 (c))) (int(d)); // avariable of type T1

// but this will not allow

// the last part of the

// declaration to parse

// properly since it depends
// on T2 being a type-name

}

—end example]

1

7 Declarations [dcl.dcl]

Declarations specify how names are to be interpreted. Declarations have the form

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive

simple-declaration:
decl-specifier-sedy init-declarator-listy, ;

[Note: asm-definitions are described in 7.4, and linkage-specifications are described in 7.5. Function-defi-
nitions are described in 8.4 and template-declarations are described in clause 14. Namespace-definitions
are described in 7.3.1, using-declarations are described in 7.3.3 and using-directives are described in 7.3.4.
] The simple-declaration

decl-specifier-seq,,, init-declarator-listy, ;

is divided into two parts: decl-specifiers, the components of a decl-specifier-seq, are described in 7.1 and
declarators, the components of an init-declarator-list, are described in clause 8.

A declaration occurs in a scope (3.3); the scope rules are summarized in 3.4. A declaration that declares a
function or defines a class, namespace, template, or function also has one or more scopes nested within it.
These nested scopes, in turn, can have declarations nested within them. Unless otherwise stated, utterances
in clause 7 about components in, of, or contained by a declaration or subcomponent thereof refer only to
those components of the declaration that are not nested within scopes nested within the declaration.

In a simple-declaration, the optional init-declarator-list can be omitted only when declaring a class (clause
9) or enumeration (7.2), that is, when the decl-specifier-seq contains either a class-specifier, an elaborated-
type-specifier with a class-key (9.1), or an enum-specifier. In these cases and whenever a class-specifier or
enum-specifier is present in the decl-specifier-seq, the identifiers in these specifiers are among the names
being declared by the declaration (as class-names, enum-names, or enumerators, depending on the syntax).
In such cases, and except for the declaration of an unnamed bit-field (9.6), the decl-specifier-seq shall intro-
duce one or more names into the program, or shall redeclare a name introduced by a previous declaration.
[Example:

7-2 Declarations DRAFT: 11 April 2004 7 Declarations

enum { }; // ill-formed
typedef class { }; // ill-formed

—end example]

Each init-declarator in the init-declarator-list contains exactly one declarator-id, which is the name
declared by that init-declarator and hence one of the names declared by the declaration. The type-speci-
fiers (7.1.5) in the decl-specifier-seq and the recursive declarator structure of the init-declarator describe a
type (8.3), which is then associated with the name being declared by the init-declarator.

If the decl-specifier-seq contains the typedef specifier, the declaration is called a typedef declaration and
the name of each init-declarator is declared to be a typedef-name, synonymous with its associated type
(7.1.3). If the decl-specifier-seq contains no typedef specifier, the declaration is called a function decla-
ration if the type associated with the name is a function type (8.3.5) and an object declaration otherwise.

Syntactic components beyond those found in the general form of declaration are added to a function decla-
ration to make a function-definition. An object declaration, however, is also a definition unless it contains
the extern specifier and has no initializer (3.1). A definition causes the appropriate amount of storage to
be reserved and any appropriate initialization (8.5) to be done.

Only in function declarations for constructors, destructors, and type conversions can the decl-specifier-seq
be omitted.”®

7.1 Specifiers [dcl.spec]

The specifiers that can be used in a declaration are
decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-seq,,, decl-specifier

The longest sequence of decl-specifiers that could possibly be a type name is taken as the decl-specifier-seq
of a declaration. The sequence shall be self-consistent as described below. [Example:

typedef char* Pc;
static Pc; // error: name missing

Here, the declaration static Pc is ill-formed because no name was specified for the static variable of
type Pc. To get a variable called Pc, a type-specifier (other than const or volatile) has to be present
to indicate that the typedef-name Pc is the name being (re)declared, rather than being part of the decl-speci-
fier sequence. For another example,

void f (const Pc); // void f (char* const) (not const charx)
void g(const int Pc); // void g(const int)

—end example]

[Note: since signed, unsigned, long, and short by default imply int, a type-name appearing after
one of those specifiers is treated as the name being (re)declared. [Example:

void h(unsigned Pc) ; // void h(unsigned int)
void k(unsigned int Pc); // void k (unsigned int)

—end example] —end note]

7%TMﬁmmmmﬂWMMCBmmemem.

7.1 Specifiers DRAFT: 11 April 2004 Declarations 7-3

7.1.1 Storage class specifiers [dcl.stc]

The storage class specifiers are

storage-class-specifier:
auto
register
static
extern
mutable

At most one storage-class-specifier shall appear in a given decl-specifier-seq. If a storage-class-specifier
appears in a decl-specifier-seq, there can be no typedef specifier in the same decl-specifier-seq and the
init-declarator-list of the declaration shall not be empty (except for global anonymous unions, which shall
be declared static (9.5)). The storage-class-specifier applies to the name declared by each init-declara-
tor in the list and not to any names declared by other specifiers. A storage-class-specifier shall not be spec-
ified in an explicit specialization (14.7.3) or an explicit instantiation (14.7.2) directive.

The auto or register specifiers can be applied only to names of objects declared in a block (6.3) or to
function parameters (8.4). They specify that the named object has automatic storage duration (3.7.2). An
object declared without a storage-class-specifier at block scope or declared as a function parameter has
automatic storage duration by default. [Note: hence, the auto specifier is always redundant and not often
used; one use of auto is to distinguish a declaration-statement from an expression-statement explicitly
rather than relying on the disambiguation rules (6.8), which may aid readers. —end note]

A register specifier has the same semantics as an auto specifier together with a hint to the implemen-
tation that the object so declared will be heavily used. [Note: the hint can be ignored and in most imple-
mentations it will be ignored if the address of the object is taken. —end note]

The static specifier can be applied only to names of objects and functions and to anonymous unions
(9.5). There can be no static function declarations within a block, nor any static function parame-
ters. A static specifier used in the declaration of an object declares the object to have static storage
duration (3.7.1). A static specifier can be used in declarations of class members; 9.4 describes its effect.
For the linkage of a name declared with a stat ic specifier, see 3.5.

The extern specifier can be applied only to the names of objects and functions. The extexrn specifier
cannot be used in the declaration of class members or function parameters. For the linkage of a name
declared with an extern specifier, see 3.5.

A name declared in a namespace scope without a storage-class-specifier has external linkage unless it has
internal linkage because of a previous declaration and provided it is not declared const. Objects declared
const and not explicitly declared extern have internal linkage.

The linkages implied by successive declarations for a given entity shall agree. That is, within a given
scope, each declaration declaring the same object name or the same overloading of a function name shall
imply the same linkage. Each function in a given set of overloaded functions can have a different linkage,
however. [Example:

static char* f£(); // £ () hasinternal linkage
char* f() // £ () still has internal linkage
{ /* ... %/}
char* g(); // g () has external linkage
static char* g() // error: inconsistent linkage
{ /* ... %/}
void h{() ;

inline void h(); // external linkage

8

7-4 Declarations DRAFT: 11 April 2004 7.1.1 Storage class specifiers
inline void 1¢();
void 1(); // external linkage

inline void m() ;
extern void m() ; // external linkage

static void n{();

inline void n(); // internal linkage

static int a; // a has internal linkage
int a; // error: two definitions
static int b; // b has internal linkage
extern int b; // b still has internal linkage
int c; // c has external linkage
static int c; // error: inconsistent linkage
extern int d; // d has external linkage
static int 4d; // error: inconsistent linkage

—end example]

The name of a declared but undefined class can be used in an extern declaration. Such a declaration can
only be used in ways that do not require a complete class type. [Example:

struct S;

extern S a;
extern S f£();
extern void g(S);

void h{()
{
g(a); // error: S is incomplete
£0); // error: S is incomplete
}

—end example] The mutable specifier can be applied only to names of class data members (9.2) and
cannot be applied to names declared const or static, and cannot be applied to reference members.
[Example:

class X {
mutable const int* p; // OK
mutable int* const q; // ill-formed
}i

—end example]

The mutable specifier on a class data member nullifies a const specifier applied to the containing class
object and permits modification of the mutable class member even though the rest of the object is const
(7.1.5.2).

7.1.2 Function specifiers [dcl.fct.spec]
Function-specifiers can be used only in function declarations.
function-specifier:
inline
virtual
explicit

A function declaration (8.3.5, 9.3, 11.4) with an inline specifier declares an inline function. The inline
specifier indicates to the implementation that inline substitution of the function body at the point of call is

7.1.2 Function specifiers DRAFT: 11 April 2004 Declarations 7-5

to be preferred to the usual function call mechanism. An implementation is not required to perform this
inline substitution at the point of call; however, even if this inline substitution is omitted, the other rules for
inline functions defined by 7.1.2 shall still be respected.

A function defined within a class definition is an inline function. The inline specifier shall not appear on
a block scope function declaration.®” If the inline specifier is used in a friend declaration, that declara-
tion shall be a definition or the function shall have previously been declared inline.

An inline function shall be defined in every translation unit in which it is used and shall have exactly the
same definition in every case (3.2). [Note: a call to the inline function may be encountered before its defi-
nition appears in the translation unit.] If a function with external linkage is declared inline in one transla-
tion unit, it shall be declared inline in all translation units in which it appears; no diagnostic is required. An
inline function with external linkage shall have the same address in all translation units. A static
local variable in an extern inline function always refers to the same object. A string literal in an
extern inline function is the same object in different translation units.

The virtual specifier shall only be used in declarations of nonstatic class member functions that appear
within a member-specification of a class definition; see 10.3. |

The explicit specifier shall be used only in declarations of constructors within a class definition; see |
12.3.1.

7.1.3 The typedef specifier [dcl.typedef]

Declarations containing the decl-specifier typedef declare identifiers that can be used later for naming
fundamental (3.9.1) or compound (3.9.2) types. The typedef specifier shall not be used in a function-
definition (8.4), and it shall not be combined in a decl-specifier-seq with any other kind of specifier except a
type-specifier.
typedef-name:
identifier

A name declared with the typedef specifier becomes a typedef-name. Within the scope of its declaration,
a typedef-name is syntactically equivalent to a keyword and names the type associated with the identifier in
the way described in clause 8. A typedef-name is thus a synonym for another type. A typedef-name does
not introduce a new type the way a class declaration (9.1) or enum declaration does. [Example: after

typedef int MILES, *KLICKSP;
the constructions

MILES distance;
extern KLICKSP metricp;

are all correct declarations; the type of distance is int; that of metricp is “pointer to int.”]

In a given non-class scope, a typedef specifier can be used to redefine the name of any type declared in
that scope to refer to the type to which it already refers. [Example:

typedef struct s { /* ... */ } s;
typedef int I;

typedef int I;

typedef I I;

—end example]

In a given class scope, a typedef specifier can be used to redefine any class-name declared in that scope |
that is not also a typedef-name to refer to the type to which it already refers. [Example: |

80)TheinIinekeywordhasnoef‘fectontheIinkageofafunction.

7-6 Declarations DRAFT: 11 April 2004 7.1.3 The typedef specifier

struct S {
typedef struct A {} A; //OK
typedef struct B B; // OK
typedef A A; // error

}i
—end example]

In a given scope, a typedef specifier shall not be used to redefine the name of any type declared in that
scope to refer to a different type. [Example:

class complex { /* ... */ };
typedef int complex; // error: redefinition

—end example] Similarly, in a given scope, a class or enumeration shall not be declared with the same
name as a typedef-name that is declared in that scope and refers to a type other than the class or enumera-
tion itself. [Example:

typedef int complex;
class complex { /* ... */ }; / / error: redefinition

—end example]

[Note: A typedef-name that names a class type, or a cv-qualified version thereof, is also a class-name (9.1).
If a typedef-name is used to identify the subject of an elaborated-type-specifier (7.1.5.3), a class definition
(clause 9), a constructor declaration (12.1), or a destructor declaration (12.4), the program is ill-formed.]

[Example:

struct S {
SO
“S();
}i
typedef struct S T;
Sa-="T(; // OK
struct T * p; // error

—end example]

If the typedef declaration defines an unnamed class (or enum), the first typedef-name declared by the decla-
ration to be that class type (or enum type) is used to denote the class type (or enum type) for linkage pur-
poses only (3.5). [Example:

typedef struct { } *ps, S; // S is the class name for linkage purposes

—end example] [Note: if the typedef-name is used where a class-name (or enum-name) is required, the
program is ill-formed. For example,

typedef struct {
SO // error: requires a return type because S is

// an ordinary member function, not a constructor
} s;

—end note]

If a typedef TD names a type “reference to cvl s”, an attempt to create the type “reference to cv2 TD” cre-
ates the type “reference to cvl2 s”, where cv12 is the union of the cv-qualifiers cvl and cv2. Redundant

qualifiers are ignored. [Example:

int i;

typedef inté& RI;

RI& rl = i; // rl hasthetype int&
const RI& r2 = 1i; // r2 hasthetype const inté&

—end example]

7.1.3 The typedef specifier DRAFT: 11 April 2004 Declarations 7-7

7.1.4 The friend specifier [dcl.friend]
The £riend specifier is used to specify access to class members; see 11.4.
7.1.5 Type specifiers [dcl.type]

The type-specifiers are
type-specifier:

simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
typename-specifier
cv-qualifier

As a general rule, at most one type-specifier is allowed in the complete decl-specifier-seq of a declaration.
The only exceptions to this rule are the following:

— const or volatile can be combined with any other type-specifier. However, redundant cv-quali-
fiers are prohibited except when introduced through the use of typedefs (7.1.3) or template type argu-
ments (14.3), in which case the redundant cv-qualifiers are ignored.

— signedor unsigned can be combined with char, long, short, or int.
— short or 1long can be combined with int.
— long can be combined with double.

At least one type-specifier that is not %1cv-qualifier is required in a declaration unless it declares a construc-
tor, destructor or conversion function.

[Note: class-specifiers and enum-specifiers are discussed in clause 9 and 7.2, respectively. The remaining
type-specifiers are discussed in the rest of this section.]

7.1.5.1 The cv-qualifiers [dcl.type.cv]

There are two cv-qualifiers, const and volatile. If a cv-qualifier appears in a decl-specifier-seq, the
init-declarator-list of the declaration shall not be empty. [Note: 3.9.3 describes how cv-qualifiers affect
object and function types.]

An object declared in namespace scope with a const-qualified type has internal linkage unless it is explic-
itly declared extern or unless it was previously declared to have external linkage. A variable of non-
volatile const-qualified integral or enumeration type initialized by an integral constant expression can be
used in integral constant expressions (5.19). [Note: as described in 8.5, the definition of an object or subob-
ject of const-qualified type must specify an initializer or be subject to default-initialization.]

A pointer or reference to a cv-qualified type need not actually point or refer to a cv-qualified object, but it is
treated as if it does; a const-qualified access path cannot be used to modify an object even if the object ref-
erenced is a non-const object and can be modified through some other access path. [Note: cv-qualifiers are
supported by the type system so that they cannot be subverted without casting (5.2.11).]

Except that any class member declared mutable (7.1.1) can be modified, any attempt to modify a const
object during its lifetime (3.8) results in undefined behavior.

[Example:
const int ci = 3; // cv-qualified (initialized as required)
ci = 4; // ill-formed: attempt to modify const

81) There is no special provision for a decl-specifier-seq that lacks a type-specifier or that has a type-specifier that only specifies cv-
qualifiers. The “implicit int” rule of C is no longer supported.

7-8 Declarations

int i = 2;
const int* cip;
cip = &i;
*cip = 4;

int* ip;
ip = const cast<int*>(cip) ;
*ip = 4;

const int* cigq = new const int (3);
int* ig = const cast<int*>(ciq);

*ig = 4;

For another example

class X {
public:
mutable int i;
int j;
}i
class Y {
public:
X X;
Y(Q);

}i

const Y y;

V.X.1++;

V.X.j++;

Y* p = const cast<¥*>(&y);
p->x.1 = 99;

p->x.3 = 99;

—end example]

DRAFT: 11 April 2004

// not cv-qualified
// pointer to const int

7.1.5.1 The cv-qualifiers

// OK: cv-qualified access path to unqualified
// ill-formed: attempt to modify through ptr to const

// cast needed to convert const int* to int*
// defined: *ip pointsto i, a non-const object

// initialized as required
// cast required

// undefined: modifies a const object

// well-formed: mutable member can be modified
// ill-formed: const-qualified member modified

// cast away const-ness of y

// well-formed: mutable member can be modified

// undefined: modifies a const member

If an attempt is made to refer to an object defined with a volatile-qualified type through the use of an Ivalue

with a non-volatile-qualified type, the program behaviour is undefined.

[Note: volatile is a hint to the implementation to avoid aggressive optimization involving the object
because the value of the object might be changed by means undetectable by an implementation. See 1.9 for
detailed semantics. In general, the semantics of volatile are intended to be the same in G+ as they are

inC.]
7.1.5.2 Simple type specifiers

The simple type specifiers are

simple-type-specifier:

T igpe

nested-name-specifier,, type-name

: 1o Nested-name-specifier template template-id

char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

[dcl.type.simple]

7.1.5.2 Simple type specifiers

type-name:

class-name
enum-name
typedef-name

DRAFT: 11 April 2004

Declarations 7-9

The simple-type-specifiers specify either a previously-declared user-defined type or one of the fundamental
types (3.9.1). Table 7 summarizes the valid combinations of simple-type-specifiers and the types they spec-

ify.

Table 7—simple-type-specifiers and the types they specify

unsigned char
signed char

Specifier(s) Type
type-name the type named
char “char”

“unsigned char”
“signed char”

bool “bool”

unsigned “unsigned int”
unsigned int “unsigned int”
signed “int”

signed int “int”

int “int”

unsigned short int “unsigned short int”
unsigned short “unsigned short int”
unsigned long int “unsigned long int”
unsigned long “unsigned long int”

signed long int
signed long
long int

long

signed short int
signed short
short int

short

wchar t

float

double

long double
void

“long int”
“long int”
“long int”
“long int”
“short int”
“short int”
“short int”
“short int”
“wchar t”
“float”
“double”
“long double”
“void”

When multiple simple-type-specifiers are allowed, they can be freely intermixed with other decl-specifiers
in any order. It is implementation-defined whether bit-fields and objects of char type are represented as
signed or unsigned quantities. The signed specifier forces char objects and bit-fields to be signed; it is
redundant with other integral types.

7.1.5.3 Elaborated type specifiers [dcl.type.elab]

elaborated-type-specifier:
class-key : : . nested-name-specifier,, identifier
class-key :: ., nested-name-specifier,, template,, template-id
enum I, hested-name-specifier,, identifier

If an elaborated-type-specifier is the sole constituent of a declaration, the declaration is ill-formed unless it
is an explicit specialization (14.7.3), an explicit instantiation (14.7.2) or it has one of the following forms:

7-10 Declarations DRAFT: 11 April 2004 7.1.5.3 Elaborated type specifiers

class-key identifier ;
friend class-key ::...
friend class-key : :

friend class-key :: ..

friend class-key :: .,

identifier ;

template-id ;

nested-name-specifier identifier ;
nested-name-specifier template,, template-id ;

opt

3.4.4 describes how name lookup proceeds for the identifier in an elaborated-type-specifier. If the identifier
resolves to a class-name or enum-name, the elaborated-type-specifier introduces it into the declaration the
same way a simple-type-specifier introduces its type-name. If the identifier resolves to a typedef-name, the
elaborated-type-specifier is ill-formed. [Note: this implies that, within a class template with a template
type-parameter T, the declaration

friend class T;
is ill-formed.]

The class-key or enum keyword present in the elaborated-type-specifier shall agree in kind with the decla-
ration to which the name in the elaborated-type-specifier refers. This rule also applies to the form of elabo-
rated-type-specifier that declares a class-name or £riend class since it can be construed as referring to the
definition of the class. Thus, in any elaborated-type-specifier, the enum keyword shall be used to refer to
an enumeration (7.2), the union class-key shall be used to refer to a union (clause 9), and either the
class or struct class-key shall be used to refer to a class (clause 9) declared using the class or
struct class-key.

7.2 Enumeration declarations [dcl.enum]

An enumeration is a distinct type (3.9.1) with named constants. Its name becomes an enum-name, within
its scope.

enum-name:
identifier

enum-specifier:
enum identifiery, { enumerator-list,, }

enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition:
enumerator
enumerator = constant-expression

enumerator:
identifier

The identifiers in an enumerator-list are declared as constants, and can appear wherever constants are
required. An enumerator-definition with = gives the associated enumerator the value indicated by the con-
stant-expression. The constant-expression shall be of integral or enumeration type. If the first enumerator
has no initializer, the value of the corresponding constant is zero. An enumerator-definition without an ini-
tializer gives the enumerator the value obtained by increasing the value of the previous enumerator by one.

[Example:

enum { a, b, c=0 };
enum { d, e, f=e+2 };

defines a, ¢, and d to be zero, b and e to be 1, and £ to be 3.]

The point of declaration for an enumerator is immediately after its enumerator-definition. [Example:

10

7.2 Enumeration declarations DRAFT: 11 April 2004 Declarations 7-11

const int x = 12;
{ enum { x = x }; }

Here, the enumerator x is initialized with the value of the constant x, namely 12.]

Each enumeration defines a type that is different from all other types. Following the closing brace of an
enum-specifier, each enumerator has the type of its enumeration. Prior to the closing brace, the type of
each enumerator is the type of its initializing value. If an initializer is specified for an enumerator, the ini-
tializing value has the same type as the expression. If no initializer is specified for the first enumerator, the
type is an unspecified integral type. Otherwise the type is the same as the type of the initializing value of
the preceding enumerator unless the incremented value is not representable in that type, in which case the
type is an unspecified integral type sufficient to contain the incremented value.

The underlying type of an enumeration is an integral type that can represent all the enumerator values
defined in the enumeration. If no integral type can represent all the enumerator values, the enumeration is
ill-formed. It is implementation-defined which integral type is used as the underlying type for an enumera-
tion except that the underlying type shall not be larger than int unless the value of an enumerator cannot
fitinan int or unsigned int. If the enumerator-list is empty, the underlying type is as if the enumer-
ation had a single enumerator with value 0. The value of sizeof () applied to an enumeration type, an
object of enumeration type, or an enumerator, is the value of sizeof () applied to the underlying type.

For an enumeration where e,;, is the smallest enumerator and e, is the largest, the values of the enumera-
tion are the values of the underlying type in the range b, t0 bnax, Where b,y and b,., are, respectively,
the smallest and largest values of the smallest bit-field that can store e, and €. It is possible to define
an enumeration that has values not defined by any of its enumerators.

Two enumeration types are layout-compatible if they have the same underlying type.

The value of an enumerator or an object of an enumeration type is converted to an integer by integral pro-
motion (4.5). [Example:

enum color { red, yellow, green=20, blue };

color col = red;
color* cp = &col;
if (*cp == blue) // ..

makes color a type describing various colors, and then declares col as an object of that type, and cp as a
pointer to an object of that type. The possible values of an object of type color are red, yellow,
green, blue; these values can be converted to the integral values 0, 1, 20, and 21. Since enumerations
are distinct types, objects of type color can be assigned only values of type color.

color ¢ = 1; // error: type mismatch,
// no conversion from int to color

int i = yellow; // OK: yellow converted to integral value 1
// integral promotion

—end example]

An expression of arithmetic or enumeration type can be converted to an enumeration type explicitly. The
value is unchanged if it is in the range of enumeration values of the enumeration type; otherwise the result-
ing enumeration value is unspecified.

The enum-name and each enumerator declared by an enum-specifier is declared in the scope that immedi-
ately contains the enum-specifier. These names obey the scope rules defined for all names in (3.3) and
(3.4). An enumerator declared in class scope can be referred to using the class member access operators
(::, . (dot) and -> (arrow)), see 5.2.5. [Example:

82) On a two’s-complement machine, bn,ax is the smallest value greater than or equal to max(abs(emin) — 1, abs(enmax)) of the form
2M —1; bpin is zero if emin is Non-negative and —(bmay + 1) otherwise.

7-12 Declarations DRAFT: 11 April 2004 7.2 Enumeration declarations

class X {
public:
enum direction { left='1l’, right='r’ };
int £ (int 1)
{ return i==left ? 0 : i==right ? 1 : 2; }

}i
void g(X* p)
direction d; // error: direction not in scope
int i;
i = p->f(left); // error: left notin scope
i = p->f(X::right); // OK
i = p->f(p->left); // OK
/]

}

—end example]
7.3 Namespaces [basic.namespace]

A namespace is an optionally-named declarative region. The name of a namespace can be used to access
entities declared in that namespace; that is, the members of the namespace. Unlike other declarative
regions, the definition of a namespace can be split over several parts of one or more translation units.

The outermost declarative region of a translation unit is a namespace; see 3.3.5.
7.3.1 Namespace definition [namespace.def]
The grammar for a namespace-definition is

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-definition:
named-namespace-definition
unnamed-namespace-definition

named-namespace-definition:
original-namespace-definition
extension-namespace-definition

original-namespace-definition:
namespace identifier { namespace-body }

extension-namespace-definition:
namespace original-namespace-name { namespace-body }

unnamed-namespace-definition:
namespace { namespace-body }

namespace-body:
declaration-sedy

The identifier in an original-namespace-definition shall not have been previously defined in the declarative
region in which the original-namespace-definition appears. The identifier in an original-namespace-defini-
tion is the name of the namespace. Subsequently in that declarative region, it is treated as an original-
namespace-name.

7.3.1 Namespace definition DRAFT: 11 April 2004 Declarations 7-13

The original-namespace-name in an extension-namespace-definition shall have previously been defined in
an original-namespace-definition in the same declarative region.

Every namespace-definition shall appear in the global scope or in a namespace scope (3.3.5).

Because a hamespace-definition contains declarations in its namespace-body and a namespace-definition is
itself a declaration, it follows that namespace-definitions can be nested. [Example:

namespace Outer

int 1i;
namespace Inner {
void £() { i++; } // Outer: :i
int i;
void g() { i++; } // Inner::1i
}
}
—end example]
7.3.1.1 Unnamed namespaces [namespace.unnamed]

An unnamed-namespace-definition behaves as if it were replaced by

namespace unique { /* empty body */ }
using namespace unique;
namespace unique { namespace-body }

where all occurrences of unique in a translation unit are replaced by the same identifier and this identifier
differs from all other identifiers in the entire program.83) [Example:

namespace { int 1i; } // unique: :i
void £() { i++; } // unique: :i++

namespace A {
namespace {

int i; // A::unique: : i
int j; // A: :unique: :j
}
void g{() { 1++; } // A::unique: : i++
}
using namespace A;
void h() {
i++; // error: unique: :i or A: :unique: : i
A::i++; // A::unique: : i
J++; // A: :unique: :j
}

—end example]

The use of the static keyword is deprecated when declaring objects in a namespace scope (see annex D);
the unnamed-namespace provides a superior alternative.

7.3.1.2 Namespace member definitions [namespace.memdef]

Members (including explicit specializations of templates (14.7.3)) of a namespace can be defined within
that namespace. [Example:

namespace X {
void £() { /* ... */ }
}
—end example]

83) Although entities in an unnamed namespace might have external linkage, they are effectively qualified by a name unique to their
translation unit and therefore can never be seen from any other translation unit.

7-14 Declarations DRAFT: 11 April 2004 7.3.1.2 Namespace member definitions

Members (including explicit specializations of templates (14.7.3)) of a named namespace can also be
defined outside that namespace by explicit qualification (3.4.3.2) of the name being defined, provided that
the entity being defined was already declared in the namespace and the definition appears after the point of
declaration in a namespace that encloses the declaration’s namespace. [Example:

namespace Q {
namespace V {

void f£();
}
void V::£() { /* ... %/} // OK
void V::g() { /* ... %/} // error: g () is not yet a member of v
namespace V {
void g() ;
}
}
namespace R {
void Q::V::g() { /* ... */ } // error: R doesn’t enclose Q

}
—end example]

Every name first declared in a namespace is a member of that namespace. If a friend declaration in a
non-local class first declares a class or function® the friend class or function is a member of the innermost
enclosing namespace. The name of the friend is not found by simple name lookup until a matching decla-
ration is provided in that namespace scope (either before or after the class definition granting friendship). If
a friend function is called, its name may be found by the name lookup that considers functions from name-
spaces and classes associated with the types of the function arguments (3.4.2). When looking for a prior
declaration of a class or a function declared as a £riend, and when the name of the friend class or
function is neither a qualified name nor a template-id, scopes outside the innermost enclosing namespace
scope are not considered. [Example:

// Assume £ and g have not yet been defined.
void h(int) ;

template <class T> void £2(T);
namespace A {

class X {
friend void £ (X); // A:: £ (X) isafriend
class Y {
friend void g{() ; // A::gisafriend
friend void h(int) ; // A::hisafriend
// : :hnot considered
friend void f2<>(int); // ::f2<>(int) isa friend
}i
}i
//A::f,A::gand A: :h are not visible here
X x;
void g() { £(x); } // definition of A: : g
void £(X) { /* ... */} // definitionof A: : £
void h(int) { /* ... */ } // definition of A: :h

//A::f,A::gand A: :h are visible here and known to be friends

84) this implies that the name of the class or function is unqualified.

7.3.1.2 Namespace member definitions DRAFT: 11 April 2004 Declarations 7-15

using A::x;

void h{()
{
A::f(x);
A::X::f(x); // error: £ is not a member of A: : X
A::X::Y::g(); // error: g isnotamember of A: :X::Y
}
—end example]
7.3.2 Namespace alias [namespace.alias]

A namespace-alias-definition declares an alternate name for a namespace according to the following gram-
mar:

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
- opt NESted-name-specifier,,, namespace-name

The identifier in a namespace-alias-definition is a synonym for the name of the namespace denoted by the
qualified-namespace-specifier and becomes a namespace-alias. [Note: when looking up a namespace-
name in a namespace-alias-definition, only namespace names are considered, see 3.4.6.]

In a declarative region, a namespace-alias-definition can be used to redefine a hamespace-alias declared in
that declarative region to refer only to the namespace to which it already refers. [Example: the following
declarations are well-formed:

namespace Company with very long name { VA }
namespace CWVLN = Company with very long name;
namespace CWVLN = Company with very long name; // OK: duplicate

namespace CWVLN = CWVLN;
—end example]

A namespace-name or namespace-alias shall not be declared as the name of any other entity in the same
declarative region. A namespace-name defined at global scope shall not be declared as the name of any
other entity in any global scope of the program. No diagnostic is required for a violation of this rule by
declarations in different translation units.

7.3.3 The using declaration [namespace.udecl]

A using-declaration introduces a name into the declarative region in which the using-declaration appears.
That name is a synonym for the name of some entity declared elsewhere.

using-declaration:
using typename,, ::gpc
using :: unqualified-id ;

nested-name-specifier unqualified-id ;

The member name specified in a using-declaration is declared in the declarative region in which the using-
declaration appears. [Note: only the specified name is so declared; specifying an enumeration name in a
using-declaration does not declare its enumerators in the using-declaration’s declarative region.]

Every using-declaration is a declaration and a member-declaration and so can be used in a class definition.
[Example:

7-16 Declarations DRAFT: 11 April 2004 7.3.3 The using declaration

struct B {
void f (char);
void g(char) ;
enum E { e };
union { int x; };

Vi
struct D : B {

using B::f;

void f(int) { £('c’); } // callsB: : f (char)

void g(int) { g(’c’); } // recursively callsD: : g (int)
}i

—end example]

In a using-declaration used as a member-declaration, the nested-name-specifier shall name a base class of |
the class being defined. Such a using-declaration introduces the set of declarations found by member name |

lookup (10.2, 3.4.3.1). [Example:

class C {

int g();

}i

class D2 : public B {
using B::f; // OK: B is a base of D2
using B::e; // OK: e is an enumerator of base B
using B::x; // OK: x is a union member of base B
using C::g; // error: Cisn’t a base of D2

}i

—end example] [Note: since constructors and destructors do not have names, a using-declaration cannot
refer to a constructor or a destructor for a base class. Since specializations of member templates for conver-
sion functions are not found by name lookup, they are not considered when a using-declaration specifies a
conversion function (14.5.2).] If an assignment operator brought from a base class into a derived class
scope has the signature of a copy-assignment operator for the derived class (12.8), the using-declaration
does not by itself suppress the implicit declaration of the derived class copy-assignment operator; the copy-
assignment operator from the base class is hidden or overridden by the implicitly-declared copy-assignment
operator of the derived class, as described below.

A using-declaration shall not name a template-id. [Example:

class A {
public:
template <class T> void £ (T);
template <class T> struct X { };
}i
class B : public A {
public:
using A::f<double>; // ill-formed
using A::X<int>; // ill-formed

i
—end example]
A using-declaration for a class member shall be a member-declaration. [Example:

struct X {
int i;
static int s;

}i

7.3.3 The using declaration DRAFT: 11 April 2004 Declarations 7-17

void f()
{
using X::1i; // error: X: : i is a class member
// and this is not a member declaration.
using X::s; // error: X: : s is a class member
// and this is not a member declaration.
1

—end example]

Members declared by a using-declaration can be referred to by explicit qualification just like other member
names (3.4.3.2). In a using-declaration, a prefix : : refers to the global namespace. [Example:

void £();

namespace A {

void g () ;

}

namespace X {
using ::f; // global £
using A::g; //Asg

}

void h{()

{
X::£(); //calls :: £
X::9(); //callsa: :g

}

—end example]

A using-declaration is a declaration and can therefore be used repeatedly where (and only where) multiple
declarations are allowed. [Example:

namespace A {
int i;
}

namespace Al {
using A::i;

using A::1i; // OK: double declaration
}
void f£()
{ . .
using A::1;
using A::i; // error: double declaration
}
class B {
public:
int 1i;
}i

class X : public B {

using B::i;

using B::1i; // error: double member declaration
}i

—end example]

The entity declared by a using-declaration shall be known in the context using it according to its definition
at the point of the using-declaration. Definitions added to the namespace after the using-declaration are

10

7-18 Declarations DRAFT: 11 April 2004 7.3.3 The using declaration

not considered when a use of the name is made. [Example:

namespace A {
void f (int) ;
}

using A::f; // £isasynonymfor A: : f;
// thatis, for A: : £ (int).
namespace A {
void f (char) ;

}
void foo()
{
£(ra’); // calls £ (int),
} // eventhough f (char) exists.
void bar ()
{
using A::f; // fisasynonym for A: : f;
// thatis, forA: : £ (int) and A: : £ (char).
f('a’); // calls £ (char)
!

—end example] [Note: partial specializations of class templates are found by looking up the primary class
template and then considering all partial specializations of that template. If a using-declaration names a
class template, partial specializations introduced after the using-declaration are effectively visible because
the primary template is visible (14.5.4).]

Since a using-declaration is a declaration, the restrictions on declarations of the same name in the same
declarative region (3.3) also apply to using-declarations. [Example:

namespace A {
int x;
}

namespace B {
int i;
struct g { };
struct x { };
void f (int) ;
void f (double) ;

void g(char) ; // OK: hides struct g
1
void func ()
{ . .
int 1;
using B::i; // error: i declared twice
void f (char) ;
using B::f; // OK: each £ is a function
£(3.5); //callsB: : f (double)
using B::g;
g('a’); // callsB: :g(char)
struct g gl; // gl hasclasstypeB: :g
using B::x;
using A::x; // OK: hides struct B: :x
X = 99; // assignstoA: :x
struct x x1; // x1 hasclasstype B: :x
}

—end example]

11

12

7.3.3 The using declaration DRAFT: 11 April 2004 Declarations 7-19

If a function declaration in namespace scope or block scope has the same name and the same parameter
types as a function introduced by a using-declaration, and the declarations do not declare the same func-
tion, the program is ill-formed. [Note: two using-declarations may introduce functions with the same name
and the same parameter types. If, for a call to an unqualified function name, function overload resolution
selects the functions introduced by such using-declarations, the function call is ill-formed.

[Example:

namespace B {
void f (int) ;
void f (double) ;
}
namespace C {
void f (int) ;
void f (double) ;
void f (char) ;

1
void h()
{
using B::f; //B::f(int) andB: : f (double)
using C::f; // C::£(int), C::f (double),and C: : £ (char)
£('h"); //callsC: : f (char)
£(1); // error: ambiguous: B: : £ (int) orC: : f (int) ?
void f (int) ; // error:
// £ (int) conflictswith C: : £ (int) and B: : £ (int)
1

—end example]]

When a using-declaration brings names from a base class into a derived class scope, member functions and
member function templates in the derived class override and/or hide member functions and member func-
tion templates with the same name, parameter-type-list (8.3.5), and cv-qualification in a base class (rather
than conflicting). [Example:

struct B {
virtual void f (int);
virtual void f (char) ;
void g(int) ;
void h(int) ;

}i

struct D : B {
using B::f;

void f (int) ; // OK:D::f (int) overridesB: : £ (int);

using B::g;

void g(char) ; // OK
using B::h;
void h(int) ; // OK:D::h(int) hidesB: :h (int)
}i
void k(D* p)
{
p->f(1); //callsD: :f (int)
p->£('a’); // callsB: : f (char)
p->g(1); //callsB: :g(int)
p->g(’a’); //callsD: :g(char)
i

—end example] [Note: two using-declarations may introduce functions with the same name and the same
parameter types. If, for a call to an unqualified function name, function overload resolution selects the

13

14

15

16

17

7-20 Declarations DRAFT: 11 April 2004 7.3.3 The using declaration

functions introduced by such using-declarations, the function call is ill-formed.]

For the purpose of overload resolution, the functions which are introduced by a using-declaration into a
derived class will be treated as though they were members of the derived class. In particular, the implicit
this parameter shall be treated as if it were a pointer to the derived class rather than to the base class.
This has no effect on the type of the function, and in all other respects the function remains a member of the
base class.

All instances of the name mentioned in a using-declaration shall be accessible. In particular, if a derived
class uses a using-declaration to access a member of a base class, the member name shall be accessible. If
the name is that of an overloaded member function, then all functions named shall be accessible. The base
class members mentioned by a using-declaration shall be visible in the scope of at least one of the direct
base classes of the class where the using-declaration is specified. [Note: because a using-declaration des-
ignates a base class member (and not a member subobject or a member function of a base class subobject),
a using-declaration cannot be used to resolve inherited member ambiguities. For example,

struct A { int x(); };
struct B : A { };
struct C : A {

using A::x;

int x(int) ;

}i

struct D : B, C {
using C::x;
int x(double) ;

i
int £(D* d) {
return d->x(); // ambiguous: B: :x Or C: :x
}
]
The alias created by the using-declaration has the usual accessibility for a member-declaration. [Example:
class A {
private:
void f (char) ;
public:
void f (int) ;
protected:
void g();
}i
class B : public A {
using A::f; // error: A: : £ (char) isinaccessible
public:
using A::g; // B::gisapublic synonymfor A: :g
}i

—end example]

[Note: use of access-declarations (11.3) is deprecated; member using-declarations provide a better alterna-
tive.]

If a using-declaration uses the keyword typename and specifies a dependent name (14.6.2), the name
introduced by the using-declaration is treated as a typedef-name (7.1.3).

7.3.4 Using directive DRAFT: 11 April 2004 Declarations 7-21

7.3.4 Using directive [namespace.udir]

using-directive:

using namespace nested-name-specifier,, namespace-name ;

D iopt

A using-directive shall not appear in class scope, but may appear in namespace scope or in block scope.
[Note: when looking up a namespace-name in a using-directive, only namespace names are considered, see
3.4.6.]

A using-directive specifies that the names in the nominated namespace can be used in the scope in which
the using-directive appears after the using-directive. During unqualified name lookup (3.4.1), the names
appear as if they were declared in the nearest enclosing namespace which contains both the using-directive
and the nominated namespace. [Note: in this context, “contains” means “contains directly or indirectly”.]
A using-directive does not add any members to the declarative region in which it appears. [Example:

namespace A {
int 1i;
namespace B {
namespace C
int i;
}

using namespace A::B::C;
void £1() {
i=5; // OK, C: :1visible in B and hides A: : 1
}
}

namespace D {
using namespace B;
using namespace C;
void f2() {

i =5; // ambiguous, B: : C: : 1 OrA: :i?
1
}
void £3() {
i =5; // USeSA: :i
1
}
void f4 () {
i = 5; // ill-formed; neither 1 is visible
1

The using-directive is transitive: if a scope contains a using-directive that nominates a second namespace
that itself contains using-directives, the effect is as if the using-directives from the second namespace also
appeared in the first. [Example:

namespace M {
int i;
}

namespace N {
int i;
using namespace M;

}

void £ ()

{

using namespace N;
i=7; // error:bothM: : 1 and N: : 1 are visible

7-22 Declarations DRAFT: 11 April 2004 7.3.4 Using directive

For another example,

namespace A {

int 1i;
}
namespace B {
int i;
int j;
namespace C {
namespace D {
using namespace A;
int j;
int k;
int a = i; //B::ihidesA: :i
}
using namespace D;
int k = 89; // no problem yet
int 1 = k; // ambiguous: C: :korD: :k
int m = 1i; //B::1ihidesA::1i
int n = j; //D::3hidesB: : 7
}
}

—end example]

If a namespace is extended by an extension-namespace-definition after a using-directive for that namespace
is given, the additional members of the extended namespace and the members of namespaces nominated by
using-directives in the extension-namespace-definition can be used after the extension-namespace-defini-

tion.

If name lookup finds a declaration for a name in two different namespaces, and the declarations do not
declare the same entity and do not declare functions, the use of the name is ill-formed. [Note: in particular,
the name of an object, function or enumerator does not hide the name of a class or enumeration declared in

a different namespace. For example,

namespace A {
class X { };
extern "C" int g();
extern "C++" int h{();
}
namespace B {
void X (int) ;
extern "C" int g();
extern "C++" int h{();
}
using namespace A;
using namespace B;

void £() {
X (1) ; // error: name X found in two namespaces
g(); // okay: name g refers to the same entity
h(); // error: name h found in two namespaces
1
—end note]

During overload resolution, all functions from the transitive search are considered for argument matching.
The set of declarations found by the transitive search is unordered. [Note: in particular, the order in which
namespaces were considered and the relationships among the namespaces implied by the using-directives
do not cause preference to be given to any of the declarations found by the search.] An ambiguity exists if
the best match finds two functions with the same signature, even if one is in a namespace reachable through

7.3.4 Using directive DRAFT: 11 April 2004 Declarations 7-23

using-directives in the namespace of the other.%

[Example:

namespace D
int di;
void f (char) ;

}

using namespace D;

int di; // OK: no conflictwithD: :d1

namespace E
int e;
void f (int) ;

1
namespace D { // hamespace extension
int d2;
using namespace E;
void f (int) ;
}
void f ()
{
dl++; // error: ambiguous : :d1orD: :d1?
c:dl++; // OK
D::dl++; // OK
d2++; // OK:D::d2
e++; //OK:E::e
£(1); // error: ambiguous: D: : £ (int) OrE: : £ (int)?
f(ra’); // OK:D: : f (char)
!

—end example]
7.4 The asm declaration [dcl.asm]

An asm declaration has the form

asm-definition:
asm (string-literal) ;

The meaning of an asm declaration is implementation-defined. [Note: Typically it is used to pass informa-
tion through the implementation to an assembler.]

7.5 Linkage specifications [dcl.link]

All function types, function names with external linkage, and variable names with external linkage have a
language linkage. [Note: Some of the properties associated with an entity with language linkage are spe-
cific to each implementation and are not described here. For example, a particular language linkage may be
associated with a particular form of representing names of objects and functions with external linkage, or
with a particular calling convention, etc.] The default language linkage of all function types, function
names, and variable names is C+ language linkage. Two function types with different language linkages
are distinct types even if they are otherwise identical.

Linkage (3.5) between C+ and non-C+ code fragments can be achieved using a linkage-specification:

%)DwMgmmebmmpmad%smﬂmmysmmammmmmsmwbemeWbymeamgwmmaomnmermmsmeMMr
along some paths (10.2). There is no such disambiguation when considering the set of names found as a result of following using-
directives.

7-24 Declarations DRAFT: 11 April 2004 7.5 Linkage specifications

linkage-specification:
extern string-literal { declaration-seqqy }
extern string-literal declaration

The string-literal indicates the required language linkage. The meaning of the string-literal is implementa-
tion-defined. A linkage-specification with a string that is unknown to the implementation is ill-formed.
When the string-literal in a linkage-specification names a programming language, the spelling of the pro-
gramming language’s name is implementation-defined. [Note: it is recommended that the spelling be taken
from the document defining that language, for example Ada (not ADA) and Fortran Or FORTRAN
(depending on the vintage). The semantics of a language linkage other than C+ or C are implementation-
defined.]

Every implementation shall provide for linkage to functions written in the C programming language, "C",
and linkage to G+ functions, "C++". [Example:

complex sqgrt (complex) ; // C+ linkage by default
extern "C" {

double sqgrt (double) ; // C linkage
}

—end example]

Linkage specifications nest. When linkage specifications nest, the innermost one determines the language
linkage. A linkage specification does not establish a scope. A linkage-specification shall occur only in
namespace scope (3.3). In a linkage-specification, the specified language linkage applies to the function
types of all function declarators, function names with external linkage, and variable names with external
linkage declared within the linkage-specification. [Example:

extern "C" void f1 (void(*pf) (int)) ;
// the name £1 and its function type have C language
// linkage; p£ is a pointer to a C function

extern "C" typedef void FUNC() ;

FUNC f2; // the name £2 has G+ language linkage and the
// function’s type has C language linkage

extern "C" FUNC f£3; // the name of function £3 and the function’s type
// have C language linkage

void (*pf2) (FUNC*) ; // the name of the variable p£2 has G+ linkage and

// the type of p£2 is pointer to C++ function that
// takes one parameter of type pointer to C function
extern "C" {
static void f4(); // the name of the function £4 has internal linkage
// (not C language linkage) and the function’s type
// has C language linkage.

}
extern "C" void f£5() {
extern void £f4 () ; // OK: Name linkage (internal) and function type
// linkage (C language linkage) gotten from
// previous declaration.
}
extern void f4(); // OK: Name linkage (internal) and function type

// linkage (C language linkage) gotten from
// previous declaration.

void f6() {
extern void f4 () ; // OK: Name linkage (internal) and function type
// linkage (C language linkage) gotten from
// previous declaration.

}

—end example] A C language linkage is ignored for the names of class members and the member function
type of class member functions. [Example:

7.5 Linkage specifications DRAFT: 11 April 2004 Declarations 7-25

extern "C" typedef void FUNC c () ;
class C {
void mfl (FUNC_c*) ; // the name of the function m£1 and the member
// function’s type have G+ language linkage; the
// parameter has type pointer to C function

FUNC ¢ mf2; // the name of the function m£2 and the member
// function’s type have C+ language linkage
static FUNC c* g; // the name of the data member g has C+ language

// linkage and the data member’s type is pointer to
// C function

}i
extern "C" {
class X {
void mf () ; // the name of the function mf and the member
// function’s type have C+ language linkage
void mf2 (void(*) ()) ; // the name of the function m£2 has C+ language
// linkage; the parameter has type pointer to
// C function
}i

}

—end example]

If two declarations of the same function or object specify different linkage-specifications (that is, the link-
age-specifications of these declarations specify different string-literals), the program is ill-formed if the
declarations appear in the same translation unit, and the one definition rule (3.2) applies if the declarations
appear in different translation units. Except for functions with G+ linkage, a function declaration without a
linkage specification shall not precede the first linkage specification for that function. A function can be
declared without a linkage specification after an explicit linkage specification has been seen; the linkage
explicitly specified in the earlier declaration is not affected by such a function declaration.

At most one function with a particular name can have C language linkage. Two declarations for a function
with C language linkage with the same function name (ignoring the namespace names that qualify it) that
appear in different namespace scopes refer to the same function. Two declarations for an object with C lan-
guage linkage with the same name (ignoring the namespace names that qualify it) that appear in different
namespace scopes refer to the same object. [Note: because of the one definition rule (3.2), only one defini-
tion for a function or object with C linkage may appear in the program; that is, such a function or object
must not be defined in more than one namespace scope. For example,

namespace A {
extern "C" int £();
extern "C" int g() { return 1; }
extern "C" int h();

}
namespace B {
extern "C" int f£(); //A::fandB: : f refer
// to the same function
extern "C" int g() { return 1; } // ill-formed, the function g

// with C language linkage
// has two definitions

}

int A::f() { return 98; } // definition for the function £
// with C language linkage
extern "C" int h() { return 97; }
// definition for the function h
// with C language linkage
// A::hand : :h refer to the same function

—end note]

7-26 Declarations DRAFT: 11 April 2004 7.5 Linkage specifications

A declaration directly contained in a linkage-specification is treated as if it contains the extern specifier
(7.1.1) for the purpose of determining the linkage of the declared name and whether it is a definition. Such
a declaration shall not specify a storage class. [Example:

extern "C" double f();

static double £(); // error
extern "C" int 1i; // declaration
extern "C" {

int 1i; // definition
}
extern "C" static void g(); // error

—end example]

[Note: because the language linkage is part of a function type, when a pointer to C function (for example) is
dereferenced, the function to which it refers is considered a C function.]

Linkage from C+ to objects defined in other languages and to objects defined in C+ from other languages
is implementation-defined and language-dependent. Only where the object layout strategies of two lan-
guage implementations are similar enough can such linkage be achieved.

8 Declarators [dcl.decl]

A declarator declares a single object, function, or type, within a declaration. The init-declarator-list
appearing in a declaration is a comma-separated sequence of declarators, each of which can have an initial-
izer.

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializery,

The two components of a declaration are the specifiers (decl-specifier-seq; 7.1) and the declarators (init-
declarator-list). The specifiers indicate the type, storage class or other properties of the objects, functions
or typedefs being declared. The declarators specify the names of these objects, functions or typedefs, and
(optionally) modify the type of the specifiers with operators such as * (pointer to) and () (function return-
ing). Initial values can also be specified in a declarator; initializers are discussed in 8.5 and 12.6.

Each init-declarator in a declaration is analyzed separately as if it was in a declaration by itself.5%

Declarators have the syntax

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clause) cv-qualifier-seq,, exception-specification,,
direct-declarator [constant-expressiong,]
(declarator)

86) A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a single
declarator. That is

T D1, D2, ... Dn;
is usually equvalent to

T D1; T D2; ... T Dn;

where T is a decl-specifier-seq and each D1 is a init-declarator. The exception occurs when a name introduced by one of the declara-
tors hides a type name used by the dcl-specifiers, so that when the same dcl-specifiers are used in a subsequent declaration, they do not
have the same meaning, as in

struct S { ... };
s S, T; // declare two instances of struct S

which is not equivalent to

struct S { ... };
S S;
s T; // error

8-2 Declarators DRAFT: 11 April 2004 8 Declarators

ptr-operator:
* cv-qualifier-seqqy,
&
: 1 opy NESted-name-specifier * cv-qualifier-seq,y

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqqy

cv-qualifier:
const
volatile

declarator-id:
id-expression
: 1 opy NEsted-name-specifier,,, class-name

A class-name has special meaning in a declaration of the class of that name and when qualified by that
name using the scope resolution operator : : (5.1, 12.1, 12.4).

8.1 Type names [dcl.name]

To specify type conversions explicitly, and as an argument of sizeof, new, or typeid, the name of a
type shall be specified. This can be done with a type-id, which is syntactically a declaration for an object or
function of that type that omits the name of the object or function.

type-id:
type-specifier-seq abstract-declaratory,

type-specifier-seq:
type-specifier type-specifier-sedqy

abstract-declarator:
ptr-operator abstract-declarator
direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declarator,
(parameter-declaration-clause) cv-qualifier-seq,, exception-specification,
direct-abstract-declarator,, [constant-expressiong,]
(abstract-declarator)

It is possible to identify uniquely the location in the abstract-declarator where the identifier would appear
if the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. [Example:

int // int i

int * // int *pi

int *[3] // int *p[3]

int (*) [3] // int (*p3i) [3]

int * () // int *£f ()

int (*) (double) // int (*pf) (double)

name respectively the types “int,” “pointer to int,” “array of 3 pointers to int,” “pointer to array of 3
int,” “function of (no parameters) returning pointer to int,” and “pointer to a function of (double)
returning int.”]

A type can also be named (often more easily) by using a typedef (7.1.3).

8.2 Ambiguity resolution DRAFT: 11 April 2004 Declarators 8-3

8.2 Ambiguity resolution [dcl.ambig.res]

The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8
can also occur in the context of a declaration. In that context, the choice is between a function declaration
with a redundant set of parentheses around a parameter name and an object declaration with a function-
style cast as the initializer. Just as for the ambiguities mentioned in 6.8, the resolution is to consider any
construct that could possibly be a declaration a declaration. [Note: a declaration can be explicitly disam-
biguated by a nonfunction-style cast, by a = to indicate initialization or by removing the redundant paren-
theses around the parameter name.] [Example:

struct S {

S (int) ;

}i

void foo (double a)

{
S w(int(a)); // function declaration
S x(int ()); // function declaration
S y((int)a) ; // object declaration
S z = int(a); // object declaration

}
—end example]

The ambiguity arising from the similarity between a function-style cast and a type-id can occur in different
contexts. The ambiguity appears as a choice between a function-style cast expression and a declaration of a
type. The resolution is that any construct that could possibly be a type-id in its syntactic context shall be
considered a type-id.

[Example:
#include <cstddefs>
char *p;
void *operator new(std::size t, int);
void foo() {
const int x = 63;
new (int (*p)) int; // new-placement expression
new (int (*[x])); // new type-id
}
For another example,
template <class T>
struct S {
T *p;
}i _
S<int () > x; // type-id
S<int (1) > vy; // expression (ill-formed)
For another example,
void foo()
{
sizeof (int (1)) ; // expression
sizeof (int ()) ; // type-id (ill-formed)

}

For another example,

8-4 Declarators DRAFT: 11 April 2004 8.2 Ambiguity resolution

void foo ()
{

(int (1)) ; // expression

(int ()) 1; // type-id (ill-formed)
}

—end example]

Another ambiguity arises in a parameter-declaration-clause of a function declaration, or in a type-id that is
the operand of a sizeof or typeid operator, when a type-name is nested in parentheses. In this case,
the choice is between the declaration of a parameter of type pointer to function and the declaration of a
parameter with redundant parentheses around the declarator-id. The resolution is to consider the type-
name as a simple-type-specifier rather than a declarator-id. [Example:

class C { };
void f(int(C)) { } //void £ (int (*fp) (Cc)) { }
// not: void £ (int C) ;

int g(C);

void foo() {
£(1); // error: cannot convert 1 to function pointer
f(g); // OK

1

For another example,

class C { };
void h(int *(C[10])); // voidh(int * (*_fp) (C_parm[10])) ;
// not: void h (int *C[10]) ;

—end example]
8.3 Meaning of declarators [dcl.meaning]

A list of declarators appears after an optional (clause 7) decl-specifier-seq (7.1). Each declarator contains
exactly one declarator-id; it names the identifier that is declared. An unqualified-id occurring in a
declarator-id shall be a simple identifier except for the declaration of some special functions (12.3, 12.4,
13.5) and for the declaration of template specializations or partial specializations (14.7). A declarator-id
shall not be qualified except for the definition of a member function (9.3) or static data member (9.4) out-
side of its class, the definition or explicit instantiation of a function or variable member of a namespace out-
side of its namespace, or the definition of a previously declared explicit specialization outside of its name-
space, or the declaration of a friend function that is a member of another class or namespace (11.4). When
the declarator-id is qualified, the declaration shall refer to a previously declared member of the class or
namespace to which the qualifier refers, and the member shall not have been introduced by a using-declara-
tion in the scope of the class or namespace nominated by the nested-name-specifier of the declarator-id.
[Note: if the qualifier is the global : : scope resolution operator, the declarator-id refers to a name declared
in the global namespace scope.]

An auto, static, extern, register, mutable, friend, inline, virtual, or typedef spec-
ifier applies directly to each declarator-id in a init-declarator-list; the type specified for each declarator-id
depends on both the decl-specifier-seq and its declarator.

Thus, a declaration of a particular identifier has the form

T D

where T is a decl-specifier-seq and D is a declarator. Following is a recursive procedure for determining the
type specified for the contained declarator-id by such a declaration.

First, the decl-specifier-seq determines a type. In a declaration
TD

8.3 Meaning of declarators DRAFT: 11 April 2004 Declarators 8-5

the decl-specifier-seq T determines the type “T.” [Example: in the declaration
int unsigned 1i;

the type specifiers int unsigned determine the type “unsigned int” (7.1.5.2).]

In a declaration T D where D is an unadorned identifier the type of this identifier is “T.”

In a declaration T D where D has the form
(D1)

the type of the contained declarator-id is the same as that of the contained declarator-id in the declaration
T D1

Parentheses do not alter the type of the embedded declarator-id, but they can alter the binding of complex
declarators.

8.3.1 Pointers [dcl.ptr]
In a declaration T D where D has the form
* cv-qualifier-segyy, D1

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T,” then the type of the
identifier of D is “derived-declarator-type-list cv-qualifier-seq pointer to T.” The cv-qualifiers apply to the
pointer and not to the object pointed to.

[Example: the declarations

const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;
int i, *p, *const cp = &i;

declare c1i, a constant integer; pc, a pointer to a constant integer; cpc, a constant pointer to a constant
integer, ppc, a pointer to a pointer to a constant integer; i, an integer; p, a pointer to integer; and cp, a
constant pointer to integer. The value of ci, cpc, and cp cannot be changed after initialization. The value
of pc can be changed, and so can the object pointed to by cp. Examples of some correct operations are

i = ci;
*cp = ci;
pC++;

pc = cpc;
pc = pi
ppc = &pc;

Examples of ill-formed operations are

ci = 1; // error
ci++; // error
*pc = 2; // error
cp = &ci; // error
cpc++; // error
p = pc; // error
ppc = &p; // error

Each is unacceptable because it would either change the value of an object declared const or allow it to
be changed through a cv-unqualified pointer later, for example:

*ppc = &Cij; // OK, but would make p pointto c1i ...
// ... because of previous error
*p = 5; // clobber ci

—end example]
See also 5.17 and 8.5.

8-6 Declarators DRAFT: 11 April 2004 8.3.1 Pointers

[Note: there are no pointers to references; see 8.3.2. Since the address of a bit-field (9.6) cannot be taken, a
pointer can never point to a bit-field.]

8.3.2 References [dcl.ref]
In a declaration T D where D has the form
& D1

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T,” then the type of the
identifier of D is “derived-declarator-type-list reference to T.” Cv-qualified references are ill-formed except
when the cv-qualifiers are introduced through the use of a typedef (7.1.3) or of a template type argument
(14.3), in which case the cv-qualifiers are ignored. [Example: in

typedef inté& A;
const A aref = 3; // ill-formed;
// non-const reference initialized with rvalue

the type of aref is “reference to int”, not “const reference to int”.] [Note: a reference can be
thought of as a name of an object.] A declarator that specifies the type “reference to cv void” is ill-formed.

[Example:
void f(double& a) { a += 3.14; }
/]
double d = 0;
£(d);

declares a to be a reference parameter of £ so the call £ (d) will add 3.14 to 4.

int v[20];

/] .

int& g(int i) { return v[il; }
s

g(3) = 7;

declares the function g () to return a reference to an integer so g (3) =7 will assign 7 to the fourth element
of the array v. For another example,

struct link ({
link* next;

}i
link* first;
void h(link*& p) // p is a reference to pointer
{
p->next = first;
first = p;
p = 0;
}
void k()
{

link* g = new link;
h(q);

}

declares p to be a reference to a pointer to 1ink so h (q) will leave g with the value zero. See also 8.5.3.

]

It is unspecified whether or not a reference requires storage (3.7).

There shall be no references to references, no arrays of references, and no pointers to references. The dec-
laration of a reference shall contain an initializer (8.5.3) except when the declaration contains an explicit
extern specifier (7.1.1), is a class member (9.2) declaration within a class definition, or is the declaration

8.3.2 References DRAFT: 11 April 2004 Declarators 8-7

of a parameter or a return type (8.3.5); see 3.1. A reference shall be initialized to refer to a valid object or
function. [Note: in particular, a null reference cannot exist in a well-defined program, because the only way
to create such a reference would be to bind it to the “object” obtained by dereferencing a null pointer,
which causes undefined behavior. As described in 9.6, a reference cannot be bound directly to a bit-field.]

8.3.3 Pointers to members [dcl.mptr]

In a declaration T D where D has the form
: : oy NEsted-name-specifier * cv-qualifier-seq,, D1

and the nested-name-specifier names a class, and the type of the identifier in the declaration T D1 is
“derived-declarator-type-list T,” then the type of the identifier of D is “derived-declarator-type-list cv-qual-
ifier-seq pointer to member of class nested-name-specifier of type T.”

[Example:

class X {
public:
void f (int) ;
int a;
}i

class Y;

int X::* pmi = &X::a;

void (X::* pmf) (int) = &X::f;
double X::* pmd;

char Y::* pmc;

declares pmi, pmf, pmd and pme to be a pointer to a member of X of type int, a pointer to a member of X
of type void (int), a pointer to a member of X of type double and a pointer to a member of Y of type
char respectively. The declaration of pmd is well-formed even though X has no members of type dou-
ble. Similarly, the declaration of pmc is well-formed even though Y is an incomplete type. pmi and pmf
can be used like this:

X obj;
/1
obj.*pmi = 7; // assign 7 to an integer
// member of ob7j
(obj . *pmf) (7) ; // call a function member of ob7j

// with the argument 7
—end example]

A pointer to member shall not point to a static member of a class (9.4), a member with reference type, or
“cv void.” [Note: see also 5.3 and 5.5. The type “pointer to member” is distinct from the type “pointer”,
that is, a pointer to member is declared only by the pointer to member declarator syntax, and never by the
pointer declarator syntax. There is no “reference-to-member” type in G+.]

8.3.4 Arrays [dcl.array]

In a declaration T D where D has the form

D1 [constant-expression,,]

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T,” then the type of the
identifier of D is an array type. T is called the array element type; this type shall not be a reference type, the
(possibly cv-qualified) type void, a function type or an abstract class type. If the constant-expression
(5.19) is present, it shall be an integral constant expression and its value shall be greater than zero. The
constant expression specifies the bound of (number of elements in) the array. If the value of the constant
expression is N, the array has N elements numbered 0 to N-1, and the type of the identifier of D is “derived-
declarator-type-list array of N T.” An object of array type contains a contiguously allocated non-empty set
of N sub-objects of type T. If the constant expression is omitted, the type of the identifier of D is “derived-
declarator-type-list array of unknown bound of T,” an incomplete object type. The type “derived-

8-8 Declarators DRAFT: 11 April 2004 8.3.4 Arrays

declarator-type-list array of N T” is a different type from the type “derived-declarator-type-list array of
unknown bound of T,” see 3.9. Any type of the form “cv-qualifier-seq array of N T” is adjusted to “array of
N cv-qualifier-seq T,” and similarly for “array of unknown bound of T.” [Example:

typedef int A[5], AA[2] [3];
typedef const A CA; // type is “array of 5 const int”
typedef const AA CAA; // type is “array of 2 array of 3 const int”

—end example] [Note: an “array of N cv-qualifier-seq T” has cv-qualified type; see 3.9.3.]

An array can be constructed from one of the fundamental types (except void), from a pointer, from a
pointer to member, from a class, from an enumeration type, or from another array.

When several “array of” specifications are adjacent, a multidimensional array is created; the constant
expressions that specify the bounds of the arrays can be omitted only for the first member of the sequence.
[Note: this elision is useful for function parameters of array types, and when the array is external and the
definition, which allocates storage, is given elsewhere.] The first constant-expression can also be omitted
when the declarator is followed by an initializer (8.5). In this case the bound is calculated from the number
of initial elements (say, N) supplied (8.5.1), and the type of the identifier of D is “array of N T.”

[Example:
float fa([l7], *afpll7];

declares an array of £1loat numbers and an array of pointers to £1oat numbers. For another example,
static int x3d[3][5] [7];

declares a static three-dimensional array of integers, with rank 3x5x7. In complete detail, x3d is an array
of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers.
Any of the expressions x3d, x3d[i], x3d[i] [§], x3d[i] [§] [k] can reasonably appear in an
expression.]

[Note: conversions affecting Ivalues of array type are described in 4.2. Objects of array types cannot be
modified, see 3.10.]

Except where it has been declared for a class (13.5.5), the subscript operator [] is interpreted in such a way
that E1 [E2] is identical to * ((E1) + (E2)). Because of the conversion rules that apply to +, if E1 is an
array and E2 an integer, then E1 [E2] refers to the E2-th member of E1. Therefore, despite its asymmet-
ric appearance, subscripting is a commutative operation.

A consistent rule is followed for multidimensional arrays. If E is an n-dimensional array of rank
ix jx---xk, then E appearing in an expression is converted to a pointer to an (n — 1)-dimensional array
with rank j x---x k. If the = operator, either explicitly or implicitly as a result of subscripting, is applied
to this pointer, the result is the pointed-to (n — 1)-dimensional array, which itself is immediately converted
into a pointer.

[Example: consider
int xI[3] [5];

Here x is a 3x5 array of integers. When x appears in an expression, it is converted to a pointer to (the first
of three) five-membered arrays of integers. In the expression x [i], which is equivalent to * (x+1i), x is
first converted to a pointer as described; then x+1 is converted to the type of x, which involves multiplying
i by the length of the object to which the pointer points, namely five integer objects. The results are added
and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the first
of the integers. If there is another subscript the same argument applies again; this time the result is an inte-

ger.]
[Note: it follows from all this that arrays in C+ are stored row-wise (last subscript varies fastest) and that

the first subscript in the declaration helps determine the amount of storage consumed by an array but plays
no other part in subscript calculations.]

8.3.4 Arrays DRAFT: 11 April 2004 Declarators 8-9

8.3.5 Functions [dcl.fct]
In a declaration T D where D has the form
D1 (parameter-declaration-clause) cv-qualifier-seq,, exception-specificationy,

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T,” the
type of the declarator-id in D is “derived-declarator-type-list function of (parameter-declaration-clause)
cv-qualifier-seq,, returning T”; a type of this form is a function type™"’.

parameter-declaration-clause:
parameter-declaration-list,,, . .
parameter-declaration-list ,

- opt

parameter-declaration-list:
parameter-declaration
parameter-declaration-list , parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator = assignment-expression
decl-specifier-seq abstract-declarator,
decl-specifier-seq abstract-declarator,, = assignment-expression

The parameter-declaration-clause determines the arguments that can be specified, and their processing,
when the function is called. [Note: the parameter-declaration-clause is used to convert the arguments
specified on the function call; see 5.2.2.] If the parameter-declaration-clause is empty, the function takes
no arguments. The parameter list (void) is equivalent to the empty parameter list. Except for this special
case, void shall not be a parameter type (though types derived from void, such as voidx, can). If the
parameter-declaration-clause terminates with an ellipsis, the number of arguments shall be equal to or
greater than the number of parameters that do not have a default argument. Where syntactically correct, “,
” is synonymous with “. . .”. [Example: the declaration

int printf (const char*, ...);
declares a function that can be called with varying numbers and types of arguments.

printf ("hello world") ;
printf ("a=%d b=%d", a, b);

However, the first argument must be of a type that can be converted to a const char*.] [Note: the stan-
dard header <cstdarg> contains a mechanism for accessing arguments passed using the ellipsis (see
5.2.2and 18.7).]

A single name can be used for several different functions in a single scope; this is function overloading
(clause 13). All declarations for a function shall agree exactly in both the return type and the parameter-
type-list. The type of a function is determined using the following rules. The type of each parameter is
determined from its own decl-specifier-seq and declarator. After determining the type of each parameter,
any parameter of type “array of T or “function returning T” is adjusted to be “pointer to T” or “pointer to
function returning T,” respectively. After producing the list of parameter types, several transformations
take place upon these types to determine the function type. Any cv-qualifier modifying a parameter type is
deleted. [Example: the type void (*) (const int) becomes void (*) (int) —end example] Such
cv-qualifiers affect only the definition of the parameter within the body of the function; they do not affect
the function type. If a storage-class-specifier modifies a parameter type, the specifier is deleted. [Example:
register char* becomes char* —end example] Such storage-class-specifiers affect only the defini-
tion of the parameter within the body of the function; they do not affect the function type. The resulting list
of transformed parameter types and the presence or absence of the ellipsis is the function’s parameter-type-
list.

87) As indicated by the syntax, cv-qualifiers are a significant component in function return types.

8-10 Declarators DRAFT: 11 April 2004 8.3.5 Functions

A cv-qualifier-seq shall only be part of the function type for a nonstatic member function, the function type
to which a pointer to member refers, or the top-level function type of a function typedef declaration. The
effect of a cv-qualifier-seq in a function declarator is not the same as adding cv-qualification on top of the
function type. In the latter case, the cv-qualifiers are ignored. [Example:

typedef void F();
struct S {

const F f; // OK: equivalent to: void £ () ;
}i

—end example] The return type, the parameter-type-list and the cv-qualifier-seq, but not the default argu-
ments (8.3.6) or the exception specification (15.4), are part of the function type. [Note: function types are
checked during the assignments and initializations of pointer-to-functions, reference-to-functions, and
pointer-to-member-functions.]

[Example: the declaration
int fseek (FILE*, long, int);
declares a function taking three arguments of the specified types, and returning int (7.1.5).]

If the type of a parameter includes a type of the form “pointer to array of unknown bound of T” or “refer-
ence to array of unknown bound of T,” the program is ill-formed.2¥ Functions shall not have a return type
of type array or function, although they may have a return type of type pointer or reference to such things.
There shall be no arrays of functions, although there can be arrays of pointers to functions. Types shall not
be defined in return or parameter types. The type of a parameter or the return type for a function definition
shall not be an incomplete class type (possibly cv-qualified) unless the function definition is nested within
the member-specification for that class (including definitions in nested classes defined within the class).

A typedef of function type may be used to declare a function but shall not be used to define a function (8.4).
[Example:

typedef void F();

F fv; // OK: equivalentto void £v () ;
F fv { } // ill-formed
void fv() { } // OK: definition of £v

—end example] A typedef of a function type whose declarator includes a cv-qualifier-seq shall be used
only to declare the function type for a nonstatic member function, to declare the function type to which a
pointer to member refers, or to declare the top-level function type of another function typedef declaration.
[Example:

typedef int FIC(int) const;

FIC f; // ill-formed: does not declare a member function
struct S {
FIC f; // OK
}i
FIC S::*pm = &S::f; // OK

—end example]

An identifier can optionally be provided as a parameter name; if present in a function definition (8.4), it
names a parameter (sometimes called “formal argument”). [Note: in particular, parameter names are also
optional in function definitions and names used for a parameter in different declarations and the definition
of a function need not be the same. If a parameter name is present in a function declaration that is not a
definition, it cannot be used outside of the parameter-declaration-clause since it goes out of scope at the
end of the function declarator (3.3).]

%ymbemM%smmmﬂmuﬁWm“mrmrwqIQ”WMmTzE“mmmmommyMwWMWMWmdMT”deMWpanﬁw
means any sequence of “pointer to” and “array of” derived declarator types. This exclusion applies to the parameters of the function,
and if a parameter is a pointer to function or pointer to member function then to its parameters also, etc.

8.3.5 Functions DRAFT: 11 April 2004 Declarators 8-11

[Example: the declaration
int 1,
*pi,
£(0),
*fpi(int),
(*pif) (const char*, const char¥*),
(*fpif (int)) (int) ;

declares an integer i, a pointer pi to an integer, a function £ taking no arguments and returning an integer,
a function £p1 taking an integer argument and returning a pointer to an integer, a pointer pif to a function
which takes two pointers to constant characters and returns an integer, a function £pif taking an integer
argument and returning a pointer to a function that takes an integer argument and returns an integer. It is
especially useful to compare £pi and pif. The binding of *fpi (int) is * (fpi (int)), so the decla-
ration suggests, and the same construction in an expression requires, the calling of a function £pi, and then
using indirection through the (pointer) result to yield an integer. In the declarator (*pif) (const
char*, const char*), the extra parentheses are necessary to indicate that indirection through a pointer
to a function yields a function, which is then called.] [Note: typedefs are sometimes convenient when the
return type of a function is complex. For example, the function £pi £ above could have been declared

typedef int IFUNC (int) ;
IFUNC* fpif (int) ;

—end note]
8.3.6 Default arguments [dcl.fct.default]

If an expression is specified in a parameter declaration this expression is used as a default argument.
Default arguments will be used in calls where trailing arguments are missing.

[Example: the declaration
void point (int = 3, int = 4);

declares a function that can be called with zero, one, or two arguments of type int. It can be called in any
of these ways:

point(1,2); point(l); point();
The last two calls are equivalent to point (1, 4) and point (3, 4), respectively.]

A default argument expression shall be specified only in the parameter-declaration-clause of a function
declaration or in a template-parameter (14.1). If it is specified in a parameter-declaration-clause, it shall
not occur within a declarator or abstract-declarator of a parameter—declaration.89)

For non-template functions, default arguments can be added in later declarations of a function in the same
scope. Declarations in different scopes have completely distinct sets of default arguments. That is, declara-
tions in inner scopes do not acquire default arguments from declarations in outer scopes, and vice versa. In
a given function declaration, all parameters subsequent to a parameter with a default argument shall have
default arguments supplied in this or previous declarations. A default argument shall not be redefined by a
later declaration (not even to the same value). [Example:

89) This means that default arguments cannot appear, for example, in declarations of pointers to functions, references to functions, or
typedef declarations.

8-12 Declarators DRAFT: 11 April 2004 8.3.6 Default arguments

void g(int = 0, ...); // OK, ellipsis is not a parameter so it can follow
// a parameter with a default argument

void f(int, int);

void f (int, int = 7);

void h()
{
£(3); // OK, calls £ (3, 7)
void f(int = 1, int); // error: does not use default
// from surrounding scope
1
void m()
{
void f(int, int); // has no defaults
f(4); // error: wrong number of arguments
void f(int, int = 5); // OK
£(4); // OK, calls £ (4, 5);
void f(int, int = 5); // error: cannot redefine, even to
// same value
1
void n()
{
f(e); // OK, calls £ (6, 7)
1

—end example] For a given inline function defined in different translation units, the accumulated sets of
default arguments at the end of the translation units shall be the same; see 3.2. If a friend declaration speci-
fies a default argument expression, that declaration must be a definition and shall be the only declaration of
the function or function template in the translation unit.

A default argument expression is implicitly converted (clause 4) to the parameter type. The default argu-
ment expression has the same semantic constraints as the initializer expression in a declaration of a variable
of the parameter type, using the copy-initialization semantics (8.5). The names in the expression are bound,
and the semantic constraints are checked, at the point where the default argument expression appears.
Name lookup and checking of semantic constraints for default arguments in function templates and in
member functions of class templates are performed as described in 14.7.1. [Example: in the following
code, g will be called with the value £ (2):

int a = 1;

int f(int);

int g(int x = f(a)); // default argument: £ (: :a)

void h{() {
a = 2;
{
int a = 3;

g(); //g(f(::a))
!

—end example] [Note: in member function declarations, names in default argument expressions are looked
up as described in 3.4.1. Access checking applies to names in default argument expressions as described in
clause 11.]

Except for member functions of class templates, the default arguments in a member function definition that
appears outside of the class definition are added to the set of default arguments provided by the member
function declaration in the class definition. Default arguments for a member function of a class template
shall be specified on the initial declaration of the member function within the class template. [Example:

8.3.6 Default arguments DRAFT: 11 April 2004 Declarators 8-13

class C {
void f(int i = 3);
void g(int i, int j = 99);

}i

void C::f(int i = 3) // error: default argument already

{} // specified in class scope

void C::g(int i = 88, int j) // in this translation unit,

{ } // C: :g can be called with no argument

—end example]

Local variables shall not be used in default argument expressions. [Example:

void f£()

{
int i;
extern void g(int x = 1); // error
/]

1

—end example]
The keyword this shall not be used in a default argument of a member function. [Example:

class A {
void f(A* p = this) { } // error
}i

—end example]

Default arguments are evaluated each time the function is called. The order of evaluation of function argu-
ments is unspecified. Consequently, parameters of a function shall not be used in default argument expres-
sions, even if they are not evaluated. Parameters of a function declared before a default argument expres-
sion are in scope and can hide namespace and class member names. [Example:

int a;
int f£(int a, int b

a) ; // error: parameter a

// used as default argument
typedef int I;
int g(float I, int b = I(2)); // error: parameter I found

int h(int a, int b sizeof (a)) ; // error, parameter a used
// in default argument

—end example] Similarly, a nonstatic member shall not be used in a default argument expression, even if it
is not evaluated, unless it appears as the id-expression of a class member access expression (5.2.5) or unless
it is used to form a pointer to member (5.3.1). [Example: the declaration of X: :mem1 () in the following
example is ill-formed because no object is supplied for the nonstatic member X : : a used as an initializer.

int b;
class X {

int a;

int meml (int i = a); // error: nonstatic member a
// used as default argument
// OK; useX: :b

I
g

int mem2 (int i
static int b;

}i
The declaration of X: :mem2 () is meaningful, however, since no object is needed to access the static
member X: :b. Classes, objects, and members are described in clause 9.] A default argument is not part
of the type of a function. [Example:

8-14 Declarators DRAFT: 11 April 2004 8.3.6 Default arguments

int f£(int = 0);
void h()
{

int § = £(1);
).

int k = £(); // OK, means £ (0)
}
int (*pl) (int) = &f;
int (*p2) () = &f; // error: type mismatch

—end example] When a declaration of a function is introduced by way of a using-declaration (7.3.3), any
default argument information associated with the declaration is made known as well. If the function is
redeclared thereafter in the namespace with additional default arguments, the additional arguments are also
known at any point following the redeclaration where the using-declaration is in scope.

A virtual function call (10.3) uses the default arguments in the declaration of the virtual function deter-
mined by the static type of the pointer or reference denoting the object. An overriding function in a derived
class does not acquire default arguments from the function it overrides. [Example:

struct A {
virtual void f(int a = 7);
}i

struct B : public A
void f(int a);

}i
void m()
{
B* pb = new B;
A* pa = pb;
pa->f () ; // OK, callspa->B::f (7)
pb->£f () ; // error: wrong number of arguments for B: : £ ()
1
—end example]
8.4 Function definitions [dcl.fct.def]

Function definitions have the form

function-definition:
decl-specifier-seq,,, declarator ctor-initializer,, function-body
decl-specifier-seq,,, declarator function-try-block

function-body:
compound-statement

The declarator in a function-definition shall have the form
D1 (parameter-declaration-clause) cv-qualifier-seq,, exception-specification,y
as described in 8.3.5. A function shall be defined only in namespace or class scope.

[Example: a simple example of a complete function definition is

int max(int a, int b, int c¢)

{
int m = (a >b) ? a : b;
return (m > ¢) ? m : C;
}
Here int is the decl-specifier-seq; max (int a, int b, int c) isthe declarator; { /* ... */ }is

the function-body.]

8.4 Function definitions DRAFT: 11 April 2004 Declarators 8-15

A ctor-initializer is used only in a constructor; see 12.1 and 12.6.

A cv-qualifier-seq can be part of a non-static member function declaration, non-static member function def-
inition, or pointer to member function only; see 9.3.2. It is part of the function type.

[Note: unused parameters need not be named. For example,

void print (int a, int)

{
}

—end note]

8.5 Initializers [dcl.init]

std: :printf("a = %d\n",a);

A declarator can specify an initial value for the identifier being declared. The identifier designates an
object or reference being initialized. The process of initialization described in the remainder of 8.5 applies
also to initializations specified by other syntactic contexts, such as the initialization of function parameters
with argument expressions (5.2.2) or the initialization of return values (6.6.3).
initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , 55 }

{1}

initializer-list:
initializer-clause
initializer-list , initializer-clause

Automatic, register, static, and external variables of namespace scope can be initialized by arbitrary expres-
sions involving literals and previously declared variables and functions. [Example:

int £ (int) ;
int a = 2;
int b = f(a);
int c(b);

—end example]

[Note: default argument expressions are more restricted; see 8.3.6.

The order of initialization of static objects is described in 3.6 and 6.7.]
To zero-initialize an object of type T means:

— if T is a scalar type 53.9), the object is set to the value 0 (zero), taken as an integral constant expres-
sion, converted to T;

— if T is a non-union class type, each nonstatic data member and each base-class subobject is zero-ini-
tialized;

— if Tisaunion type, the object’s first named data member®? is zero-initialized;
— if Tisan array type, each element is zero-initialized;

— if Tis a reference type, no initialization is performed.

90) As specified in 4.10, converting an integral constant expression whose value is 0 to a pointer type results in a null pointer value.
) This member must not be static, by virtue of the requirements in 9.5.

10

11

8-16 Declarators DRAFT: 11 April 2004 8.5 Initializers

To default-initialize an object of type T means:

— if T is a non-POD class type (clause 9), the default constructor for T is called (and the initialization is
ill-formed if T has no accessible default constructor);

— if Tisan array type, each element is default-initialized;
— otherwise, the object is zero-initialized.
To value-initialize an object of type T means:

— if Tis a class type (clause 9) with a user-declared constructor (12.1), then the default constructor for T
is called (and the initialization is ill-formed if T has no accessible default constructor);

— if T is a non-union class type without a user-declared constructor, then every non-static data member
and base-class component of T is value-initialized;gz)

— if Tisan array type, then each element is value-initialized,
— otherwise, the object is zero-initialized

A program that calls for default-initialization or value-initialization of an entity of reference type is ill-
formed. If T is a cv-qualified type, the cv-unqualified version of T is used for these definitions of zero-
initialization, default-initialization, and value-initialization.

Every object of static storage duration shall be zero-initialized at program startup before any other initial-
ization takes place. [Note: in some cases, additional initialization is done later.]

An object whose initializer is an empty set of parentheses, i.e., (), shall be value-initialized.
[Note: since () is not permitted by the syntax for initializer,
X a();

is not the declaration of an object of class X, but the declaration of a function taking no argument and
returning an X. The form () is permitted in certain other initialization contexts (5.3.4, 5.2.3, 12.6.2).]

If no initializer is specified for an object, and the object is of (possibly cv-qualified) non-POD class type (or
array thereof), the object shall be default-initialized; if the object is of const-qualified type, the underlying
class type shall have a user-declared default constructor. Otherwise, if no initializer is specified for a non-
static object, the object and its subobjects, if any, have an indeterminate initial value93); if the object or any
of its subobjects are of const-qualified type, the program is ill-formed.

An initializer for a static member is in the scope of the member’s class. [Example:

int a;

struct X {
static int a;
static int b;

}i
int X::a = 1;
int X::b = a; //X::b=X::a

—end example]

The form of initialization (using parentheses or =) is generally insignificant, but does matter when the
entity being initialized has a class type; see below. A parenthesized initializer can be a list of expressions
only when the entity being initialized has a class type.

92) Value-initialization for such a class object may be implemented by zero-initializing the object and then calling the default con-
structor.

93) This does not apply to aggregate objects with automatic storage duration initialized with an incomplete brace-enclosed initializer-
list; see 8.5.1.

12

13

14

8.5 Initializers DRAFT: 11 April 2004 Declarators 8-17

The initialization that occurs in argument passing, function return, throwing an exception (15.1), handling
an exception (15.3), and brace-enclosed initializer lists (8.5.1) is called copy-initialization and is equivalent
to the form

T x = a;

The initialization that occurs in new expressions (5.3.4), static cast expressions (5.2.9), functional
notation type conversions (5.2.3), and base and member initializers (12.6.2) is called direct-initialization
and is equivalent to the form

T x(a);

If T is a scalar type, then a declaration of the form
Tx=1{a};
is equivalent to

T x = a;

The semantics of initializers are as follows. The destination type is the type of the object or reference being
initialized and the source type is the type of the initializer expression. The source type is not defined when
the initializer is brace-enclosed or when it is a parenthesized list of expressions.

— If the destination type is a reference type, see 8.5.3.

— If the destination type is an array of characters or an array of wchar t, and the initializer is a string
literal, see 8.5.2.

— Otherwise, if the destination type is an array, see 8.5.1.
— If the destination type is a (possibly cv-qualified) class type:
— Ifthe class is an aggregate (8.5.1), and the initializer is a brace-enclosed list, see 8.5.1.

— If the initialization is direct-initialization, or if it is copy-initialization where the cv-unqualified
version of the source type is the same class as, or a derived class of, the class of the destination,
constructors are considered. The applicable constructors are enumerated (13.3.1.3), and the best
one is chosen through overload resolution (13.3). The constructor so selected is called to initial-
ize the object, with the initializer expression(s) as its argument(s). If no constructor applies, or
the overload resolution is ambiguous, the initialization is ill-formed.

— Otherwise (i.e., for the remaining copy-initialization cases), user-defined conversion sequences
that can convert from the source type to the destination type or (when a conversion function is
used) to a derived class thereof are enumerated as described in 13.3.1.4, and the best one is cho-
sen through overload resolution (13.3). If the conversion cannot be done or is ambiguous, the
initialization is ill-formed. The function selected is called with the initializer expression as its
argument; if the function is a constructor, the call initializes a temporary of the cv-unqualified
version of the destination type. The temporary is an rvalue. The result of the call (which is the
temporary for the constructor case) is then used to direct-initialize, according to the rules above,
the object that is the destination of the copy-initialization. In certain cases, an implementation is
permitted to eliminate the copying inherent in this direct-initialization by constructing the inter-
mediate result directly into the object being initialized; see 12.2, 12.8.

— Otherwise, if the source type is a (possibly cv-qualified) class type, conversion functions are consid-
ered. The applicable conversion functions are enumerated (13.3.1.5), and the best one is chosen
through overload resolution (13.3). The user-defined conversion so selected is called to convert the
initializer expression into the object being initialized. If the conversion cannot be done or is ambigu-
ous, the initialization is ill-formed.

— Otherwise, the initial value of the object being initialized is the (possibly converted) value of the ini-
tializer expression. Standard conversions (clause 4) will be used, if necessary, to convert the initializer

8-18 Declarators DRAFT: 11 April 2004 8.5 Initializers

expression to the cv-unqualified version of the destination type; no user-defined conversions are con-
sidered. If the conversion cannot be done, the initialization is ill-formed. [Note: an expression of type
“cvl T” can initialize an object of type “cv2 T” independently of the cv-qualifiers cvl and cv2.

int a;

const int b = a;

int ¢ = b;

—end note]
8.5.1 Aggregates [dcl.init.aggr]

An aggregate is an array or a class (clause 9) with no user-declared constructors (12.1), no private or pro-
tected non-static data members (clause 11), no base classes (clause 10), and no virtual functions (10.3).

When an aggregate is initialized the initializer can contain an initializer-clause consisting of a brace-
enclosed, comma-separated list of initializer-clauses for the members of the aggregate, written in increas-
ing subscript or member order. If the aggregate contains subaggregates, this rule applies recursively to the
members of the subaggregate. [Example:

struct A {

int x;
struct B {
int i;
int j;
} b;

ta={1 {2, 3} };
initializesa.x with1,a.b.iwith2,a.b.j with3.]

An aggregate that is a class can also be initialized with a single expression not enclosed in braces, as
described in 8.5.

An array of unknown size initialized with a brace-enclosed initializer-list containing n initializers, where n
shall be greater than zero, is defined as having n elements (8.3.4). [Example:

int x[]1 = { 1, 3, 5 };

declares and initializes x as a one-dimensional array that has three elements since no size was specified and
there are three initializers.] An empty initializer list { } shall not be used as the initializer for an array of
unknown bound.%*

Static data members are not considered members of the class for purposes of aggregate initialization.
[Example:
struct A {
int i;
static int s;
int j;
ba={1, 21}
Here, the second initializer 2 initializes a . j and not the static data member A: : s.]

An initializer-list is ill-formed if the number of initializers exceeds the number of members or elements to
initialize. [Example:

char cv[4] = { 'a’, 's’, 'd’, '"£', 0 }; // error
is ill-formed.]

If there are fewer initializers in the list than there are members in the aggregate, then each member not
explicitly initialized shall be value-initialized (8.5). [Example:

94) The syntax provides for empty initializer-lists, but nonetheless C+ does not have zero length arrays.

10

11

12

8.5.1 Aggregates DRAFT: 11 April 2004 Declarators 8-19

struct S { int a; char* b; int c; };
S ss = { 1, "asdf" };

initializes ss.a with 1, ss.b with "asdf", and ss.c with the value of an expression of the form
int (), thatis, 0.]

An initializer for an aggregate member that is an empty class shall have the form of an empty initializer-list
{}. [Example:
struct S { };
struct A {
S s;
int i;
ya={{}.,3};
—end example] An empty initializer-list can be used to initialize any aggregate. If the aggregate is not an
empty class, then each member of the aggregate shall be initialized with a value of the form T () (5.2.3),
where T represents the type of the uninitialized member.

If an incomplete or empty initializer-list leaves a member of reference type uninitialized, the program is ill-
formed.

When initializing a multi-dimensional array, the initializers initialize the elements with the last (rightmost)
index of the array varying the fastest (8.3.4). [Example:

int x[21[2] = { 3, 1, 4, 2 };
initializes x [0] [0] t0 3, x[0] [1] to1,x[1] [0] to4,andx[1] [1] to 2. On the other hand,
float y[4]1[3] = {

a3y, {21 {3} {4}

initializes the first column of v (regarded as a two-dimensional array) and leaves the rest zero.]

Braces can be elided in an initializer-list as follows. If the initializer-list begins with a left brace, then the
succeeding comma-separated list of initializers initializes the members of a subaggregate; it is erroneous
for there to be more initializers than members. If, however, the initializer-list for a subaggregate does not
begin with a left brace, then only enough initializers from the list are taken to initialize the members of the
subaggregate; any remaining initializers are left to initialize the next member of the aggregate of which the
current subaggregate is a member. [Example:

float yl[4][3] = {
{1, 3, 5},
{2, 4, 6 },
{3, 5, 71},
}i

is a completely-braced initialization: 1, 3, and 5 initialize the first row of the array y[0], namely
y[0] [0],y[0] [1],and y[0] [2]. Likewise the next two lines initialize y [1] and y [2]. The initial-
izer ends early and therefore y [31°s elements are initialized as if explicitly initialized with an expression
of the form £1loat (), that is, are initialized with 0. 0. In the following example, braces in the initializer-
list are elided; however the initializer-list has the same effect as the completely-braced initializer-list of the
above example,

float yI[4][3] = {
i, 3, 5, 2, 4, 6, 3, 5, 7
}i

The initializer for y begins with a left brace, but the one for y [0] does not, therefore three elements from
the list are used. Likewise the next three are taken successively for y [1] and y [2]. —end example]

All implicit type conversions (clause 4) are considered when initializing the aggregate member with an ini-
tializer from an initializer-list. If the initializer can initialize a member, the member is initialized. Other-
wise, if the member is itself a non-empty subaggregate, brace elision is assumed and the initializer is

13

14

15

8-20 Declarators DRAFT: 11 April 2004 8.5.1 Aggregates

considered for the initialization of the first member of the subaggregate.
[Example:
struct A {
int 1i;
operator int();

}i
struct B {
A al, a2;
int z;
}i
A a;
Bb=1{4, a, a};

Braces are elided around the initializer forb.a1.i. b.al. i isinitialized with 4, b. a2 is initialized with
a, b. z is initialized with whatever a . operator int () returns.]

[Note: An aggregate array or an aggregate class may contain members of a class type with a user-declared
constructor (12.1). Initialization of these aggregate objects is described in 12.6.1.]

When an aggregate with static storage duration is initialized with a brace-enclosed initializer-list, if all the
member initializer expressions are constant expressions, and the aggregate is a POD type, the initialization
shall be done during the static phase of initialization (3.6.2); otherwise, it is unspecified whether the initial-
ization of members with constant expressions takes place during the static phase or during the dynamic
phase of initialization.

When a union is initialized with a brace-enclosed initializer, the braces shall only contain an initializer for
the first member of the union. [Example:

union u { int a; char* b; };

ua={1};

ub = a;

uc=1; // error
ud={ 0, "asdf" }; // error
ue = { "asdf" }; // error

—end example] [Note: as described above, the braces around the initializer for a union member can be
omitted if the union is a member of another aggregate.]

8.5.2 Character arrays [dcl.init.string]

A char array (whether plain char, signed char, or unsigned char) can be initialized by a string-
literal (optionally enclosed in braces); a wchar t array can be initialized by a wide string-literal (option-
ally enclosed in braces); successive characters of the string-literal initialize the members of the array.
[Example:

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string-literal. Note that because ' \n"’ is a
single character and because a trailing * \ 0’ is appended, sizeof (msg) is 25.]

There shall not be more initializers than there are array elements. [Example:
char cv[4] = "asdf"; // error

is ill-formed since there is no space for the implied trailing * \0’.]

8.5.2 Character arrays DRAFT: 11 April 2004 Declarators 8-21

8.5.3 References [dcl.init.ref]

A variable declared to be a T«, that is “reference to type T” (8.3.2), shall be initialized by an object, or
function, of type T or by an object that can be converted into a T. [Example:

int g(int);

void f()

{ . .
int 1;
int& r = i; // rrefersto i
r = 1; // the value of i becomes 1
int* p = &r; // ppointsto i
int& rr = r; // rr refers to what r refers to, that is, to i
int (&rg) (int) = g; // rg refers to the function g
rg (i) ; // calls function g
int al3];
int (&ra) [3] = a; // ra refers to the array a
ral[l] = 1i; // modifies a [1]

1

—end example]

A reference cannot be changed to refer to another object after initialization. Note that initialization of a ref-
erence is treated very differently from assignment to it. Argument passing (5.2.2) and function value return
(6.6.3) are initializations.

The initializer can be omitted for a reference only in a parameter declaration (8.3.5), in the declaration of a
function return type, in the declaration of a class member within its class definition (9.2), and where the
extern specifier is explicitly used. [Example:

int& ril; // error: initializer missing
extern inté& r2; // OK

—end example]

Given types “cvl T1” and “cv2 T2,” “cvl T1” is reference-related to “cv2 T2” if T1 is the same type as
T2, or T1 is a base class of T2. “cvl T1” is reference-compatible with “cv2 T2” if T1 is reference-related
to T2 and cv1 is the same cv-qualification as, or greater cv-qualification than, cv2. For purposes of over-
load resolution, cases for which cv1 is greater cv-qualification than cv2 are identified as reference-compati-
ble with added qualification (see 13.3.3.2). In all cases where the reference-related or reference-compatible
relationship of two types is used to establish the validity of a reference binding, and T1 is a base class of
T2, a program that necessitates such a binding is ill-formed if T1 is an inaccessible (clause 11) or ambigu-
ous (10.2) base class of T2.

A reference to type “cvl T1” is initialized by an expression of type “cv2 T2” as follows:
— If the initializer expression
— isan Ivalue (but is not a bit-field), and “cvl T1” is reference-compatible with “cv2 T2,” or

— has a class type (i.e.,, T2 is a class type) and can be implicitly converted to an lvalue of type
“cv3 T3,” where “cvl T1” is reference-compatible with *“cv3 T3” %) (this conversion is selected
by enumerating the applicable conversion functions (13.3.1.6) and choosing the best one through
overload resolution (13.3)),

then the reference is bound directly to the initializer expression Ivalue in the first case, and the refer-
ence is bound to the Ivalue result of the conversion in the second case. In these cases the reference is
said to bind directly to the initializer expression. [Note: the usual lvalue-to-rvalue (4.1), array-to-
pointer (4.2), and function-to-pointer (4.3) standard conversions are not needed, and therefore are sup-
pressed, when such direct bindings to lvalues are done.]

95) This requires a conversion function (12.3.2) returning a reference type.

8-22 Declarators DRAFT: 11 April 2004 8.5.3 References

[Example:
double d = 2.0;
double& rd = d; // rdrefersto d
const double& rcd = d; // rcdrefersto d

struct A { };

struct B : public A { } b;

A& ra = b; // ra refers to A sub-object in b
const A& rca = b; // rca refers to A sub-object in b

—end example]

— Otherwise, the reference shall be to a non-volatile const type (i.e., cvl shall be const). [Example:

double& rd2 = 2.0; // error: not an lvalue and reference not const
int i = 2;

double& rd3 // error: type mismatch and reference not const

I}
-

—end example]

If the initializer expression is an rvalue, with T2 a class type, and “cvl T1” is reference-compati-
ble with “cv2 T2,” the reference is bound in one of the following ways (the choice is implementa-
tion-defined):

— The reference is bound to the object represented by the rvalue (see 3.10) or to a sub-object
within that object.

— A temporary of type “cvl T2” [sic] is created, and a constructor is called to copy the entire
rvalue object into the temporary. The reference is bound to the temporary or to a sub-object
within the temporary.

The constructor that would be used to make the copy shall be callable whether or not the copy is
actually done. [Example:

struct A { };

struct B : public A { } b;

extern B f£();

const A& rca = f(); // Either bound to the A sub-object of the B rvalue,
// orthe entire B object is copied and the reference
/I is bound to the A sub-object of the copy

—end example]

Otherwise, a temporary of type “cvl T1” is created and initialized from the initializer expression
using the rules for a non-reference copy initialization (8.5). The reference is then bound to the
temporary. If T1 is reference-related to T2, cvl must be the same cv-qualification as, or greater
cv-qualification than, cv2; otherwise, the program is ill-formed. [Example:

const double& rcd2 = 2; // rcdz2 refers to temporary with value 2 . 0
const volatile int cvi = 1;
const int& r = cvi; // error: type qualifiers dropped

—end example]

[Note: 12.2 describes the lifetime of temporaries bound to references.]

96) Clearly, if the reference initialization being processed is one for the first argument of a copy constructor call, an implementation
must eventually choose the first alternative (binding without copying) to avoid infinite recursion.

9 Classes [class]

A class is a type. Its name becomes a class-name (9.1) within its scope.

class-name:
identifier
template-id

Class-specifiers and elaborated-type-specifiers (7.1.5.3) are used to make class-names. An object of a class
consists of a (possibly empty) sequence of members and base class objects.

class-specifier:
class-head { member-specification,, }

class-head:
class-key identifier, base-clause,,
class-key nested-name-specifier identifier base-clause,,
class-key nested-name-specifier,,, template-id base-clause,y

class-key:
class
struct
union

A class-specifier where the class-head omits the optional identifier defines an unnamed class.

A class-name is inserted into the scope in which it is declared immediately after the class-name is seen.
The class-name is also inserted into the scope of the class itself; this is known as the injected-class-name.
For purposes of access checking, the injected-class-name is treated as if it were a public member name. A
class-specifier is commonly referred to as a class definition. A class is considered defined after the closing
brace of its class-specifier has been seen even though its member functions are in general not yet defined.

Complete objects and member subobjects of class type shall have nonzero size.%" [Note: class objects can
be assigned, passed as arguments to functions, and returned by functions (except objects of classes for
which copying has been restricted; see 12.8). Other plausible operators, such as equality comparison, can
be defined by the user; see 13.5.]

A structure is a class defined with the class-key st ruct; its members and base classes (clause 10) are pub-
lic by default (clause 11). A union is a class defined with the class-key union; its members are public by
default and it holds only one data member at a time (9.5). [Note: aggregates of class type are described in
8.5.1.] A POD-struct is an aggregate class that has no non-static data members of type non-POD-struct,
non-POD-union (or array of such types) or reference, and has no user-declared copy assignment operator
and no user-declared destructor. Similarly, a POD-union is an aggregate union that has no non-static data
members of type non-POD-struct, non-POD-union (or array of such types) or reference, and has no user-
declared copy assignment operator and no user-declared destructor. A POD class is a class that is either a
POD-struct or a POD-union.

97) Base class subobjects are not so constrained.

9-2 Classes DRAFT: 11 April 2004 9.1 Class names

9.1 Class names [class.name]

A class definition introduces a new type. [Example:

struct X { int a; };
struct Y { int a; };
X al;

Y az2;

int a3;

declares three variables of three different types. This implies that

al = a2; // error: Y assigned to X
al = a3; // error: int assigned to X

are type mismatches, and that

int £ (X);
int £(Y);

declare an overloaded (clause 13) function £ () and not simply a single function £ () twice. For the same
reason,

struct S { int a; };
struct S { int a; }; // error, double definition

is ill-formed because it defines s twice.]

A class declaration introduces the class name into the scope where it is declared and hides any class, object,
function, or other declaration of that name in an enclosing scope (3.3). If a class name is declared in a
scope where an object, function, or enumerator of the same name is also declared, then when both declara-
tions are in scope, the class can be referred to only using an elaborated-type-specifier (3.4.4). [Example:

struct stat {

// ..
}i
stat gstat; // use plain stat to
// define variable
int stat (struct stat¥*); // redeclare stat as function
void f ()
{
struct stat* ps; // struct prefix needed
// toname struct stat
// ..
stat (ps) ; // call stat ()
// ..
!

—end example] A declaration consisting solely of class-key identifier ; is either a redeclaration of the
name in the current scope or a forward declaration of the identifier as a class name. It introduces the class
name into the current scope. [Example:

9.1 Class names DRAFT: 11 April 2004 Classes 9-3

struct s { int a; };

void g()
struct s; // hide global struct s
// with a local declaration
s* p; // refer to local struct s
struct s { char* p; }; // define local struct s
struct s; // redeclaration, has no effect
!

—end example] [Note: Such declarations allow definition of classes that refer to each other. [Example:

class Vector;

class Matrix {

/] .

friend Vector operator* (Matrix&, Vector&) ;

}i

class Vector ({

/] .

friend Vector operator* (Matrix&, Vector&) ;

}i
Declaration of £riends is described in 11.4, operator functions in 13.5.]]

[Note: An elaborated-type-specifier (7.1.5.3) can also be used as a type-specifier as part of a declaration. It
differs from a class declaration in that if a class of the elaborated name is in scope the elaborated name will
refer to it.] [Example:

struct s { int a; };

void g(int s)

{

struct s* p = new struct s; // global s
p->a = s; // local s

}

—end example]

When a nested-name-specifier is specified in a class-head or in an elaborated-type-specifier, the resulting
qualified name shall refer to a previously declared member of the class or namespace to which the nested-
name-specifier refers, and the member shall not have been introduced by a using-declaration in the scope of
the class or namespace nominated by the nested-name-specifier.

[Note: The declaration of a class hame takes effect immediately after the identifier is seen in the class defi-
nition or elaborated-type-specifier. For example,

class A * A;

first specifies A to be the name of a class and then redefines it as the name of a pointer to an object of that
class. This means that the elaborated form class A must be used to refer to the class. Such artistry with
names can be confusing and is best avoided.]

A typedef-name (7.1.3) that names a class type, or a cv-qualified version thereof, is also a class-name, but
shall not be used as the identifier in a class-head.

9.2 Class members [class.mem]

member-specification:
member-declaration member-specification,,
access-specifier : member-specification,

9-4 Classes DRAFT: 11 April 2004 9.2 Class members

member-declaration:
decl-_specifie_r-_S(_eqopt member-declarator-list,,, ;
function-definition ;o
:Zopt nested-nz_ime-specifier template,, unqualified-id ;
using-declaration
template-declaration

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator pure-specifier
declarator constant-initializerg,
identifier,,, : constant-expression

pure-specifier:
=0

constant-initializer:
= constant-expression

The member-specification in a class definition declares the full set of members of the class; no member can
be added elsewhere. Members of a class are data members, member functions (9.3), nested types, and enu-
merators. Data members and member functions are static or nonstatic; see 9.4. Nested types are classes
(9.1, 9.7) and enumerations (7.2) defined in the class, and arbitrary types declared as members by use of a
typedef declaration (7.1.3). The enumerators of an enumeration (7.2) defined in the class are members of
the class. Except when used to declare friends (11.4) or to introduce the name of a member of a base class
into a derived class (7.3.3,11.3), member-declarations declare members of the class, and each such
member-declaration shall declare at least one member name of the class. A member shall not be declared
twice in the member-specification, except that a nested class or member class template can be declared and
then later defined.

A class is considered a completely-defined object type (3.9) (or complete type) at the closing } of the class-
specifier. Within the class member-specification, the class is regarded as complete within function bodies,
default arguments and constructor ctor-initializers (including such things in nested classes). Otherwise it is
regarded as incomplete within its own class member-specification.

[Note: a single name can denote several function members provided their types are sufficiently different
(clause 13).]

A member-declarator can contain a constant-initializer only if it declares a static member (9.4) of
const integral or const enumeration type, see 9.4.2.

A member can be initialized using a constructor; see 12.1. [Note: see clause 12 for a description of con-
structors and other special member functions.]

A member shall not be auto, extern, or register.

The decl-specifier-seq is omitted in constructor, destructor, and conversion function declarations only. The
member-declarator-list can be omitted only after a class-specifier, an enum-specifier, or a decl-specifier-seq
of the form £riend elaborated-type-specifier. A pure-specifier shall be used only in the declaration of a
virtual function (10.3).

Non-static (9.4) data members shall not have incomplete types. In particular, a class C shall not contain
a non-static member of class C, but it can contain a pointer or reference to an object of class C.

Each occurrence in an expression of the name of a nonstatic data member or nonstatic member function of
a class shall be expressed as a class member access (5.2.5), except when it appears in the formation of a
pointer to member (5.3.1), when it appears in the body of a nonstatic member function of its class or of a
class derived from its class (9.3.1), or when it appears in a mem-initializer for a constructor for its class or

10

11

12

13

13a

14

15

16

17

9.2 Class members DRAFT: 11 April 2004 Classes 9-5

for a class derived from its class (12.6.2).

[Note: the type of a nonstatic member function is an ordinary function type, and the type of a nonstatic data
member is an ordinary object type. There are no special member function types or data member types.]

[Example: A simple example of a class definition is

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;

}i

which contains an array of twenty characters, an integer, and two pointers to similar structures. Once this
definition has been given, the declaration

tnode s, *sp;

declares s to be a tnode and sp to be a pointer to a tnode. With these declarations, sp- >count refers
to the count member of the structure to which sp points; s.left refers to the 1eft subtree pointer of
the structure s; and s.right->tword[0] refers to the initial character of the tword member of the
right subtree of s.]

Nonstatic data members of a (non-union) class declared without an intervening access-specifier are allo-
cated so that later members have higher addresses within a class object. The order of allocation of non-
static data members separated by an access-specifier is unspecified (11.1). Implementation alignment
requirements might cause two adjacent members not to be allocated immediately after each other; so might
requirements for space for managing virtual functions (10.3) and virtual base classes (10.1).

If T is the name of a class, then each of the following shall have a name different from T:
— every static data member of class T;

— every member function of class T [Note: this restriction does not apply to constructors, which do not
have names (12.1)];

— every member of class T that is itself a type;
— every enumerator of every member of class T that is an enumerated type; and
— every member of every anonymous union that is a member of class T.

In addition, if class T has a user-declared constructor (12.1), every nonstatic data member of class T shall
have a name different from T.

Two POD-struct (clause 9) types are layout-compatible if they have the same number of nonstatic data
members, and corresponding nonstatic data members (in order) have layout-compatible types (3.9).

Two POD-union (clause 9) types are layout-compatible if they have the same number of nonstatic data
members, and corresponding nonstatic data members (in any order) have layout-compatible types (3.9).

If a POD-union contains two or more POD-structs that share a common initial sequence, and if the POD-
union object currently contains one of these POD-structs, it is permitted to inspect the common initial part
of any of them. Two POD-structs share a common initial sequence if corresponding members have layout-
compatible types (and, for bit-fields, the same widths) for a sequence of one or more initial members.

A pointer to a POD-struct object, suitably converted using a reinterpret_cast, points to its initial
member (or if that member is a bit-field, then to the unit in which it resides) and vice versa. [Note: There
might therefore be unnamed padding within a POD-struct object, but not at its beginning, as necessary to
achieve appropriate alignment.]

9-6 Classes DRAFT: 11 April 2004 9.3 Member functions

9.3 Member functions [class.mfct]

Functions declared in the definition of a class, excluding those declared with a £riend specifier (11.4), are
called member functions of that class. A member function may be declared static in which case it is a
static member function of its class (9.4); otherwise it is a nonstatic member function of its class (9.3.1,
9.3.2).

A member function may be defined (8.4) in its class definition, in which case it is an inline member func-
tion (7.1.2), or it may be defined outside of its class definition if it has already been declared but not defined
in its class definition. A member function definition that appears outside of the class definition shall appear
in a namespace scope enclosing the class definition. Except for member function definitions that appear
outside of a class definition, and except for explicit specializations of member functions of class templates
and member function templates (14.7) appearing outside of the class definition, a member function shall not
be redeclared.

An inline member function (whether static or nonstatic) may also be defined outside of its class defini-
tion provided either its declaration in the class definition or its definition outside of the class definition
declares the function as inline. [Note: member functions of a class in namespace scope have external
linkage. Member functions of a local class (9.8) have no linkage. See 3.5.]

There shall be at most one definition of a non-inline member function in a program; no diagnostic is
required. There may be more than one inline member function definition in a program. See 3.2 and
7.1.2.

If the definition of a member function is lexically outside its class definition, the member function name
shall be qualified by its class name using the : : operator. [Note: a name used in a member function defini-
tion (that is, in the parameter-declaration-clause including the default arguments (8.3.6), or in the member
function body, or, for a constructor function (12.1), in a mem-initializer expression (12.6.2)) is
looked up as described in 3.4.] [Example:

struct X {
typedef int T;
static T count;
void f(T);
}i
void X::f(T t = count) { }
The member function £ of class X is defined in global scope; the notation X : : £ specifies that the function
£ is a member of class X and in the scope of class X. In the function definition, the parameter type T refers
to the typedef member T declared in class X and the default argument count refers to the static data mem-
ber count declared in class X.]

A static local variable in a member function always refers to the same object, whether or not the mem-
ber function is inline.

Member functions may be mentioned in £riend declarations after their class has been defined.
Member functions of a local class shall be defined inline in their class definition, if they are defined at all.

[Note: a member function can be declared (but not defined) using a typedef for a function type. The result-
ing member function has exactly the same type as it would have if the function declarator were provided
explicitly, see 8.3.5. For example,

9.3 Member functions DRAFT: 11 April 2004 Classes 9-7

typedef void fv(void) ;
typedef void fvc(void) const;

struct S {

fv memfuncl; // equivalent to: void memfuncl (void) ;

void memfunc?2 () ;

fvce memfunc3; // equivalent to: void memfunc3 (void) const;
}i

fv S::* pmfvl = &S::memfuncl;
fv S::* pmfv2 = &S::memfunc2;
fve S::* pmfv3 = &S::memfunc3;

Also see 14.3.]
9.3.1 Nonstatic member functions [class.mfct.nonstatic]

A nonstatic member function may be called for an object of its class type, or for an object of a class derived
(clause 10) from its class type, using the class member access syntax (5.2.5, 13.3.1.1). A nonstatic member
function may also be called directly using the function call syntax (5.2.2, 13.3.1.1)

— from within the body of a member function of its class or of a class derived from its class, or
— from a mem-initializer (12.6.2) for a constructor for its class or for a class derived from its class.

If a nonstatic member function of a class X is called for an object that is not of type X, or of a type derived
from X, the behavior is undefined.

When an id-expression (5.1) that is not part of a class member access syntax (5.2.5) and not used to form a
pointer to member (5.3.1) is used in the body of a nonstatic member function of class X or used in the mem-
initializer for a constructor of class X, if name lookup (3.4.1) resolves the name in the id-expression to a
nonstatic non-type member of class X or of a base class of X, the id-expression is transformed into a class
member access expression (5.2.5) using (*this) (9.3.2) as the postfix-expression to the left of the .
operator. The member name then refers to the member of the object for which the function is called. Simi-
larly during name lookup, when an unqualified-id (5.1) used in the definition of a member function for class
X resolves to a static member, an enumerator or a nested type of class X or of a base class of X, the
unqualified-id is transformed into a qualified-id (5.1) in which the nested-name-specifier names the class of
the member function. [Example:

struct tnode ({
char tword[20];
int count;
tnode *left;
tnode *right;
void set (char*, tnode* 1, tnode* r);

}i
void tnode: :set (char* w, tnode* 1, tnode* r)
{
count = strlen(w)+1;
if (sizeof (tword) <=count)
perror ("tnode string too long") ;
strcpy (tword, w) ;
left = 1;
right = r;
}
void f (tnode nl, tnode n2)
{
nl.set ("abc",&n2,0) ;
n2.set ("def",0,0);
}

In the body of the member function tnode: :set, the member names tword, count, left, and
right refer to members of the object for which the function is called. Thus, in the call

9-8 Classes DRAFT: 11 April 2004 9.3.1 Nonstatic member functions

nl.set ("abc", &n2,0), tword refers to nl.tword, and in the call n2.set ("def",0,0), it
refers to n2.tword. The functions strlen, perror, and strcpy are not members of the class
tnode and should be declared elsewhere.®®]

A nonstatic member function may be declared const, volatile, or const volatile. These cv-
qualifiers affect the type of the this pointer (9.3.2). They also affect the function type (8.3.5) of the mem-
ber function; a member function declared const is a const member function, a member function declared
volatile is a volatile member function and a member function declared const volatile is a const
volatile member function. [Example:

struct X {
void g() const;
void h() const volatile;

}i
X::gisaconst member function and X: :h isa const volatile member function.]
A nonstatic member function may be declared virtual (10.3) or pure virtual (10.4).
9.3.2 The this pointer [class.this]

In the body of a nonstatic (9.3) member function, the keyword this is a non-lvalue expression whose
value is the address of the object for which the function is called. The type of this in a member function
of a class X is X*. If the member function is declared const, the type of this is const X*, if the mem-
ber function is declared volatile, the type of this is volatile X*, and if the member function is
declared const volatile, the type of this is const volatile X*.

In a const member function, the object for which the function is called is accessed through a const
access path; therefore, a const member function shall not modify the object and its non-static data mem-
bers. [Example:

struct s {

int a;

int £() const;

int g() { return a++; }

int h() const { return a++; } // error
}i
int s::£() const { return a; }

The a++ in the body of s: :h is ill-formed because it tries to modify (a part of) the object for which
s::h() iscalled. Thisis not allowed in a const member function because this is a pointer to const;
that is, *this has const type.]

Similarly, volatile semantics (7.1.5.1) apply in volatile member functions when accessing the
object and its non-static data members.

A cv-qualified member function can be called on an object-expression (5.2.5) only if the object-expression
is as cv-qualified or less-cv-qualified than the member function. [Example:

void k(s& x, const s& y)

{

// error

}

The call yv.g () is ill-formed because y is const and s: : g () is a hon-const member function, that is,
s::g () is less-qualified than the object-expression y.]

98)Se&f0rexampm,<cstring>(2L4)

9.3.2 The this pointer DRAFT: 11 April 2004 Classes 9-9

Constructors (12.1) and destructors (12.4) shall not be declared const, volatile or const
volatile. [Note: However, these functions can be invoked to create and destroy objects with cv-quali-
fied types, see (12.1) and (12.4).]

9.4 Static members [class.static]

A data or function member of a class may be declared static in a class definition, in which case it is a
static member of the class.

A static member s of class X may be referred to using the qualified-id expression X : : s; it is not neces-
sary to use the class member access syntax (5.2.5) to refer to a static member. A static member may
be referred to using the class member access syntax, in which case the object-expression is evaluated.
[Example:

class process {

public:
static void reschedule() ;

}i

process& g() ;

void f()

{
process: :reschedule () ; // OK: no object necessary
g () .reschedule() ; // g () iscalled

1

—end example] A static member may be referred to directly in the scope of its class or in the scope of
a class derived (clause 10) from its class; in this case, the static member is referred to as if a qualified-id
expression was used, with the nested-name-specifier of the qualified-id naming the class scope from which
the static member is referenced. [Example:

int g();

struct X {

static int g();
i

struct Y : X {
static int 1i;
}i

int Y::i = g(); // equivalentto v: :g () ;
—end example]

If an unqualified-id (5.1) is used in the definition of a stat ic member following the member’s declarator-
id, and name lookup (3.4.1) finds that the unqualified-id refers to a st at i ¢ member, enumerator, or nested
type of the member’s class (or of a base class of the member’s class), the unqualified-id is transformed into
a qualified-id expression in which the nested-name-specifier names the class scope from which the member
is referenced. The definition of a static member shall not use directly the names of the nonstatic mem-
bers of its class or of a base class of its class (including as operands of the sizeof operator). The defini-
tion of a static member may only refer to these members to form pointer to members (5.3.1) or with the
class member access syntax (5.2.5).

Static members obey the usual class member access rules (clause 11). When used in the declaration of a
class member, the static specifier shall only be used in the member declarations that appear within the
member-specification of the class definition. [Note: it cannot be specified in member declarations that
appear in namespace scope.]|

9.4.1 Static member functions [class.static.mfct]
[Note: the rules described in 9.3 apply to static member functions.]

[Note: a static member function does not have a this pointer (9.3.2).] A static member function
shall not be virtual. There shall not be a static and a nonstatic member function with the same name
and the same parameter types (13.1). A static member function shall not be declared const,

9-10 Classes DRAFT: 11 April 2004 9.4.1 Static member functions

volatile, Or const volatile.
9.4.2 Static data members [class.static.data]

A static data member is not part of the subobjects of a class. There is only one copy of a static data
member shared by all the objects of the class.

The declaration of a static data member in its class definition is not a definition and may be of an
incomplete type other than cv-qualified void. The definition for a static data member shall appear in a
namespace scope enclosing the member’s class definition. In the definition at namespace scope, the name
of the static data member shall be qualified by its class name using the : : operator. The initializer
expression in the definition of a static data member is in the scope of its class (3.3.6). [Example:

class process {
static process* run chain;
static process* running;

}i

process* process::running = get main();
process* process::run_chain = running;

The static data member run_chain of class process is defined in global scope; the notation pro-
cess: :run_chain specifies that the member run chain is a member of class process and in the
scope of class process. In the static data member definition, the initializer expression refers to the
static data member running of class process.]

[Note: once the static data member has been defined, it exists even if no objects of its class have been
created. [Example: in the example above, run chain and running exist even if no objects of class
process are created by the program.]]

If a static data member is of const integral or const enumeration type, its declaration in the class
definition can specify a constant-initializer which shall be an integral constant expression (5.19). In that
case, the member can appear in integral constant expressions. The member shall still be defined in a name-
space scope if it is used in the program and the namespace scope definition shall not contain an initializer.

There shall be exactly one definition of a static data member that is used in a program; no diagnostic is
required; see 3.2. Unnamed classes and classes contained directly or indirectly within unnamed classes
shall not contain static data members.

Static data members of a class in namespace scope have external linkage (3.5). A local class shall not
have static data members.

Static data members are initialized and destroyed exactly like non-local objects (3.6.2, 3.6.3).
A static data member shall not be mutable (7.1.1).
9.5 Unions [class.union]

In a union, at most one of the data members can be active at any time, that is, the value of at most one of the
data members can be stored in a union at any time. [Note: one special guarantee is made in order to sim-
plify the use of unions: If a POD-union contains several POD-structs that share a common initial sequence
(9.2), and if an object of this POD-union type contains one of the POD-structs, it is permitted to inspect the
common initial sequence of any of POD-struct members; see 9.2.] The size of a union is sufficient to con-
tain the largest of its data members. Each data member is allocated as if it were the sole member of a
struct. A union can have member functions (including constructors and destructors), but not virtual (10.3)
functions. A union shall not have base classes. A union shall not be used as a base class. An object of a
class with a non-trivial default constructor (12.1), a non-trivial copy constructor (12.8), a non-trivial de-
structor (12.4), or a non-trivial copy assignment operator (13.5.3, 12.8) cannot be a member of a union, nor
can an array of such objects. If a union contains a static data member, or a member of reference type,
the program is ill-formed.

9.5 Unions DRAFT: 11 April 2004 Classes 9-11

A union of the form
union { member-specification } ;

is called an anonymous union; it defines an unnamed object of unnamed type. The member-specification of
an anonymous union shall only define non-static data members. [Note: nested types and functions cannot
be declared within an anonymous union.] The names of the members of an anonymous union shall be dis-
tinct from the names of any other entity in the scope in which the anonymous union is declared. For the
purpose of name lookup, after the anonymous union definition, the members of the anonymous union are
considered to have been defined in the scope in which the anonymous union is declared. [Example:

void £()
{
union { int a; char* p; };
a = 1;
[/
p = "Jennifer";
// ..

}

Here a and p are used like ordinary (nonmember) variables, but since they are union members they have
the same address.]

Anonymous unions declared in a named namespace or in the global namespace shall be declared static.
Anonymous unions declared at block scope shall be declared with any storage class allowed for a block-
scope variable, or with no storage class. A storage class is not allowed in a declaration of an anonymous
union in a class scope. An anonymous union shall not have private or protected members (clause
11). Ananonymous union shall not have function members.

A union for which objects or pointers are declared is not an anonymous union. [Example:
union { int aa; char* p; } obj, *ptr = &obj;

aa = 1; // error
ptr-saa = 1; // OK

The assignment to plain aa is ill formed since the member name is not visible outside the union, and even
if it were visible, it is not associated with any particular object.] [Note: Initialization of unions with no
user-declared constructors is described in (8.5.1).]

9.6 Bit-fields [class.bit]

A member-declarator of the form

identifier,,, : constant-expression

specifies a bit-field; its length is set off from the bit-field name by a colon. The bit-field attribute is not part
of the type of the class member. The constant-expression shall be an integral constant-expression with a
value greater than or equal to zero. The constant-expression may be larger than the number of bits in the
object representation (3.9) of the bit-field’s type; in such cases the extra bits are used as padding bits and do
not participate in the value representation (3.9) of the bit-field. Allocation of bit-fields within a class object
is implementation-defined. Alignment of bit-fields is implementation-defined. Bit-fields are packed into
some addressable allocation unit. [Note: bit-fields straddle allocation units on some machines and not on
others. Bit-fields are assigned right-to-left on some machines, left-to-right on others.]

A declaration for a bit-field that omits the identifier declares an unnamed bit-field. Unnamed bit-fields are
not members and cannot be initialized. [Note: an unnamed bit-field is useful for padding to conform to
externally-imposed layouts.] As a special case, an unnamed bit-field with a width of zero specifies align-
ment of the next bit-field at an allocation unit boundary. Only when declaring an unnamed bit-field may the
constant-expression be a value equal to zero.

A bit-field shall not be a static member. A bit-field shall have integral or enumeration type (3.9.1). It is
implementation-defined whether a plain (neither explicitly signed nor unsigned) char, short, int or
long bit-field is signed or unsigned. A boo1l value can successfully be stored in a bit-field of any nonzero

9-12 Classes DRAFT: 11 April 2004 9.6 Bit-fields

size. The address-of operator & shall not be applied to a bit-field, so there are no pointers to bit-fields. A
non-const reference shall not be bound to a bit-field (8.5.3). [Note: if the initializer for a reference of type
const T& is an Ivalue that refers to a bit-field, the reference is bound to a temporary initialized to hold the
value of the bit-field; the reference is not bound to the bit-field directly. See 8.5.3.]

If the value true or false is stored into a bit-field of type bool of any size (including a one bit bit-
field), the original bool value and the value of the bit-field shall compare equal. If the value of an enumer-
ator is stored into a bit-field of the same enumeration type and the number of bits in the bit-field is large
enough to hold all the values of that enumeration type, the original enumerator value and the value of the
bit-field shall compare equal. [Example:

enum BOOL { f=0, t=1 };
struct A {

BOOL b:1;
}i
A a;
void £() {
a.b = t;
if (a.b == t) // shall yield true
{ /% ... %/}
}
—end example]
9.7 Nested class declarations [class.nest]

A class can be declared within another class. A class declared within another is called a nested class. The
name of a nested class is local to its enclosing class. The nested class is in the scope of its enclosing class.
[Note: In accordance with 9.2, except by using explicit pointers, references, and object names, declarations
in a nested class shall not use nonstatic data members or nonstatic member functions from the enclosing
class. This restriction applies in all constructs including the operands of the sizeof operator.] [Exam-
ple:

int x;

int y;

class enclose {

public:

int x;
static int s;

class inner {

void f (int i)

{
int a = sizeof(x); //error:directuse of enclose: :xevenin sizeof
x = 1i; // error: assignto enclose: :x
s = 1i; // OK: assignto enclose: :s
cix o= 1i; // OK: assign to global x
y = i; // OK: assign to global y
!
void g(enclose* p, int i)
{
p->x = i; // OK: assignto enclose: :x
!

inner* p = 0; // error: inner not in scope

9.7 Nested class declarations DRAFT: 11 April 2004 Classes 9-13

—end example]

Member functions and static data members of a nested class can be defined in a namespace scope enclosing
the definition of their class. [Example:

class enclose {
public:
class inner ({
static int x;
void f(int 1i);
}i
}i

int enclose::inner::x = 1;

void enclose::inner::f(int i) { /* ... */ }
—end example]

If class X is defined in a namespace scope, a nested class Y may be declared in class X and later defined in
the definition of class X or be later defined in a namespace scope enclosing the definition of class X.
[Example:

class E {

class I1; // forward declaration of nested class
class I2;
class I1 {}; / / definition of nested class

}i

class E::I2 {}; / / definition of nested class

—end example]

Like a member function, a friend function (11.4) defined within a nested class is in the lexical scope of that
class; it obeys the same rules for name binding as a static member function of that class (9.4) and has no
special access rights to members of an enclosing class.

9.8 Local class declarations [class.local]

A class can be declared within a function definition; such a class is called a local class. The name of a local
class is local to its enclosing scope. The local class is in the scope of the enclosing scope, and has the same
access to names outside the function as does the enclosing function. Declarations in a local class can use
only type names, static variables, extern variables and functions, and enumerators from the enclosing
scope. [Example:

int x;

void £ ()

{

static int s ;
int x;
extern int g();

struct local ({

int g() { return x; } // error: x is auto
int h() { return s; } // OK
int k() { return ::x; } //OK
int 1() { return g(); } //OK
}i
// ..
!
local* p = 0; // error: local not in scope

—end example]

9-14 Classes DRAFT: 11 April 2004 9.8 Local class declarations

An enclosing function has no special access to members of the local class; it obeys the usual access rules
(clause 11). Member functions of a local class shall be defined within their class definition, if they are
defined at all.

If class X is a local class a nested class Y may be declared in class X and later defined in the definition of
class x or be later defined in the same scope as the definition of class X. A class nested within a local class
is a local class.

A local class shall not have static data members.
9.9 Nested type names [class.nested.type]

Type names obey exactly the same scope rules as other names. In particular, type names defined within a
class definition cannot be used outside their class without qualification. [Example:

class X {
public:

typedef int I;

class Y { /* ... %/ };

I a;
}i
I b; // error
Y c; // error
X::Y d; // OK
X::I e; // OK

—end example]

10 Derived classes [class.derived]

A list of base classes can be specified in a class definition using the notation:

base-clause:
: base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list , base-specifier

base-specifier:
-2 opt NESted-name-specifier,,, class-name
virtual access-specifier, ::q, Nested-name-specifier,,, class-name
access-specifier virtualyy, :: o, nested-name-specifier,,, class-name

access-specifier:
private
protected
public

The class-name in a base-specifier shall not be an incompletely defined class (clause 9); this class is called
a direct base class for the class being defined. During the lookup for a base class name, non-type names
are ignored (3.3.7). If the name found is not a class-name, the program is ill-formed. A class B is a base
class of a class D if it is a direct base class of D or a direct base class of one of D’s base classes. A class is
an indirect base class of another if it is a base class but not a direct base class. A class is said to be (directly
or indirectly) derived from its (direct or indirect) base classes. [Note: See clause 11 for the meaning of
access-specifier.] Unless redeclared in the derived class, members of a base class are also considered to be
members of the derived class. The base class members are said to be inherited by the derived class. Inher-
ited members can be referred to in expressions in the same manner as other members of the derived class,
unless their names are hidden or ambiguous (10.2). [Note: the scope resolution operator : : (5.1) can be
used to refer to a direct or indirect base member explicitly. This allows access to a name that has been
redeclared in the derived class. A derived class can itself serve as a base class subject to access control; see
11.2. A pointer to a derived class can be implicitly converted to a pointer to an accessible unambiguous
base class (4.10). An Ivalue of a derived class type can be bound to a reference to an accessible unambigu-
ous base class (8.5.3).]

The base-specifier-list specifies the type of the base class subobjects contained in an object of the derived
class type. [Example:

class Base {
public:

int a, b, c¢;
}i

class Derived : public Base {
public:

int b;
}i

10-2 Derived classes DRAFT: 11 April 2004 10 Derived classes

class Derived2 : public Derived {
public:

int c;
i

Here, an object of class Derived2 will have a sub-object of class Derived which in turn will have a
sub-object of class Base.]

The order in which the base class subobjects are allocated in the most derived object (1.8) is unspecified.
[Note: a derived class and its base class sub-objects can be represented by a directed acyclic graph (DAG)
where an arrow means “directly derived from.” A DAG of sub-objects is often referred to as a *“sub-object
lattice.”

Base

}

Derived

i

Derived2

The arrows need not have a physical representation in memory.]
[Note: initialization of objects representing base classes can be specified in constructors; see 12.6.2.]

[Note: A base class subobject might have a layout (3.7) different from the layout of a most derived object of
the same type. A base class subobject might have a polymorphic behavior (12.7) different from the poly-
morphic behavior of a most derived object of the same type. A base class subobject may be of zero size
(clause 9); however, two subobjects that have the same class type and that belong to the same most derived
object must not be allocated at the same address (5.10).]

10.1 Multiple base classes [class.mi]

A class can be derived from any number of base classes. [Note: the use of more than one direct base class
is often called multiple inheritance.] [Example:

class A { /* ... */ };
class B { /* ... */ };
class C { /* ... %/ };
class D : public A, public B, public C { /* ... */ };

—end example]

[Note: the order of derivation is not significant except as specified by the semantics of initialization by con-
structor (12.6.2), cleanup (12.4), and storage layout (9.2, 11.1).]

A class shall not be specified as a direct base class of a derived class more than once. [Note: a class can be
an indirect base class more than once and can be a direct and an indirect base class. There are limited
things that can be done with such a class. The non-static data members and member functions of the direct
base class cannot be referred to in the scope of the derived class. However, the static members, enumera-
tions and types can be unambiguously referred to.] [Example:

class X { /* ... */ };

class Y : public X, public X { /* ... */ }; // ill-formed

class L { public: int next; /* ... */ };

class A : public L { /* ... */ };

class B : public L { /* ... */ };

class C : public A, public B { void £(0); /* ... */ }; // well-formed
class D : public A, public L { void £(); /* ... */ }; // well-formed

—end example]

10.1 Multiple base classes DRAFT: 11 April 2004 Derived classes 10-3

A base class specifier that does not contain the keyword virtual, specifies a nonvirtual base class. A
base class specifier that contains the keyword virtual, specifies a virtual base class. For each distinct
occurrence of a nonvirtual base class in the class lattice of the most derived class, the most derived object
(1.8) shall contain a corresponding distinct base class subobject of that type. For each distinct base class
that is specified virtual, the most derived object shall contain a single base class subobject of that type.
[Example: for an object of class type C, each distinct occurrence of a (non-virtual) base class L in the class
lattice of C corresponds one-to-one with a distinct L subobject within the object of type C. Given the class
C defined above, an object of class C will have two sub-objects of class L as shown below.

L

~.

C

In such lattices, explicit qualification can be used to specify which subobject is meant. The body of func-
tion C: : £ could refer to the member next of each L subobject:

void C::£() { A::next = B::next; } // well-formed

Without the A: : or B: : qualifiers, the definition of C: : £ above would be ill-formed because of ambiguity
(10.2).

For another example,

class Vv { /* ... */ };

class A : virtual public Vv { /* ... */ };
class B : virtual public Vv { /* ... */ };
class C : public A, public B { /* ... */ };

for an object ¢ of class type ¢, a single subobject of type V is shared by every base subobject of c that hasa |
virtual base class of type V. Given the class C defined above, an object of class C will have one subab-
ject of class v, as shown below.

N
.

A class can have both virtual and nonvirtual base classes of a given type.

class B { /* ... */ };

class X : virtual public B { /* ... */ };

class Y : virtual public B { /* ... */ };

class Z : public B { /* ... */ };

class AA : public X, public Y, public Z { /* ... */ };

For an object of class Aa, all virtual occurrences of base class B in the class lattice of AA correspond to
a single B subobject within the object of type Aa, and every other occurrence of a (non-virtual) base class B
in the class lattice of AA corresponds one-to-one with a distinct B subobject within the object of type AA.
Given the class AA defined above, class A2 has two sub-objects of class B: z’s B and the virtual B shared by
X and Y, as shown below.

10-4 Derived classes DRAFT: 11 April 2004 10.1 Multiple base classes

B B
X / \ Y Z
\AA/(/'
—end example]
10.2 Member name lookup [class.member.lookup]

Member name lookup determines the meaning of a name (id-expression) in a class scope (3.3.6). Name
lookup can result in an ambiguity, in which case the program is ill-formed. For an id-expression, name
lookup begins in the class scope of this; for a qualified-id, name lookup begins in the scope of the nested-
name-specifier. Name lookup takes place before access control (3.4, clause 11).

The following steps define the result of name lookup in a class scope, C. First, every declaration for the
name in the class and in each of its base class sub-objects is considered. A member name £ in one sub-
object B hides a member name £ in a sub-object A if A is a base class sub-object of B. Any declarations
that are so hidden are eliminated from consideration. Each of these declarations that was introduced by a
using-declaration is considered to be from each sub-object of C that is of the type containing the declara-
tion designated by the using—declaration.gg) If the resulting set of declarations are not all from sub-objects
of the same type, or the set has a nonstatic member and includes members from distinct sub-objects, there
is an ambiguity and the program is ill-formed. Otherwise that set is the result of the lookup.

[Example:

class A {
public:
int a;
int (*b) () ;
int £();
int £ (int) ;
int g();

class B {
int a;
int b();
public:
int £();
int g;
int h();
int h(int) ;

}i

class C : public A, public B {};

99) Note that using-declarations cannot be used to resolve inherited member ambiguities; see 7.3.3.

10.2 Member name lookup

void g(C* pc)

{

DRAFT: 11 April 2004

// error:
// error:
// error:
// error:
// error:
// error:

// OK
// OK

ambiguous:
ambiguous:
ambiguous:
ambiguous:
ambiguous:
ambiguous:

e

:a0rB::
::bOrB::
::forB::
:forB::
:gorB::
::gorB::

QQ th oW

Derived classes 10-5

}

—end example] [Example:

struct U { static int i; };
struct V : U { };
struct W { using U::i; };

U
struct X : V,
void X::foo ()
i; // findsU: :1intwoways:asW: :iandU: :iinVv

// no ambiguity because U: : i is static

W { void foo(); };
{

}

—end example]

If the name of an overloaded function is unambiguously found, overloading resolution (13.3) also takes
place before access control. Ambiguities can often be resolved by qualifying a name with its class hame.
[Example:

class A {
public:

int £();
}i

class B {
public:

int £();
}i

class C : public A, public B {
int £() { return A::f() + B::f(); }
}i

—end example]

A static member, a nested type or an enumerator defined in a base class T can unambiguously be found
even if an object has more than one base class subobject of type T. Two base class subobjects share the
nonstatic member subobjects of their common virtual base classes. [Example:

class V { public: int v; };
class A {
public:

int a;

static int S;

enum { e };
class B
class C

public virtual vV {};
public virtual V {};

: public A,
: public A,

10-6 Derived classes

DRAFT: 11 April 2004

class D : public B, public C { };

void f(D* pd)

{
pd->v++;
pd->s++;
int 1 = pd->e;
pd->a++;

}

—end example]

When virtual base classes are used, a hidden declaration can be reached along a path through the sub-object

// OK: only one v (virtual)

// OK: only one s (static)

// OK: only one e (enumerator)
// error, ambiguous: two as in D

10.2 Member name lookup

lattice that does not pass through the hiding declaration. This is not an ambiguity. The identical use with
nonvirtual base classes is an ambiguity; in that case there is no unique instance of the name that hides all

the

others. [Example:

class V { public: int £();
class W { public: int g();

int x; };
int y; };

class B : public virtual V, public W

{
public:
int £(); 1int x;
int g(); int vy;
}i

class C : public virtual V, public W { };

class D : public B, public C { void glorp(); };

The names declared in v and the left hand instance of w are hidden by those in B, but the names declared in
the right hand instance of w are not hidden at all.

void D::glorp()

{
X++;
£();
YH+i
g();
1

—end example]

An explicit or implicit conversion from a pointer to or an Ivalue of a derived class to a pointer or reference

// OK:B::xhidesVv: :x

// OK:B::£() hidesv::£ ()
//error:B::yandC’swW: :y
//error:B::g() andC’sW: :g ()

to one of its base classes shall unambiguously refer to a unique object representing the base class. [Exam-

ple:

class Vv { };

class A { };

class B : public A, public virtual
class C : public A, public virtual
class D : public B, public C { };

v { };
v { };

10.2 Member name lookup DRAFT: 11 April 2004 Derived classes 10-7

void g()
{
D d;
B* pb = &d;
A* pa = &d; // error, ambiguous: C’S A or B’S A?
V* pv = &d; // OK: only one V sub-object
}
—end example]
10.3 Virtual functions [class.virtual]

Virtual functions support dynamic binding and object-oriented programming. A class that declares or
inherits a virtual function is called a polymorphic class.

If a virtual member function v£ is declared in a class Base and in a class Derived, derived directly or
indirectly from Base, a member function vf with the same name, parameter-type-list (8.3.5), and cv-qual-
ification as Base: : vf is declared, then Derived: : vf is also virtual (whether or not it is so declared)
and it overrides'® Base: : v£. For convenience we say that any virtual function overrides itself. Then in
any well-formed class, for each virtual function declared in that class or any of its direct or indirect base
classes there is a unique final overrider that overrides that function and every other overrider of that func-
tion. The rules for member lookup (10.2) are used to determine the final overrider for a virtual function in
the scope of a derived class but ignoring names introduced by using-declarations. [Example:

struct A {
virtual void £();
}i

struct B : virtual A {
virtual void £();
}i

struct C : B , virtual A {
using A::f;
}i
void foo()
0); // calls B: : £, the final overrider

(
c
C
c.C::f(); // calls A: : £ because of the using-declaration

Q rhQ

} .
—end example]

[Note: a virtual member function does not have to be visible to be overridden, for example,

struct B {
virtual void £();

struct D : B {
void f (int) ;

}i

struct D2 : D {
void f£() ;

}i

the function £ (int) in class D hides the virtual function £ () in its base class B; D: : £ (int) is not a vir-
tual function. However, £ () declared in class D2 has the same name and the same parameter list as
B::f (), and therefore is a virtual function that overrides the function B: : £ () even though B: : £ () is
not visible in class D2.]

1m»AfmabanﬂMSmmnmwaadmmmtmmmamHﬁ@hweﬂ)%aﬂﬁmﬁwﬂbnEnmn%%wmmeMaMdms
not override. The use of the virtual specifier in the declaration of an overriding function is legal but redundant (has empty seman-
tics). Access control (clause 11) is not considered in determining overriding.

10-8 Derived classes DRAFT: 11 April 2004 10.3 Virtual functions

Even though destructors are not inherited, a destructor in a derived class overrides a base class destructor
declared virtual; see 12.4 and 12.5.

The return type of an overriding function shall be either identical to the return type of the overridden func-

tion or covariant with the classes of the functions. If a function D: : £ overrides a function B: : £, the

return types of the functions are covariant if they satisfy the following criteria:

— both are pointers to classes or references to classes™®V)

— the class in the return type of B: : £ is the same class as the class in the return type of D: : £, or is an
unambiguous and accessible direct or indirect base class of the class in the return type of D: : £

— both pointers or references have the same cv-qualification and the class type in the return type of
D: : £ has the same cv-qualification as or less cv-qualification than the class type in the return type of
B::f.

If the return type of D: : £ differs from the return type of B: : £, the class type in the return type of D: : £
shall be complete at the point of declaration of D: : £ or shall be the class type D. When the overriding
function is called as the final overrider of the overridden function, its result is converted to the type returned
by the (statically chosen) overridden function (5.2.2). [Example:

class B {};
class D : private B { friend class Derived; };
struct Base ({
virtual void vEl(
virtual void vf2(
virtual void v£3(
virtual B* viad (

virtual B* vES () ;
void f£() ;

}i

struct No_good : public Base {
D* «vf4(); // error: B (base class of D) inaccessible

}i

class A;

struct Derived : public Base ({
void vfl(); // virtual and overrides Base: : v£1 ()
void vf2 (int) ; // notvirtual, hides Base: : vE£2 ()
char vE3(); // error: invalid difference in return type only
D*x vf4(); // OK: returns pointer to derived class
A* vE5(); // error: returns pointer to incomplete class
void f£();

1m)Mum4wmpmmmsmch$%ormmmnmsmanmedemsmCM$%amnManwd

10.3 Virtual functions

void g()

{

Derived d;
Base* bp = &d;

bp->vEl () ;
bp->vf2 () ;
bp->£f () ;

B* p = bp->vf4();

Derived* dp = &d;
D* g = dp->vf4();

dp->viE2 () ;

}

—end example]

DRAFT: 11 April 2004

Derived classes 10-9

// standard conversion:

// Derived* to Base*

// callsDerived: :v£f1l ()

// callsBase: :vE£2 ()

// calls Base: : £ () (notvirtual)

// callsberived: :pf () and converts the
// resultto B*

// callsDerived: :pf () and does not
// convert the result to B*
// ill-formed: argument mismatch

[Note: the interpretation of the call of a virtual function depends on the type of the object for which it is
called (the dynamic type), whereas the interpretation of a call of a nonvirtual member function depends
only on the type of the pointer or reference denoting that object (the static type) (5.2.2).]

[Note: the virtual specifier implies membership, so a virtual function cannot be a nonmember (7.1.2)
function. Nor can a virtual function be a static member, since a virtual function call relies on a specific
object for determining which function to invoke. A virtual function declared in one class can be declared a

friend in another class.]

A virtual function declared in a class shall be defined, or declared pure (10.4) in that class, or both; but no

diagnostic is required (3.2).

[Example: here are some uses of virtual functions with multiple base classes:

struct A {
virtual void £();

}i
struct Bl : A {
void £();
}i
struct B2 : A {
void £();
}i
struct D : Bl, B2 {
}i
void foo()
{
D da;
// A* ap = &4;
Bl* blp = &d;
A* ap = blp;
D* dp = &d4d;
ap->f () ;
dp->f () ;
}

// note non-virtual derivation

// D has two separate A sub-objects

// would be ill-formed: ambiguous

//callsD::Bl::f
// ill-formed: ambiguous

In class D above there are two occurrences of class A and hence two occurrences of the virtual member

function A: : £. The final overrider of B1: :A:

B2::f.

: £ is B1::£f and the final overrider of B2: :A::f is

10

11

12

10-10 Derived classes DRAFT: 11 April 2004 10.3 Virtual functions

The following example shows a function that does not have a unique final overrider:

struct A {
virtual void £();

}i
struct VBl : virtual A { // note virtual derivation
void f£();
}i
struct VB2 : virtual A {
void £();
}i
struct Error : VBl, VB2 { // ill-formed
}i
struct Okay : VB1l, VB2 ({
void f£() ;
}i

Both vB1: : f and VB2: : £ override A: : £ but there is no overrider of both of them in class Exrror. This
example is therefore ill-formed. Class okay is well formed, however, because Okay: : £ is a final over-
rider.

The following example uses the well-formed classes from above.

struct VBla : virtual A // does not declare £
struct Da : VBla, VB2 ({

void foe ()

{

VBla* vblap = new Da;
vblap->f () ; //callsvB2: : f

}

—end example]

Explicit qualification with the scope operator (5.1) suppresses the virtual call mechanism. [Example:

class B { public: virtual void £(); };
class D : public B { public: void f£(); };
void D::£() { /* ... */ B::£(); }

Here, the function call in D: : £ really doescall B: : £ and notD: : £.]
10.4 Abstract classes [class.abstract]

The abstract class mechanism supports the notion of a general concept, such as a shape, of which only
more concrete variants, such as circle and square, can actually be used. An abstract class can also be
used to define an interface for which derived classes provide a variety of implementations.

An abstract class is a class that can be used only as a base class of some other class; no objects of an
abstract class can be created except as sub-objects of a class derived from it. A class is abstract if it has at
least one pure virtual function. [Note: such a function might be inherited: see below.] A virtual function is
specified pure by using a pure-specifier (9.2) in the function declaration in the class definition. A pure vir-
tual function need be defined only if called with, or as if with (12.4), the qualified-id syntax (5.1). [Exam-
ple:

10.4 Abstract classes DRAFT: 11 April 2004 Derived classes 10-11

class point { /* ... */ };
class shape { // abstract class
point center;

/1

public:
point where() { return center; }
void move (point p) { center=p; draw(); }
virtual void rotate(int) = 0; // pure virtual
virtual void draw() = 0; // pure virtual

/7 .
}i

—end example] [Note: a function declaration cannot provide both a pure-specifier and a definition —end
note] [Example:

struct C {
virtual void £() = 0 { }; // ill-formed
}i

—end example]

An abstract class shall not be used as a parameter type, as a function return type, or as the type of an
explicit conversion. Pointers and references to an abstract class can be declared. [Example:

shape x; // error: object of abstract class
shape* p; // OK

shape f(); // error

void g(shape) ; // error

shape& h(shape&) ; // OK

—end example]

A class is abstract if it contains or inherits at least one pure virtual function for which the final overrider is
pure virtual. [Example:

class ab circle : public shape {
int radius;

public:
void rotate(int) {}
// ab_circle::draw () isa pure virtual

}i
Since shape: :draw () is a pure virtual function ab_circle: :draw () is a pure virtual by default.
The alternative declaration,

class circle : public shape {
int radius;

public:

void rotate(int) {}

void draw() ; // a definition is required somewhere
}i

would make class circle nonabstract and a definition of circle: : draw () must be provided.]

[Note: an abstract class can be derived from a class that is not abstract, and a pure virtual function may
override a virtual function which is not pure.]

Member functions can be called from a constructor (or destructor) of an abstract class; the effect of making
a virtual call (10.3) to a pure virtual function directly or indirectly for the object being created (or
destroyed) from such a constructor (or destructor) is undefined.

11 Member access control [class.access]

A member of a class can be

— private; that is, its name can be used only by members and friends of the class in which it is
declared.

— protected; that is, its name can be used only by members and friends of the class in which it is
declared, and by members and friends of classes derived from this class (see 11.5).

— public; thatis, its name can be used anywhere without access restriction.

A member of a class can also access all the names declared in the class of which it is a member. 160\2 local
class of a member function may access the same names that the member function itself may access.

Members of a class defined with the keyword class are private by default. Members of a class
defined with the keywords st ruct or union are public by default. [Example:

class X {

int a; // X: :ais private by default
}i
struct S {

int a; // S: :ais public by default
}i

—end example]

Access control is applied uniformly to all names, whether the names are referred to from declarations or
expressions. [Note: access control applies to names nominated by friend declarations (11.4) and using-
declarations (7.3.3).] In the case of overloaded function names, access control is applied to the function
selected by overload resolution. [Note: because access control applies to names, if access control is applied
to a typedef name, only the accessibility of the typedef name itself is considered. The accessibility of the
entity referred to by the typedef is not considered. For example,

class A
{
class B { };
public:
typedef B BB;
}i
void f ()
{
A::BB x; // OK, typedef name A : : BB is public
A::B y; // access error, A: : B is private
!
—end note]

It should be noted that it is access to members and base classes that is controlled, not their visibility.
Names of members are still visible, and implicit conversions to base classes are still considered, when those

102) Access permissions are thus transitive and cumulative to nested and local classes.

11-2 Member access control DRAFT: 11 April 2004 11 Member access control

members and base classes are inaccessible. The interpretation of a given construct is established without
regard to access control. If the interpretation established makes use of inaccessible member names or base
classes, the construct is ill-formed.

All access controls in clause 11 affect the ability to access a class member name from a particular scope.
The access control for names used in the definition of a class member that appears outside of the member’s
class definition is done as if the entire member definition appeared in the scope of the member’s class. In
particular, access controls apply as usual to member names accessed as part of a function return type, even
though it is not possible to determine the access privileges of that use without first parsing the rest of the
function declarator. Similarly, access control for implicit calls to the constructors, the conversion functions,
or the destructor called to create and destroy a static data member is performed as if these calls appeared in
the scope of the member’s class. [Example:

class A {
typedef int I; // private member
I £();
friend I g(I);
static I x;

}i

A::I A::f() { return O; }
A::I g(A::I p = A::Xx);

A::I g(A::I p) { return 0; }
A::I A::x = 0;

Here, all the uses of A: : T are well-formed because A: : £ and A: : x are members of class A and g is a
friend of class &. This implies, for example, that access checking on the first use of A: : T must be deferred
until it is determined that this use of A: : T is as the return type of a member of class A.]

The names in a default argument expression (8.3.6) are bound at the point of declaration, and access is
checked at that point rather than at any points of use of the default argument expression. Access checking
for default arguments in function templates and in member functions of class templates are performed as
described in 14.7.1.

11.1 Access specifiers [class.access.spec]
Member declarations can be labeled by an access-specifier (clause 10):
access-specifier : member-specification

An access-specifier specifies the access rules for members following it until the end of the class or until
another access-specifier is encountered. [Example:

class X {
int a; // X: :ais private by default: class used
public:
int b; // X::Dis public
int c¢; // X::cis public
Vi
—end example] Any number of access specifiers is allowed and no particular order is required. [Example:
struct S {
int a; // S: :alis public by default: struct used
protected:
int b; // S: :Dbis protected
private:
int c¢; // S::cis private
public:
int d; // S::dis public
}i

—end example]

11.1 Access specifiers DRAFT: 11 April 2004 Member access control 11-3

The order of allocation of data members with separate access-specifier labels is unspecified (9.2).

When a member is redeclared within its class definition, the access specified at its redeclaration shall be the
same as at its initial declaration. [Example:

struct S {

class A;
private:

class A { }; // error: cannot change access
}i

—end example]

[Note: In a derived class, the lookup of a base class name will find the injected-class-name instead of the
name of the base class in the scope in which it was declared. The injected-class-name might be less accessi-
ble than the name of the base class in the scope in which it was declared.] [Example:

class A { };

class B : private A { };

class C : public B {
A* p; // error: injected-class-name A is inaccessible
::A* g; // OK

}i

—end example]
11.2 Accessibility of base classes and base class members [class.access.base]

If a class is declared to be a base class (clause 10) for another class using the public access specifier, the
public members of the base class are accessible as public members of the derived class and pro-
tected members of the base class are accessible as protected members of the derived class. If a class
is declared to be a base class for another class using the protected access specifier, the public and
protected members of the base class are accessible as protected members of the derived class. If a
class is declared to be a base class for another class using the private access specifier, the public and
protected members of the base class are accessible as private members of the derived class'®?).

In the absence of an access-specifier for a base class, public is assumed when the derived class is
declared struct and private is assumed when the class is declared class. [Example:

class B { /* ... %/ };

class D1 : private B { /* ... */ };

class D2 : public B { /* ... */ };

class D3 : B { /* ... */ }; // B private by default
struct D4 : public B { /* ... */ };

struct D5 : private B { /* ... */ };

struct D6 : B { /* ... */ }; // B public by default
class D7 : protected B { /* ... */ };

struct D8 : protected B { /* ... */ };

Here B is a public base of D2, D4, and D6, a private base of D1, D3, and D5, and a protected base of D7
and D8. —end example]

[Note: A member of a private base class might be inaccessible as an inherited member name, but accessible
directly. Because of the rules on pointer conversions (4.10) and explicit casts (5.4), a conversion from a
pointer to a derived class to a pointer to an inaccessible base class might be ill-formed if an implicit conver-
sion is used, but well-formed if an explicit cast is used. For example,

103) As specified previously in clause 11, private members of a base class remain inaccessible even to derived classes unless friend
declarations within the base class definition are used to grant access explicitly.

11-4 Member access control DRAFT: 11 April 2004 11.2
Accessibility of base classes and base class members

class B {

public:
int mi; // nonstatic member
static int si; // static member
}i
class D : private B {
}i
class DD : public D {
void f£();
}i
void DD::£() {
mi = 3; // error: mi is private in D
si = 3; // error: si is private in D
:B b;
b.mi = 3; // OK (b.mi is different from this->mi)
b.si = 3; // OK (b.si is different from this->si)
::B::si = 3; // OK
::B* bpl = this; // error: B is a private base class
::B* bp2 = (::B*)this; // OKwithcast
bp2->mi = 3; // OK: access through a pointer to B.
1
—end note]

A base class B of N is accessible at R, if
— an invented public member of B would be a public member of N, or

— R occurs in a member or friend of class N, and an invented public member of B would be a private or
protected member of N, or

— R occurs in a member or friend of a class P derived from N, and an invented public member of B
would be a private or protected member of P, or

— there exists a class S such that B is a base class of S accessible at R and S is a base class of N accessi-
ble at R.

[Example:

class B {
public:

int m;
}i

class S: private B {
friend class N;

}i
class N: private S {
void £() {
B* p = this; // OKbecause class S satisfies the fourth condition
// above: B is a base class of N accessible in £ () because
// B is an accessible base class of S and S is an accessible
// base class of N.
1
}i

—end example] If a base class is accessible, one can implicitly convert a pointer to a derived class to a
pointer to that base class (4.10, 4.11). [Note: it follows that members and friends of a class X can implicitly
convert an X* to a pointer to a private or protected immediate base class of X.]

The access to a member is affected by the class in which the member is named. This naming class is the
class in which the member name was looked up and found. [Note: this class can be explicit, e.g., when a

11.2 DRAFT: 11 April 2004 Member access control 11-5
Accessibility of base classes and base class members

qualified-id is used, or implicit, e.g., when a class member access operator (5.2.5) is used (including cases
where an implicit “this->" is added). If both a class member access operator and a qualified-id are used
to name the member (as in p->T: :m), the class naming the member is the class named by the nested-
name-specifier of the qualified-id (that is, T).] A member m is accessible at the point R when named in
class N if

— mas a member of N is public, or
— mas a member of N is private, and R occurs in a member or friend of class N, or

— m as a member of N is protected, and R occurs in a member or friend of class N, or in a member or
friend of a class P derived from N, where m as a member of P is public, private, or protected, or

— there exists a base class B of N that is accessible at R, and m is accessible at R when named in class B.

[Example:

class B;
class A {
private:
int i;
friend void £ (B¥*) ;
}i
class B : public A { };
void £ (B* p) {
p->1i = 1; // OK: B* can be implicitly cast to A*,
// and £ has access to i in A
1

—end example]

If a class member access operator, including an implicit “this->,” is used to access a nonstatic data mem-
ber or nonstatic member function, the reference is ill-formed if the left operand (considered as a pointer in
the “.” operator case) cannot be implicitly converted to a pointer to the naming class of the right operand.
[Note: this requirement is in addition to the requirement that the member be accessible as named.]

11.3 Access declarations [class.access.dcl]

The access of a member of a base class can be changed in the derived class by mentioning its qualified-id in
the derived class definition. Such mention is called an access declaration. The effect of an access declara-
tion qualified-id ; is defined to be equivalent to the declaration using qualified-id ;.104)

[Example:

class A {
public:
int z;
int z1;

}i

104) Access declarations are deprecated; member using-declarations (7.3.3) provide a better means of doing the same things. In ear-
lier versions of the C+ language, access declarations were more limited; they were generalized and made equivalent to using-declara-
tions in the interest of simplicity. Programmers are encouraged to use using-declarations, rather than the new capabilities of access
declarations, in new code.

11-6 Member access control DRAFT: 11 April 2004 11.3 Access declarations

class B : public A {

int a;
public:
int b, c¢;
int bf();
protected:
int x;
int y;
}i
class D : private B {
int d;
public:
B::c; // adjust accessto B: : c
B::z; // adjust accessto A: : z
A::zl; // adjust accesstoA: : z1
int e;
int df () ;
protected:
B::x; // adjust accessto B: : x
int g;
}i
class X : public D {
int x£();
}i
int ef (D&) ;
int f£f(X&);

The external function ef can use only the names ¢, z, z1, e, and df. Being a member of D, the function
df can use the names b, ¢, z, z1, bf, %, vy, d, e, df, and g, but not a. Being a member of B, the function
bf can use the members a, b, ¢, z, z1, bf, x, and y. The function xf can use the public and protected
names from D, that is, ¢, z, z1, e, and df (public), and x, and g (protected). Thus the external function
ff has access only to c, z, z1, e, and df. If D were a protected or private base class of X, xf would have
the same privileges as before, but £f would have no access at all.]

11.4 Friends [class.friend]

A friend of a class is a function or class that is given permission to use the private and protected member
names from the class. A class specifies its friends, if any, by way of friend declarations. Such declarations
give special access rights to the friends, but they do not make the nominated friends members of the
befriending class. [Example: the following example illustrates the differences between members and
friends:

class X {

int a;

friend void friend set (X*, int);
public:

void member set (int) ;
}i
void friend set (X* p, int i) { p-»a = i; }
void X::member set(int i) { a = 1i; }
void f()
{

X obj;
friend set (&obj,10) ;
obj.member set (10) ;

11.4 Friends DRAFT: 11 April 2004 Member access control 11-7

—end example]

Declaring a class to be a friend implies that the names of private and protected members from the class
granting friendship can be accessed in declarations of members of the befriended class. [Note: this means
that access to private and protected names is also granted to member functions of the friend class (as if the
functions were each friends) and to the static data member definitions of the friend class. This also means
that private and protected type names from the class granting friendship can be used in the base-clause of a
nested class of the friend class. However, the declarations of members of classes nested within the friend
class cannot access the names of private and protected members from the class granting friendship. Also,
because the base-clause of the friend class is not part of its member declarations, the base-clause of the
friend class cannot access the names of the private and protected members from the class granting friend-
ship. For example,

class A {
class B { };
friend class X;

}i
class X : A::B { // ill-formed: A: : B cannot be accessed
// in the base-clause for X
A::B mx; // OK: A: :B used to declare member of X
class Y : A::B { // OK: A: : B used to declare member of X
A::B my; // ill-formed: A: : B cannot be accessed
// to declare members of nested class of X
}i
}i

] An elaborated-type-specifier shall be used in a friend declaration for a class.® A class shall not be
defined in a friend declaration. [Example:

class X {
enum { a=100 };
friend class Y;

}i

class Y {
int vI[X::al; // OK, Y is a friend of X
}i

class 2z {
int vI[X::a]; // error: X: :a is private
}i

—end example]

A function first declared in a friend declaration has external linkage (3.5). Otherwise, the function retains
its previous linkage (7.1.1).

When a friend declaration refers to an overloaded name or operator, only the function specified by the
parameter types becomes a friend. A member function of a class X can be a friend of a class Y. [Example:

class Y {
friend char* X::foo(int) ;

friend X::X(char) ; // constructors can be friends
friend X::"X(); // destructors can be friends
// ..

}i
—end example]

A function can be defined in a friend declaration of a class if and only if the class is a non-local class (9.8),
the function name is unqualified, and the function has namespace scope. [Example:

105) The class-key of the elaborated-type-specifier is required.

11-8 Member access control DRAFT: 11 April 2004 11.4 Friends

class M {
friend void £() { } // definition of global £, a friend of M,
// not the definition of a member function

}i
—end example] Such a function is implicitly inline. A friend function defined in a class is in the
(lexical) scope of the class in which it is defined. A friend function defined outside the class is not (3.4.1).

No storage-class-specifier shall appear in the decl-specifier-seq of a friend declaration.

A name nominated by a friend declaration shall be accessible in the scope of the class containing the friend
declaration. The meaning of the friend declaration is the same whether the friend declaration appears in the
private, protected or public (9.2) portion of the class member-specification.

Friendship is neither inherited nor transitive. [Example:

class A {
friend class B;
int a;

}i

class B {
friend class C;
}i

class C
void f (A* p)

{

p->a++; // error: Cis not a friend of &
// despite being a friend of a friend

i

class D : public B {
void f (A* p)

{

p->a++; // error: D is not a friend of A
// despite being derived from a friend

}i
—end example]

If a friend declaration appears in a local class (9.8) and the name specified is an unqualified name, a prior
declaration is looked up without considering scopes that are outside the innermost enclosing non-class
scope. For a friend function declaration, if there is no prior declaration, the program is ill-formed. For a
friend class declaration, if there is no prior declaration, the class that is specified belongs to the innermost
enclosing non-class scope, but if it is subsequently referenced, its name is not found by name lookup until a
matching declaration is provided in the innermost enclosing nonclass scope. [Example:

11.4 Friends

class X;

void al();

void £() {
class Y;

extern void b() ;

class A {
friend
friend
friend

class

class

X
class Y
Z
friend void a(
friend void Db(
friend void c(
}i

X *px;

Z *pz;

}

—end example]

11.5 Protected member access

DRAFT: 11 April 2004

// OK, but X is a local class, not : : X
// OK

// OK, introduces local class z

// error, : :a is not considered

// OK

// error

// OK, but : :X is found
// error, no Z is found

Member access control 11-9

[class.protected]

When a friend or a member function of a derived class references a protected nonstatic member function or
protected nonstatic data member of a base class, an access check applies in addition to those described ear-
lier in clause 11.1%9) Except when forming a pointer to member (5.3.1), the access must be through a
pointer to, reference to, or object of the derived class itself (or any class derived from that class) (5.2.5). If
the access is to form a pointer to member, the nested-name-specifier shall name the derived class (or any

class derived from that class). [Example:

class B {

protected:
int i;
static int j;
}i
class D1 : public B {
class D2 : public B {
friend void fr (B*,D1*,D2%) ;
void mem (B*,D1¥%) ;
}i

void fr (B* pb, D1* pl,

{

pb->1i = 1;
pl->1i = 2;
p2->1 = 3;

p2->B::1 = 4;

int B::* pmi B = &B
int B::* pmi B2 =
B::j = 5;

D2::j =6;

D2* p2)

// ill-formed

// ill-formed

// OK (access through a D2)

// OK (access through a D2, even though
// naming class is B)

// ill-formed

// OK (type of &D2: :iisint B: : %)
// OK (because refers to static member)
// OK (because refers to static member)

106) This additional check does not apply to other members, e.g. static data members or enumerator member constants.

11-10 Member access control

void D2::mem(B* pb, D1* pl)

{
pb->i = 1;
pl->1i = 2;
i = 3;
B::1 = 4;
int B::* pmi_B =
int B::* pmi B2 =
j = 5;
B::j = 6;
}

void g(B* pb, D1* pl,
{
pb->i =1
pl->i = 2
p2->i = 3

}

—end example]

&B::1i;
&D2::1;
D2* p2)

11.6 Access to virtual functions

DRAFT: 11 April 2004 11.5 Protected member access
// ill-formed
// ill-formed

// OK (access through this)

// OK (access through this, qualification ignored)
// ill-formed

// OK

// OK (because j refers to static member)

// OK (because B: : j refers to static member)

// ill-formed
// ill-formed
// ill-formed

[class.access.virt]

The access rules (clause 11) for a virtual function are determined by its declaration and are not affected by
the rules for a function that later overrides it. [Example:

class B {
public:
virtual int £();

}i

class D : public B {

private:
int £();

}i

void £ ()

{
D d;
B* pb = &d;
D* pd = &d;
pb->£f () ;
pd->£();

}

// OK:B: : £ () is public,
// D::£() isinvoked
//error:D: : £ () is private

—end example] Access is checked at the call point using the type of the expression used to denote the
object for which the member function is called (B* in the example above). The access of the member func-
tion in the class in which it was defined (D in the example above) is in general not known.

11.7 Multiple access

[class.paths]

If a name can be reached by several paths through a multiple inheritance graph, the access is that of the path
that gives most access. [Example:

class W { public: void £(); };

class A : private virtual W {

class B : public virtual W { };
class C : public A, public B {
void £() { W::£();

}i

}

}i

// OK

Since w: : £ () isavailableto C: : £ () along the public path through B, access is allowed.]

11.7 Multiple access DRAFT: 11 April 2004 Member access control 11-11

11.8 Nested classes [class.access.nest]

A nested class is a member and as such has the same access rights as any other member. The members of
an enclosing class have no special access to members of a nested class; the usual access rules (clause 11)
shall be obeyed. [Example:

class E {
int x;
class B { };

class I {
B b; //OK:E::IcanaccessE: :B
int y;
void f(E* p, int i)

p->X = 1i; //OK:E::IcanaccessE: :x

int g(I* p)
return p->y; // error: I: :yisprivate

}i

—end example]

12 Special member functions [special]

The default constructor (12.1), copy constructor and copy assignment operator (12.8), and destructor (12.4)
are special member functions. The implementation will implicitly declare these member functions for a
class type when the program does not explicitly declare them, except as noted in 12.1. The implementation
will implicitly define them if they are used, as specified in 12.1, 12.4 and 12.8. Programs shall not define
implicitly-declared special member functions. Programs may explicitly refer to implicitly declared special
member functions. [Example: a program may explicitly call, take the address of or form a pointer to mem-
ber to an implicitly declared special member function.

struct A { }; // implicitly-declared A : : operator=
struct B : A {
B& operator=(const B &) ;

B& B::operator=(const B& s)
this->A::operator=(s); // well-formed
return *this;

—end example] [Note: the special member functions affect the way objects of class type are created,
copied, and destroyed, and how values can be converted to values of other types. Often such special mem-
ber functions are called implicitly.]

Special member functions obey the usual access rules (clause 11). [Example: declaring a constructor pro-
tected ensures that only derived classes and friends can create objects using it.]

12.1 Constructors [class.ctor]

Constructors do not have names. A special declarator syntax using an optional sequence of function-speci-
fiers (7.1.2) followed by the constructor’s class name followed by a parameter list is used to declare or
define the constructor. In such a declaration, optional parentheses around the constructor class name are
ignored. [Example:

class C {

public:

c(); // declares the constructor
}i
c::c() { } // defines the constructor

—end example]

A constructor is used to initialize objects of its class type. Because constructors do not have names, they
are never found during name lookup; however an explicit type conversion using the functional notation
(5.2.3) will cause a constructor to be called to initialize an object. [Note: for initialization of objects of
class type see 12.6.]

A typedef-name shall not be used as the class-name in the declarator-id for a constructor declaration.

A constructor shall not be virtual (10.3) or static (9.4). A constructor can be invoked for a const,
volatile or const volatile object. A constructor shall not be declared const, volatile, or
const volatile (9.3.2). const and volatile semantics (7.1.5.1) are not applied on an object under
construction. Such semantics only come into effect once the constructor for the most derived object (1.8)

10
11
12

13

14

15

12-2 Special member functions DRAFT: 11 April 2004 12.1 Constructors

ends.

A default constructor for a class X is a constructor of class X that can be called without an argument. If
there is no user-declared constructor for class X, a default constructor is implicitly declared. An implicitly-
declared default constructor is an inline public member of its class. A default constructor is trivial if
it is implicitly-declared and if:

— its class has no virtual functions (10.3) and no virtual base classes (10.1), and
— all the direct base classes of its class have trivial default constructors, and

— for all the nonstatic data members of its class that are of class type (or array thereof), each such class
has a trivial default constructor.

Otherwise, the default constructor is non-trivial.

An implicitly-declared default constructor for a class is implicitly defined when it is used (3.2) to create an
object of its class type (1.8). The implicitly-defined default constructor performs the set of initializations of
the class that would be performed by a user-written default constructor for that class with an empty mem-
initializer-list (12.6.2) and an empty function body. If that user-written default constructor would be ill-
formed, the program is ill-formed. Before the implicitly-declared default constructor for a class is implic-
itly defined, all the implicitly-declared default constructors for its base classes and its nonstatic data mem-
bers shall have been implicitly defined. [Note: an implicitly-declared default constructor has an exception-
specification (15.4).]

Default constructors are called implicitly to create class objects of static or automatic storage duration
(3.7.1, 3.7.2) defined without an initializer (8.5), are called to create class objects of dynamic storage dura-
tion (3.7.3) created by a new-expression in which the new-initializer is omitted (5.3.4), or are called when
the explicit type conversion syntax (5.2.3) is used. A program is ill-formed if the default constructor for an
object is implicitly used and the constructor is not accessible (clause 11).

[Note: 12.6.2 describes the order in which constructors for base classes and non-static data members are
called and describes how arguments can be specified for the calls to these constructors.]

A copy constructor (12.8) is used to copy objects of class type.
A union member shall not be of a class type (or array thereof) that has a non-trivial constructor.

No return type (not even void) shall be specified for a constructor. A return statement in the body of a
constructor shall not specify a return value. The address of a constructor shall not be taken.

A functional notation type conversion (5.2.3) can be used to create new objects of its type. [Note: The syn-
tax looks like an explicit call of the constructor.] [Example:

complex zz = complex(1l,2

.3);
cprint (complex(7.8,1.2))

7

—end example] An object created in this way is unnamed. [Note: 12.2 describes the lifetime of temporary
objects.] [Note: explicit constructor calls do not yield Ivalues, see 3.10.]

[Note: some language constructs have special semantics when used during construction; see 12.6.2 and
12.7.]

During the construction of a const object, if the value of the object or any of its subobjects is accessed
through an Ivalue that is not obtained, directly or indirectly, from the constructor’s this pointer, the value
of the object or subobject thus obtained is unspecified. [Example:

12.1 Constructors DRAFT: 11 April 2004 Special member functions 12-3

struct C;
void no_opt (C*) ;

struct C {

int c¢;

C() : c(0) { no opt(this); }
}i

const C cobj;

void no_opt (C* cptr) {

int 1 = cobj.c * 100; // value of cobj . c is unspecified

cptr->c = 1;

cout << cobj.c * 100 // value of cobj . c is unspecified
<< '\n’;

}

—end example]
12.2 Temporary objects [class.temporary]

Temporaries of class type are created in various contexts: binding an rvalue to a reference (8.5.3), returning
an rvalue (6.6.3), a conversion that creates an rvalue (4.1, 5.2.9, 5.2.11, 5.4), throwing an exception (15.1),
entering a handler (15.3), and in some initializations (8.5). [Note: the lifetime of exception objects is
described in 15.1.] Even when the creation of the temporary object is avoided (12.8), all the semantic
restrictions must be respected as if the temporary object was created. [Example: even if the copy construc-
tor is not called, all the semantic restrictions, such as accessibility (clause 11), shall be satisfied.]

[Example:

class X {

X(:Lnt),
X (const X&) ;
“X();

Here, an implementation might use a temporary in which to construct x (2) before passing it to £ () using
X’s copy-constructor; alternatively, X (2) might be constructed in the space used to hold the argument.
Also, a temporary might be used to hold the result of £ (X (2)) before copying it to b using X’s copy-con-
structor; alternatively, £ () ’s result might be constructed in b. On the other hand, the expression a=f (a)
requires a temporary for either the argument a or the result of £ (a) to avoid undesired aliasing of a.]

When an implementation introduces a temporary object of a class that has a non-trivial constructor (12.1,
12.8), it shall ensure that a constructor is called for the temporary object. Similarly, the destructor shall be
called for a temporary with a non-trivial destructor (12.4). Temporary objects are destroyed as the last step
in evaluating the full-expression (1.9) that (lexically) contains the point where they were created. This is
true even if that evaluation ends in throwing an exception.

There are two contexts in which temporaries are destroyed at a different point than the end of the full-
expression. The first context is when a default constructor is called to initialize an element of an array. If

12-4 Special member functions DRAFT: 11 April 2004 12.2 Temporary objects

the constructor has one or more default arguments, any temporaries created in the default argument expres-
sions are destroyed immediately after return from the constructor.

The second context is when a reference is bound to a temporary. The temporary to which the reference is
bound or the temporary that is the complete object to a subobject of which the temporary is bound persists
for the lifetime of the reference except as specified below. A temporary bound to a reference member in a
constructor’s ctor-initializer (12.6.2) persists until the constructor exits. A temporary bound to a reference
parameter in a function call (5.2.2) persists until the completion of the full expression containing the call.
A temporary bound to the returned value in a function return statement (6.6.3) persists until the function
exits. In all these cases, the temporaries created during the evaluation of the expression initializing the ref-
erence, except the temporary to which the reference is bound, are destroyed at the end of the full-expression
in which they are created and in the reverse order of the completion of their construction. If the lifetime of
two or more temporaries to which references are bound ends at the same point, these temporaries are
destroyed at that point in the reverse order of the completion of their construction. In addition, the de-
struction of temporaries bound to references shall take into account the ordering of destruction of objects
with static or automatic storage duration (3.7.1, 3.7.2); that is, if ob3j 1 is an object with static or automatic
storage duration created before the temporary is created, the temporary shall be destroyed before obj1 is
destroyed; if obj2 is an object with static or automatic storage duration created after the temporary is cre-
ated, the temporary shall be destroyed after obj 2 is destroyed. [Example:

class C {

/1]
public:
c();
C(int) ;
friend C operator+ (const C&, const C&);
~C();
}i
C objl;
const C& cr = C(16)+C(23);
C obj2;

the expression C (16) +C (23) creates three temporaries. A first temporary T1 to hold the result of the
expression C (16), a second temporary T2 to hold the result of the expression ¢ (23), and a third tempo-
rary T3 to hold the result of the addition of these two expressions. The temporary T3 is then bound to the
reference cr. It is unspecified whether T1 or T2 is created first. On an implementation where T1 is cre-
ated before T2, it is guaranteed that T2 is destroyed before T1. The temporaries T1 and T2 are bound to
the reference parameters of operator+; these temporaries are destroyed at the end of the full expression
containing the call to operator+. The temporary T3 bound to the reference cr is destroyed at the end of
cr’s lifetime, that is, at the end of the program. In addition, the order in which T3 is destroyed takes into
account the destruction order of other objects with static storage duration. That is, because ob7j1 is con-
structed before T3, and T3 is constructed before ob52, it is guaranteed that ob7j2 is destroyed before T3,
and that T3 is destroyed before obj1.]

12.3 Conversions [class.conv]

Type conversions of class objects can be specified by constructors and by conversion functions. These con-
versions are called user-defined conversions and are used for implicit type conversions (clause 4), for
initialization (8.5), and for explicit type conversions (5.4, 5.2.9).

User-defined conversions are applied only where they are unambiguous (10.2, 12.3.2). Conversions obey
the access control rules (clause 11). Access control is applied after ambiguity resolution (3.4).

[Note: See 13.3 for a discussion of the use of conversions in function calls as well as examples below.]

At most one user-defined conversion (constructor or conversion function) is implicitly applied to a single
value. [Example:

12.3 Conversions DRAFT: 11 April 2004 Special member functions 12-5

class X {

/]
public:

operator int () ;
}i

class Y {

/]
public:

operator X();
}i

Y a;
int b = a; // error:

// a.operator X () .operator int () not tried
int ¢ = X(a); // OK: a.operator X () .operator int ()

—end example]

User-defined conversions are used implicitly only if they are unambiguous. A conversion function in a
derived class does not hide a conversion function in a base class unless the two functions convert to the
same type. Function overload resolution (13.3.3) selects the best conversion function to perform the con-

version. [Example:

class X {

public:
/]
operator int () ;
}i
class Y : public X {
public:
/1]
operator char() ;
}i
void f (Y& a)
{
if (a) { // ill-formed:
// X::operator int () Or Y: :operator char ()
/]

—end example]

12.3.1 Conversion by constructor [class.conv.ctor]

A constructor declared without the function-specifier explicit that can be called with a single parameter
specifies a conversion from the type of its first parameter to the type of its class. Such a constructor is

called a converting constructor. [Example:

class X {
/]
public:
X (int) ;
X (const char*, int =0);

}i

12-6 Special member functions DRAFT: 11 April 2004 12.3.1 Conversion by constructor

void f(X arg)

{
X a=1; //a=X(1)
X b = "Jessie"; //b=X("Jessie",0)
a = 2; // a=X(2)
£(3); // E(X(3))
1

—end example]

An explicit constructor constructs objects just like non-explicit constructors, but does so only where the
direct-initialization syntax (8.5) or where casts (5.2.9, 5.4) are explicitly used. A default constructor may
be an explicit constructor; such a constructor will be used to perform default-initialization or value-initial-
ization (8.5). [Example:

class 2z {

public:

explicit Z();

explicit Z(int);

// ..
}i
7 a; // OK: default-initialization performed
Z al = 1; // error: no implicit conversion
Z a3 = Z(1); // OK: direct initialization syntax used
Z a2(1); // OK: direct initialization syntax used
Z* p = new Z(1); // OK: direct initialization syntax used
Z a4 = (2)1; // OK: explicit cast used
Z a5 = static cast<Z>(1); // OK: explicit cast used

—end example]

A non-explicit copy-constructor (12.8) is a converting constructor. An implicitly-declared copy constructor
is not an explicit constructor; it may be called for implicit type conversions.

12.3.2 Conversion functions [class.conv.fct]

A member function of a class X with a name of the form

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declarator,,

conversion-declarator:
ptr-operator conversion-declarator

specifies a conversion from X to the type specified by the conversion-type-id. Such member functions are
called conversion functions. Classes, enumerations, and typedef-names shall not be declared in the type-
specifier-seq. Neither parameter types nor return type can be specified. The type of a conversion function
(8.3.5) is “function taking no parameter returning conversion-type-id.” A conversion function is never used
to convert a (possibly cv-qualified) object to the (possibly cv-qualified) same object type (or a reference to
it), to a (possibly cv-qualified) base class of that type (or a reference to it), or to (possibly cv-qualified)
void.

107) Even though never directly called to perform a conversion, such conversion functions can be declared and can potentially be
reached through a call to a virtual conversion function in a base class

12.3.2 Conversion functions DRAFT: 11 April 2004 Special member functions 12-7

[Example:
class X {
!/
public:
operator int () ;
}i
void f£(X a)
{
int 1 = int(a);
i = (int)a;
i = a;
}

In all three cases the value assigned will be converted by X : : operator int (). —end example]

User-defined conversions are not restricted to use in assignments and initializations. [Example:

void g(X a, X b)

{
int i = (a) ? 1l+a : 0;
int j = (a&&b) ? a+b : 1i;
if (a) | // ..
}
}

—end example]

The conversion-type-id shall not represent a function type nor an array type. The conversion-type-id in a
conversion-function-id is the longest possible sequence of conversion-declarators. [Note: this prevents
ambiguities between the declarator operator * and its expression counterparts. [Example:

&ac.operator int*i; // syntax error:
// parsed as: & (ac.operator int *) i
// notas: & (ac.operator int) *1i

The * is the pointer declarator and not the multiplication operator.]]

Conversion functions are inherited.

Conversion functions can be virtual.

Conversion functions cannot be declared static.

12.4 Destructors [class.dtor]

A special declarator syntax using an optional function-specifier (7.1.2) followed by ~ followed by the de-
structor’s class name followed by an empty parameter list is used to declare the destructor in a class defini-
tion. In such a declaration, the ~ followed by the destructor’s class name can be enclosed in optional paren-
theses; such parentheses are ignored. A typedef-name shall not be used as the class-name following the ~
in the declarator for a destructor declaration.

A destructor is used to destroy objects of its class type. A destructor takes no parameters, and no return
type can be specified for it (not even void). The address of a destructor shall not be taken. A destructor
shall not be static. A destructor can be invoked for a const, volatile or const volatile
object. A destructor shall not be declared const, volatile or const volatile (9.3.2). const and
volatile semantics (7.1.5.1) are not applied on an object under destruction. Such semantics stop being
into effect once the destructor for the most derived object (1.8) starts.

If a class has no user-declared destructor, a destructor is declared implicitly. An implicitly-declared de-
structor is an inline public member of its class. A destructor is trivial if it is implicitly-declared and
if:

10

11

12

12-8 Special member functions DRAFT: 11 April 2004 12.4 Destructors

— all of the direct base classes of its class have trivial destructors and

— for all of the non-static data members of its class that are of class type (or array thereof), each such
class has a trivial destructor.

Otherwise, the destructor is non-trivial.

An implicitly-declared destructor is implicitly defined when it is used to destroy an object of its class type
(3.7). A program is ill-formed if the class for which a destructor is implicitly defined has:

— anon-static data member of class type (or array thereof) with an inaccessible destructor, or
— abase class with an inaccessible destructor.

Before the implicitly-declared destructor for a class is implicitly defined, all the implicitly-declared destruc-
tors for its base classes and its nonstatic data members shall have been implicitly defined. [Note: an implic-
itly-declared destructor has an exception-specification (15.4).]

After executing the body of the destructor and destroying any automatic objects allocated within the body, a
destructor for class X calls the destructors for X’s direct members, the destructors for X’s direct base classes
and, if X is the type of the most derived class (12.6.2), its destructor calls the destructors for x’s virtual base
classes. All destructors are called as if they were referenced with a qualified name, that is, ignoring any
possible virtual overriding destructors in more derived classes. Bases and members are destroyed in the
reverse order of the completion of their constructor (see 12.6.2). A return statement (6.6.3) in a de-
structor might not directly return to the caller; before transferring control to the caller, the destructors for
the members and bases are called. Destructors for elements of an array are called in reverse order of their
construction (see 12.6).

A destructor can be declared virtual (10.3) or pure virtual (10.4); if any objects of that class or any
derived class are created in the program, the destructor shall be defined. If a class has a base class with a
virtual destructor, its destructor (whether user- or implicitly- declared) is virtual.

[Note: some language constructs have special semantics when used during destruction; see 12.7.]
A union member shall not be of a class type (or array thereof) that has a non-trivial destructor.

Destructors are invoked implicitly (1) for a constructed object with static storage duration (3.7.1) at pro-
gram termination (3.6.3), (2) for a constructed object with automatic storage duration (3.7.2) when the
block in which the object is created exits (6.7), (3) for a constructed temporary object when the lifetime of
the temporary object ends (12.2), (4) for a constructed object allocated by a new-expression (5.3.4), through
use of a delete-expression (5.3.5), (5) in several situations due to the handling of exceptions (15.3). A pro-
gram is ill-formed if an object of class type or array thereof is declared and the destructor for the class is
not accessible at the point of the declaration. Destructors can also be invoked explicitly.

At the point of definition of a virtual destructor (including an implicit definition (12.8)), the non-array de-
allocation function is looked up in the scope of the destructor’s class (10.2), and, if no declaration is found,
the function is looked up in the global scope. If the result of this lookup is ambiguous or inaccessible, or if
the lookup selects a placement deallocation function, the program is ill-formed. [Note: this assures that a
deallocation function corresponding to the dynamic type of an object is available for the delete-expression
(12.5).]

In an explicit destructor call, the destructor name appears as a ~ followed by a type-name that names the
destructor’s class type. The invocation of a destructor is subject to the usual rules for member functions
(9.3), that is, if the object is not of the destructor’s class type and not of a class derived from the destructor’s
class type, the program has undefined behavior (except that invoking delete on a null pointer has no
effect). [Example:

13

14

15

12.4 Destructors DRAFT: 11 April 2004 Special member functions 12-9

struct B {
virtual "B() { }
}i

struct D : B {
)

00O {}
Vi

D D_object;
typedef B B _alias;
B* B ptr = &D object;

void f£() {
D object.B::"B(); // calls B’s destructor
B ptr->TB(); // calls D’s destructor
B ptr->"B alias(); // calls D’s destructor
B ptr->B alias::"B(); // calls B’s destructor
B ptr->B alias::"B _alias(); // calls B’s destructor
}

—end example] [Note: an explicit destructor call must always be written using a member access operator
(5.2.5) or a qualified-id (5.1); in particular, the unary-expression ~“X () in a member function is not an
explicit destructor call (5.3.1).]

[Note: explicit calls of destructors are rarely needed. One use of such calls is for objects placed at specific
addresses using a new-expression with the placement option. Such use of explicit placement and de-
struction of objects can be necessary to cope with dedicated hardware resources and for writing memory
management facilities. For example,

void* operator new(std::size t, void* p) { return p; }
struct X {

/]
X (int) ;
“X();
}i
void f(X* p);
void g() // rare, specialized use:
{
char* buf = new char[sizeof (X)];
X* p = new(buf) X(222); // use buf [] and initialize
f(p);
p->X::7X(); // cleanup
1
—end note]

Once a destructor is invoked for an object, the object no longer exists; the behavior is undefined if the de-
structor is invoked for an object whose lifetime has ended (3.8). [Example: if the destructor for an auto-
matic object is explicitly invoked, and the block is subsequently left in a manner that would ordinarily
invoke implicit destruction of the object, the behavior is undefined.]

[Note: the notation for explicit call of a destructor can be used for any scalar type name (5.2.4). Allowing
this makes it possible to write code without having to know if a destructor exists for a given type. For
example,

typedef int I;

I* p;

/]

p->I::7I();

—end note]

12-10 Special member functions DRAFT: 11 April 2004 12.4 Destructors

12.5 Free store [class.free]
Any allocation function for a class T is a static member (even if not explicitly declared static).

[Example:

class Arena;
struct B {
void* operator new(std::size_t, Arena%*);

struct D1 : B {

}i

Arena* ap;
void foo(int 1)

{

new (ap) D1; // callsB: :operator new (std: :size t, Arenax)
new D1[i]; // calls : :operator new[] (std::size t)
new D1; // ill-formed: : :operator new(std: :size t) hidden

}
—end example]

When an object is deleted with a delete-expression (5.3.5), a deallocation function
(operator delete () for non-array objects or operator delete[] () for arrays) is (implicitly)
called to reclaim the storage occupied by the object (3.7.3.2).

If a delete-expression begins with a unary : : operator, the deallocation function’s name is looked up in
global scope. Otherwise, if the delete-expression is used to deallocate a class object whose static type has a
virtual destructor, the deallocation function is the one selected at the point of definition of the dynamic
- 108)
type’s virtual destructor (12.4). Otherwise, if the delete-expression is used to deallocate an object of
class T or array thereof, the static and dynamic types of the object shall be identical and the deallocation
function’s name is looked up in the scope of T. If this lookup fails to find the name, the name is looked up
in the global scope. If the result of the lookup is ambiguous or inaccessible, or if the lookup selects a place-
ment deallocation function, the program is ill-formed.

When a delete-expression is executed, the selected deallocation function shall be called with the address of
the block of storage to be reclaimed as its first argument and (if the two-parameter style is used) the size of
the block as its second argument.log)

Any deallocation function for a class X is a static member (even if not explicitly declared static).
[Example:

class X {
/]

void operator delete (void¥*) ;
void operator delete[] (void*, std::size t);

i

class Y {

/]

void operator delete(void*, std::size t);
void operator deletel] (void*) ;

}i

—end example]

108) A similar provision is not needed for the array version of operator delete because 5.3.5 requires that in this situation, the
static type of the delete-expression’s operand be the same as its dynamic type.

109 If the static type in the delete-expression is different from the dynamic type and the destructor is not virtual the size might be
incorrect, but that case is already undefined; see 5.3.5.

12.5 Free store DRAFT: 11 April 2004 Special member functions 12-11

Since member allocation and deallocation functions are static they cannot be virtual. [Note: however,
when the cast-expression of a delete-expression refers to an object of class type, because the deallocation
function actually called is looked up in the scope of the class that is the dynamic type of the object, if the
destructor is virtual, the effect is the same. For example,

struct B {
virtual "B();
void operator delete(void*, std::size t);

}i

struct D : B {
void operator delete (void¥) ;

}i
void f()
{
B* bp = new D;
delete bp; //1:usesD: :operator delete (void¥)
}

Here, storage for the non-array object of class D is deallocated by D: : operator delete (), due to the
virtual destructor.] [Note: virtual destructors have no effect on the deallocation function actually called
when the cast-expression of a delete-expression refers to an array of objects of class type. For example,

struct B {
virtual "B();
void operator deletel[] (void*, std::size t);

}i

struct D : B {
void operator deletel[] (void*, std::size t);

}i

void f (int 1)

{
D* dp = new D[1i];
delete [] dp; // usesD: :operator delete[] (void*, std::size_t)
B* bp = new D[1];
delete[] bp; // undefined behavior

}

—end note]

Access to the deallocation function is checked statically. Hence, even though a different one might actually
be executed, the statically visible deallocation function is required to be accessible. [Example: for the call
on line //1 above, if B: :operator delete () had been private, the delete expression would have
been ill-formed.]

12.6 Initialization [class.init]

When no initializer is specified for an object of (possibly cv-qualified) class type (or array thereof), or the
initializer has the form (), the object is initialized as specified in 8.5. The object is default-initialized if
there is no initializer, or value-initialized if the initializer is ().

An object of class type (or array thereof) can be explicitly initialized; see 12.6.1 and 12.6.2.

When an array of class objects is initialized (either explicitly or implicitly), the constructor shall be called
for each element of the array, following the subscript order; see 8.3.4. [Note: destructors for the array ele-
ments are called in reverse order of their construction.]

12-12 Special member functions DRAFT: 11 April 2004 12.6.1 Explicit initialization

12.6.1 Explicit initialization [class.expl.init]

An object of class type can be initialized with a parenthesized expression-list, where the expression-list is
construed as an argument list for a constructor that is called to initialize the object. Alternatively, a single
assignment-expression can be specified as an initializer using the = form of initialization. Either direct-
initialization semantics or copy-initialization semantics apply; see 8.5. [Example:

class complex {
!/
public:
complex () ;
complex (double) ;
complex (double, double) ;

/]
}i
complex sqgrt (complex, complex) ;
complex a(l); // initialize by a call of
// complex (double)
complex b = a; // initialize by a copy of a

complex ¢ = complex(1l,2); // construct complex (1, 2)
// using complex (double, double)
// copy itinto c

complex d = sgrt(b,c); // call sgrt (complex, complex)
// and copy the result into d
complex e; // initialize by a call of
// complex ()
complex f = 3; // construct complex (3) using

// complex (double)
// copy itinto £
complex g = { 1, 2 }; // error; constructor is required

—end example] [Note: overloading of the assignment operator (13.5.3) has no effect on initialization.]

When an aggregate (whether class or array) contains members of class type and is initialized by a brace-
enclosed initializer-list (8.5.1), each such member is copy-initialized (see 8.5) by the corresponding assign-
ment-expression. If there are fewer initializers in the initializer-list than members of the aggregate, each
member not explicitly initialized shall be value-initialized (8.5). [Note: 8.5.1 describes how assignment-
expressions in an initializer-list are paired with the aggregate members they initialize.] [Example:

complex v[6] = { 1,complex(1,2),complex(),2 };

Here, complex: :complex (double) is called for the initialization of v[0] and v[3], com-
plex: :complex (double,double) is called for the initialization of v[1], complex: :com-
plex () is called for the initialization v [2], v [4],and v [5]. For another example,

class X {
public:
int i;
float f;

complex c;
} x = { 99, 88.8, 77.7 };

Here, x. 1 is initialized with 99, x. £ is initialized with 88.8, and complex: :complex (double) is
called for the initialization of x.c.] [Note: braces can be elided in the initializer-list for any aggregate,
even if the aggregate has members of a class type with user-defined type conversions; see 8.5.1.]

[Note: if T is a class type with no default constructor, any declaration of an object of type T (or array
thereof) is ill-formed if no initializer is explicitly specified (see 12.6 and 8.5).]

[Note: the order in which objects with static storage duration are initialized is described in 3.6.2 and 6.7.]

12.6.1 Explicit initialization DRAFT: 11 April 2004 Special member functions 12-13

12.6.2 Initializing bases and members [class.base.init]

In the definition of a constructor for a class, initializers for direct and virtual base subobjects and nonstatic
data members can be specified by a ctor-initializer, which has the form

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
mem-initializer-id (expression-list,,)

mem-initializer-id:
: :Opt'qested-name-specifieropt class-name
identifier

Names in a mem-initializer-id are looked up in the scope of the constructor’s class and, if not found in that
scope, are looked up in the scope containing the constructor’s definition. [Note: if the constructor’s class
contains a member with the same name as a direct or virtual base class of the class, a mem-initializer-id
naming the member or base class and composed of a single identifier refers to the class member. A mem-
initializer-id for the hidden base class may be specified using a qualified name.] Unless the mem-initial-
izer-id names a nonstatic data member of the constructor’s class or a direct or virtual base of that class, the
meme-initializer is ill-formed. A meme-initializer-list can initialize a base class using any name that denotes
that base class type. [Example:

struct A { A(); };

typedef A global A;

struct B { };

struct C: public A, public B { C(); };

C::C(): global A() { } // mem-initializer for base &

—end example] If a mem-initializer-id is ambiguous because it designates both a direct non-virtual base
class and an inherited virtual base class, the mem-initializer is ill-formed. [Example:

struct A { A(); };

struct B: public virtual A { };

struct C: public A, public B { C(); };

c::C(): A { } // ill-formed: which a?

—end example] A ctor-initializer may initialize the member of an anonymous union that is a member of
the constructor’s class. If a ctor-initializer specifies more than one mem-initializer for the same member,
for the same base class or for multiple members of the same union (including members of anonymous
unions), the ctor-initializer is ill-formed.

The expression-list in a mem-initializer is used to initialize the base class or nonstatic data member subob-
ject denoted by the mem-initializer-id. The semantics of a mem-initializer are as follows:

— if the expression-list of the mem-initializer is omitted, the base class or member subobject is value-ini-
tialized (see 8.5);

— otherwise, the subobject indicated by mem-initializer-id is direct-initialized using expression-list as the
initializer (see 8.5).

12-14 Special member functions DRAFT: 11 April 2004 12.6.2 Initializing bases and members

[Example:
struct Bl { Bl(int); /* ... %/ };
struct B2 { B2(int); /* ... */ };
struct D : Bl, B2 {
D(int) ;
Bl b;
const int c;
}i
D::D(int a) : B2(a+l), Bl(a+2), c(a+3), b(a+4)
{ /* ... %/}
D d(10);

—end example] There is a sequence point (1.9) after the initialization of each base and member. The
expression-list of a mem-initializer is evaluated as part of the initialization of the corresponding base or
member.

If a given nonstatic data member or base class is not named by a mem-initializer-id (including the case
where there is no mem-initializer-list because the constructor has no ctor-initializer), then

— If the entity is a nonstatic data member of (possibly cv-qualified) class type (or array thereof) or a base
class, and the entity class is a non-POD class, the entity is default-initialized (8.5). If the entity is a
nonstatic data member of a const-qualified type, the entity class shall have a user-declared default con-
structor.

— Otherwise, the entity is not initialized. If the entity is of const-qualified type or reference type, or of a
(possibly cv-qualified) POD class type (or array thereof) containing (directly or indirectly) a member
of a const-qualified type, the program is ill-formed.

After the call to a constructor for class X has completed, if a member of X is neither specified in the con-
structor’s mem-initializers, nor default-initialized, nor value-initialized, nor given a value during execution
of the body of the constructor, the member has indeterminate value.

Initialization shall proceed in the following order:

— First, and only for the constructor of the most derived class as described below, virtual base classes
shall be initialized in the order they appear on a depth-first left-to-right traversal of the directed acyclic
graph of base classes, where “left-to-right” is the order of appearance of the base class names in the
derived class base-specifier-list.

— Then, direct base classes shall be initialized in declaration order as they appear in the base-specifier-
list (regardless of the order of the mem-initializers).

— Then, nonstatic data members shall be initialized in the order they were declared in the class definition
(again regardless of the order of the mem-initializers).

— Finally, the body of the constructor is executed.

[Note: the declaration order is mandated to ensure that base and member subobjects are destroyed in the
reverse order of initialization.]

All sub-objects representing virtual base classes are initialized by the constructor of the most derived class
(1.8). If the constructor of the most derived class does not specify a mem-initializer for a virtual base class
v, then v’s default constructor is called to initialize the virtual base class subobject. If vV does not have an
accessible default constructor, the initialization is ill-formed. A mem-initializer naming a virtual base class
shall be ignored during execution of the constructor of any class that is not the most derived class. [Exam-
ple:

12.6.2 Initializing bases and members DRAFT: 11 April 2004 Special member functions 12-15

class V {
public:
v(Q);
V(int) ;
/1
Vi
class A : public virtual V {
public:
A();
A(int) ;
/1]
}i
class B : public virtual V {
public:
B();
B(int) ;
/1
Vi
class C : public A, public B, private virtual V {
public:
cO);
C(int) ;
/1]
}i
A::A(int 1) : v(i) { /* ... */ }
B::B(int i) { /* ... */ }
C::C(int 1) { /* ... */ }
VvV v(1); // useV(int)
A al(2); // useV(int)
B b(3); // use V()
C c(4); // usev()

—end example]

Names in the expression-list of a mem-initializer are evaluated in the scope of the constructor for which the
meme-initializer is specified. [Example:
class X {
int a;
int b;
int i;
int j;
public:
const int& r;
X(int 1): r(a), b(i), i(i), j(this->i) {}

}i

initializes X : : r to refer to X: : a, initializes X : : b with the value of the constructor parameter i, initializes
X::1 with the value of the constructor parameter i, and initializes X: : j with the value of X: : i; this
takes place each time an object of class X is created.] [Note: because the mem-initializer are evaluated in
the scope of the constructor, the this pointer can be used in the expression-list of a mem-initializer to
refer to the object being initialized.]

Member functions (including virtual member functions, 10.3) can be called for an object under construc-
tion. Similarly, an object under construction can be the operand of the typeid operator (5.2.8) or of a
dynamic_cast (5.2.7). However, if these operations are performed in a ctor-initializer (or in a function
called directly or indirectly from a ctor-initializer) before all the mem-initializers for base classes have

12-16 Special member functions DRAFT: 11 April 2004 12.6.2 Initializing bases and members

completed, the result of the operation is undefined. [Example:

class A {
public:
A(int) ;
}i
class B : public A {
int j;
public:
int f£();
B() : A(f()), // undefined: calls member function
// but base A not yet initialized
JEO) { } / / well-defined: bases are all initialized
}i
class C {
public:
C(int) ;
}i
class D : public B, C {
int 1i;
public:
D() : C(£()), // undefined: calls member function
// but base C not yet initialized
i(£0)) {} // well-defined: bases are all initialized
}i

—end example]

[Note: 12.7 describes the result of virtual function calls, typeid and dynamic_casts during construc-
tion for the well-defined cases; that is, describes the polymorphic behavior of an object under construction.

]

12.7 Construction and destruction [class.cdtor]

For an object of non-POD class type (clause 9), before the constructor begins execution and after the de-
structor finishes execution, referring to any nonstatic member or base class of the object results in undefined
behavior. [Example:

struct X { int i; };

struct Y : X { };

struct A { int a; };

struct B : public A { int j; Y y; };

extern B bobj;

B* pb = &bobj; // OK

int* pl = &bobj.a; // undefined, refers to base class member
int* p2 = &bobj.y.i; // undefined, refers to member’s member
A* pa = &bobj; // undefined, upcast to a base class type

B bobj; / / definition of bobj

extern X xobj;
int* p3 = &xobj.i; // OK, X is a POD class
X xobj;

12.7 Construction and destruction DRAFT: 11 April 2004 Special member functions 12-17

For another example,

struct W { int j; };
struct X : public virtual W { };
struct Y {
int *p;
X x;
Y() : p(&x.j) // undefined, x is not yet constructed

{1}

—end example]

To explicitly or implicitly convert a pointer (an Ivalue) referring to an object of class X to a pointer (refer-
ence) to a direct or indirect base class B of X, the construction of X and the construction of all of its direct
or indirect bases that directly or indirectly derive from B shall have started and the destruction of these
classes shall not have completed, otherwise the conversion results in undefined behavior. To form a pointer
to (or access the value of) a direct nonstatic member of an object ob3j, the construction of obj shall have
started and its destruction shall not have completed, otherwise the computation of the pointer value (or
accessing the member value) results in undefined behavior. [Example:

struct A { };
struct B : virtual A { };

struct C : B { };
struct D : virtual A { D(A*); };
struct X { X(A*); };

struct E : C, D, X {
E() : D(this), // undefined: upcast from E* to A*
// might use path Ex — D* — A*
// but D is not constructed
//D((C*)this), // defined:
// E* — C* defined because E () has started
// and c* — A* defined because
// C fully constructed
X (this) // defined: upon construction of X,
// CIB/D/A sublattice is fully constructed
{}

}i
—end example]

Member functions, including virtual functions (10.3), can be called during construction or destruction
(12.6.2). When a virtual function is called directly or indirectly from a constructor (including from the
meme-initializer for a data member) or from a destructor, and the object to which the call applies is the
object under construction or destruction, the function called is the one defined in the constructor or de-
structor’s own class or in one of its bases, but not a function overriding it in a class derived from the con-
structor or destructor’s class, or overriding it in one of the other base classes of the most derived object
(1.8). If the virtual function call uses an explicit class member access (5.2.5) and the object-expression
refers to the object under construction or destruction but its type is neither the constructor or destructor’s
own class or one of its bases, the result of the call is undefined. [Example:

class V {

public:
virtual void £();
virtual void g{();

}i

12-18 Special member functions DRAFT: 11 April 2004 12.7 Construction and destruction

class A : public virtual V {

public:
virtual void £();
}i
class B : public virtual V {
public:
virtual void g();
B(V*, A*);
}i
class D : public A, B {
public:
virtual void £() ;
virtual void g{();
D() : B((A*)this, this) { }
}i
B::B(V* v, A* a) {
£(); //callsv::f,notA: : £
g(); //callsB::g,notD: :g
v->g(); // v is base of B, the call is well-defined, calls B: : g
a->f(); // undefined behavior, a’s type not a base of B

—end example]

The typeid operator (5.2.8) can be used during construction or destruction (12.6.2). When typeid is
used in a constructor (including from the mem-initializer for a data member) or in a destructor, or used in a
function called (directly or indirectly) from a constructor or destructor, if the operand of typeid refers to
the object under construction or destruction, typeid yields the std: :type info object representing
the constructor or destructor’s class. If the operand of typeid refers to the object under construction or
destruction and the static type of the operand is neither the constructor or destructor’s class nor one of its
bases, the result of typeid is undefined.

Dynamic casts (5.2.7) can be used during construction or destruction (12.6.2). When a
dynamic_cast is used in a constructor (including from the mem-initializer for a data member) or in a
destructor, or used in a function called (directly or indirectly) from a constructor or destructor, if the
operand of the dynamic_cast refers to the object under construction or destruction, this object is consid-
ered to be a most derived object that has the type of the constructor or destructor’s class. If the operand of
the dynamic cast refers to the object under construction or destruction and the static type of the
operand is not a pointer to or object of the constructor or destructor’s own class or one of its bases, the
dynamic_cast results in undefined behavior.

[Example:
class V {
public:
virtual void £();
}i

class A : public virtual Vv { };

class B : public virtual V {
public:

B(V*, Ax);
i

12.7 Construction and destruction DRAFT: 11 April 2004 Special member functions 12-19

class D : public A, B {

public:
D() : B((A*)this, this) { }
}i
B::B(V* v, A* a) {
typeid (*this) ; // type_info for B
typeid (*v) ; // well-defined: *v has type v, a base of B
// yields type_info for B
typeid(*a) ; // undefined behavior: type A not a base of B
dynamic_cast<B*> (V) ; // well-defined: v of type v*, v base of B
// results in B*
dynamic_ cast<B*>(a) ; // undefined behavior,
// a has type A*, A not a base of B
}
—end example]
12.8 Copying class objects [class.copy]

A class object can be copied in two ways, by initialization (12.1, 8.5), including for function argument
passing (5.2.2) and for function value return (6.6.3), and by assignment (5.17). Conceptually, these two
operations are implemented by a copy constructor (12.1) and copy assignment operator (13.5.3).

A non-template constructor for class X is a copy constructor if its first parameter is of type X&, const X,
volatile X& or const volatile X&, and either there are no other parameters or else all other
parameters have default arguments (8.3.6).110) [Example: X: :X (const X&) and X: :X (X&, int=1)
are copy constructors.

class X {

// ..
public:
X (int) ;
X (const X&, int = 1);
}i
X a(l); // callsX (int);
X b(a, 0); // calls X (const X&, int);
X ¢ = b; // calls X (const X&, int);

—end example] [Note: all forms of copy constructor may be declared for a class. [Example:

class X {
/]
public:
X (const X&) ;
X (X&) ; // OK
}i
—end example] —end note] [Note: if a class X only has a copy constructor with a parameter of type X&,
an initializer of type const X or volatile X cannot initialize an object of type (possibly cv-qualified) X.
[Example:
struct X {

X(); / / default constructor
X (X&) ; // copy constructor with a nonconst parameter

}i
const X c¢x;
X x = Ccx; // error —X: :X (X&) cannot copy cx into x

—end example] —end note]

110) Because a template constructor is never a copy constructor, the presence of such a template does not suppress the implicit decla-
ration of a copy constructor. Template constructors participate in overload resolution with other constructors, including copy construc-
tors, and a template constructor may be used to copy an object if it provides a better match than other constructors.

12-20 Special member functions DRAFT: 11 April 2004 12.8 Copying class objects

A declaration of a constructor for a class X is ill-formed if its first parameter is of type (optionally cv-quali-
fied) x and either there are no other parameters or else all other parameters have default arguments. A
member function template is never instantiated to perform the copy of a class object to an object of its class
type. [Example:

struct S {
template<typename T> S(T) ;
}i

S £();

void g() {
S a(£()); // doesnotinstantiate member template
1

—end example]

If the class definition does not explicitly declare a copy constructor, one is declared implicitly. Thus, for the
class definition

struct X {
X (const X&, int);

a copy constructor is implicitly-declared. If the user-declared constructor is later defined as
X::X(const X& x, int i =0) { /* ... */ }

then any use of X’s copy constructor is ill-formed because of the ambiguity; no diagnostic is required.

The implicitly-declared copy constructor for a class X will have the form

X::X(const X&)

— each direct or virtual base class B of X has a copy constructor whose first parameter is of type const
B& Or const volatile Bg, and

— for all the nonstatic data members of X that are of a class type M (or array thereof), each such class
type has a copy constructor whose first parameter is of type const M& or const volatile Mé&.

Otherwise, the implicitly declared copy constructor will have the form
X::X (X&)
An implicitly-declared copy constructor is an inline public member of its class.
A copy constructor for class X is trivial if it is implicitly declared and if
— class X has no virtual functions (10.3) and no virtual base classes (10.1), and
— each direct base class of X has a trivial copy constructor, and

— for all the nonstatic data members of X that are of class type (or array thereof), each such class type
has a trivial copy constructor;

otherwise the copy constructor is non-trivial.

An implicitly-declared copy constructor is implicitly defined if it is used to initialize an obj%:t of its class
type from a copy of an object of its class type or of a class type derived from its class type), [Note: the
copy constructor is implicitly defined even if the implementation elided its use (12.2).] A program is ill-
formed if the class for which a copy constructor is implicitly defined has:

) This implies that the reference parameter of the implicitly-declared copy constructor cannot bind to a volatile Ivalue; see
Cc.18.

112) See 8.5 for more details on direct and copy initialization.

10

12.8 Copying class objects DRAFT: 11 April 2004 Special member functions 12-21

— a nonstatic data member of class type (or array thereof) with an inaccessible or ambiguous copy con-
structor, or

— abase class with an inaccessible or ambiguous copy constructor.

Before the implicitly-declared copy constructor for a class is implicitly defined, all implicitly-declared copy
constructors for its direct and virtual base classes and its nonstatic data members shall have been implicitly
defined. [Note: an implicitly-declared copy constructor has an exception-specification (15.4).]

The implicitly-defined copy constructor for class X performs a memberwise copy of its subobjects. The
order of copying is the same as the order of initialization of bases and members in a user-defined construc-
tor (see 12.6.2). Each subobject is copied in the manner appropriate to its type:

— if the subobject is of class type, the copy constructor for the class is used,;
— if the subobject is an array, each element is copied, in the manner appropriate to the element type;
— if the subobject is of scalar type, the built-in assignment operator is used.

Virtual base class subobjects shall be copied only once by the implicitly-defined copy constructor (see
12.6.2).

A user-declared copy assignment operator X : : operator= i$ a non-static non-template member function
of class X with exactly one parameter of type X, X&, const X&, volatile X& Of const volatile
xe 119 [Note: an overloaded assignment operator must be declared to have only one parameter; see 13.5.3.
] [Note: more than one form of copy assignment operator may be declared for a class.] [Note: if a class X
only has a copy assignment operator with a parameter of type X&, an expression of type const X cannot be
assigned to an object of type X. [Example:

struct X {
X();
X& operator= (X&) ;

}i
const X cx;
X X;
void £() {
X = CcX; // error:
// X::operator= (X&) cannot assign cx into x
1

—end example] —end note]

If the class definition does not explicitly declare a copy assignment operator, one is declared implicitly. The
implicitly-declared copy assignment operator for a class X will have the form

X& X::operator=(const X&)
if
— each direct base class B of X has a copy assignment operator whose parameter is of type const B&,
const volatile B& or B, and

— for all the nonstatic data members of X that are of a class type M (or array thereof), each such class
type Pﬁs a copy assignment operator whose parameter is of type const M&, const volatile M&
or M.

Otherwise, the implicitly declared copy assignment operator will have the form

113) Because a template assignment operator is never a copy assignment operator, the presence of such a template does not suppress
the implicit declaration of a copy assignment operator. Template assignment operators participate in overload resolution with other
assignment operators, including copy assignment operators, and a template assignment operator may be used to assign an object if it
provides a better match than other assignment operators.

114) This implies that the reference parameter of the implicitly-declared copy assignment operator cannot bind to a volatile
Ivalue; see C.1.8.

11

12

13

12-22 Special member functions DRAFT: 11 April 2004 12.8 Copying class objects

X& X::operator= (X&)

The implicitly-declared copy assignment operator for class X has the return type x&; it returns the object for
which the assignment operator is invoked, that is, the object assigned to. An implicitly-declared copy
assignment operator is an inline public member of its class. Because a copy assignment operator is
implicitly declared for a class if not declared by the user, a base class copy assignment operator is always
hidden by the copy assignment operator of a derived class (13.5.3). A using-declaration (7.3.3) that brings
in from a base class an assignment operator with a parameter type that could be that of a copy-assignment
operator for the derived class is not considered an explicit declaration of a copy-assignment operator and
does not suppress the implicit declaration of the derived class copy-assignment operator; the operator intro-
duced by the using-declaration is hidden by the implicitly-declared copy-assignment operator in the
derived class.

A copy assignment operator for class X is trivial if it is implicitly declared and if
— class X has no virtual functions (10.3) and no virtual base classes (10.1), and
— each direct base class of X has a trivial copy assignment operator, and

— for all the nonstatic data members of X that are of class type (or array thereof), each such class type
has a trivial copy assignment operator;

otherwise the copy assignment operator is non-trivial.

An implicitly-declared copy assignment operator is implicitly defined when an object of its class type is
assigned a value of its class type or a value of a class type derived from its class type. A program is ill-
formed if the class for which a copy assignment operator is implicitly defined has:

— anonstatic data member of const type, or
— anonstatic data member of reference type, or

— anonstatic data member of class type (or array thereof) with an inaccessible copy assignment operator,
or

— abase class with an inaccessible copy assignment operator.

Before the implicitly-declared copy assignment operator for a class is implicitly defined, all implicitly-
declared copy assignment operators for its direct base classes and its nonstatic data members shall have
been implicitly defined. [Note: an implicitly-declared copy assignment operator has an exception-specifica-
tion (15.4).]

The implicitly-defined copy assignment operator for class X performs memberwise assignment of its subob-
jects. The direct base classes of X are assigned first, in the order of their declaration in the base-specifier-
list, and then the immediate nonstatic data members of X are assigned, in the order in which they were
declared in the class definition. Each subobject is assigned in the manner appropriate to its type:

— if the subobject is of class type, the copy assignment operator for the class is used (as if by explicit
qualification; that is, ignoring any possible virtual overriding functions in more derived classes);

— if the subobject is an array, each element is assigned, in the manner appropriate to the element type;
— if the subobject is of scalar type, the built-in assignment operator is used.

It is unspecified whether subobjects representing virtual base classes are assigned more than once by the
implicitly-defined copy assignment operator. [Example:

struct V { };

struct A : virtual V { };
struct B : virtual vV { };
struct ¢ : B, A { };

it is unspecified whether the virtual base class subobject v is assigned twice by the implicitly-defined copy
assignment operator for C. —end example]

14

15

12.8 Copying class objects DRAFT: 11 April 2004 Special member functions 12-23

A program is ill-formed if the copy constructor or the copy assignment operator for an object is implicitly
used and the special member function is not accessible (clause 11). [Note: Copying one object into another
using the copy constructor or the copy assignment operator does not change the layout or size of either
object.]

When certain criteria are met, an implementation is allowed to omit the copy construction of a class object,
even if the copy constructor and/or destructor for the object have side effects. In such cases, the implemen-
tation treats the source and target of the omitted copy operation as simply two different ways of referring to
the same object, and the destruction of that object occurs at the later of the times when the two objects
would have been destroyed without the optimization.lls) This elision of copy operations is permitted in the
following circumstances (which may be combined to eliminate multiple copies):

— ina return statement in a function with a class return type, when the expression is the name of a
non-volatile automatic object with the same cv-unqualified type as the function return type, the copy
operation can be omitted by constructing the automatic object directly into the function’s return value

— when a temporary class object that has not been bound to a reference (12.2) would be copied to a class
object with the same cv-unqualified type, the copy operation can be omitted by constructing the tem-
porary object directly into the target of the omitted copy

[Example:

class Thing {
public:
Thing() ;
“Thing () ;
Thing (const Thingé&) ;

}i

Thing £() {
Thing t;
return t;

}

Thing t2 = £();

Here the criteria for elision can be combined to eliminate two calls to the copy constructor of class Thing:
the copying of the local automatic object t into the temporary object for the return value of function £ ()
and the copying of that temporary object into object t2. Effectively, the construction of the local object t
can be viewed as directly initializing the global object t2, and that object’s destruction will occur at pro-
gram exit. —end example]

115) Because only one object is destroyed instead of two, and one copy constructor is not executed, there is still one object destroyed
for each one constructed.

13 Overloading [over]

When two or more different declarations are specified for a single name in the same scope, that name is
said to be overloaded. By extension, two declarations in the same scope that declare the same name but
with different types are called overloaded declarations. Only function declarations can be overloaded:;
object and type declarations cannot be overloaded.

When an overloaded function name is used in a call, which overloaded function declaration is being refer-
enced is determined by comparing the types of the arguments at the point of use with the types of the
parameters in the overloaded declarations that are visible at the point of use. This function selection pro-
cess is called overload resolution and is defined in 13.3. [Example:

double abs (double) ;
int abs (int) ;

abs (1) ; // call abs (int);
abs (1.0) ; // call abs (double) ;

—end example]
13.1 Overloadable declarations [over.load]

Not all function declarations can be overloaded. Those that cannot be overloaded are specified here. A
program is ill-formed if it contains two such non-overloadable declarations in the same scope. [Note: this
restriction applies to explicit declarations in a scope, and between such declarations and declarations made
through a using-declaration (7.3.3). It does not apply to sets of functions fabricated as a result of name
lookup (e.g., because of using-directives) or overload resolution (e.g., for operator functions).]

Certain function declarations cannot be overloaded:
— Function declarations that differ only in the return type cannot be overloaded.

— Member function declarations with the same name and the same parameter-type-list cannot be over-
loaded if any of them is a static member function declaration (9.4). Likewise, member function
template declarations with the same name, the same parameter-type-list, and the same template param-
eter lists cannot be overloaded if any of them is a static member function template declaration.
The types of the implicit object parameters constructed for the member functions for the purpose of
overload resolution (13.3.1) are not considered when comparing parameter-type-lists for enforcement
of this rule. In contrast, if there is no static member function declaration among a set of member
function declarations with the same name and the same parameter-type-list, then these member func-
tion declarations can be overloaded if they differ in the type of their implicit object parameter. [Exam-
ple: the following illustrates this distinction:

class X {
static void £();

void £(); // ill-formed
void f() const; // ill-formed
void f() const volatile; // ill-formed
void g () ;

void g() const; // OK: no static g
void g() const volatile; // OK: no static g

13-2 Overloading DRAFT: 11 April 2004 13.1 Overloadable declarations

—end example]

[Note: as specified in 8.3.5, function declarations that have equivalent parameter declarations declare the
same function and therefore cannot be overloaded:

— Parameter declarations that differ only in the use of equivalent typedef “types” are equivalent. A
typedef is not a separate type, but only a synonym for another type (7.1.3). [Example:

typedef int Int;

void f (int 1i);

void £ (Int 1i); // OK: redeclaration of £ (int)
void f(int i) { /* ... */

void £(Int i) { /* ... */ } // error: redefinition of £ (int)

—end example]

Enumerations, on the other hand, are distinct types and can be used to distinguish overloaded function
declarations. [Example:

enum E { a };

void f(int i) { /* ... */ }
void f(E i) { /% ... */}

—end example]

— Parameter declarations that differ only in a pointer * versus an array []1 are equivalent. That is, the
array declaration is adjusted to become a pointer declaration (8.3.5). Only the second and subsequent
array dimensions are significant in parameter types (8.3.4). [Example:

int £ (char¥*) ;

(
int f(charl[]); // same as £ (char*);
int f(char[7]); // same as £ (char*);
int f(char([9]); // same as £ (char*);
int g(char(*) [10]);
int g(char([5] [10]); // same as g (char (*) [10]1);
int g(char([7][10]); // same as g (char (*) [10]);
int g(char (*) [20]); // different from g (char (*) [10]);

—end example]

— Parameter declarations that differ only in that one is a function type and the other is a pointer to the
same function type are equivalent. That is, the function type is adjusted to become a pointer to func-
tion type (8.3.5). [Example:

void h(int()) ;

void h(int (*) ()); // redeclaration of h (int ())

void h(int x()) { } // definition of h (int ())

void h(int (*x) ()) { } / / ill-formed: redefinition of h (int ())

]

— Parameter declarations that differ only in the presence or absence of const and/or volatile are
equivalent. That is, the const and volatile type-specifiers for each parameter type are ignored
when determining which function is being declared, defined, or called. [Example:

typedef const int cInt;

int £ (int);

int £ (const int); // redeclaration of £ (int)
int £ (int) { ... } // definition of £ (int)

int £ (eInt) { ... } // error: redefinition of £ (int)

—end example]

13.1 Overloadable declarations DRAFT: 11 April 2004 Overloading 13-3

Only the const and volatile type-specifiers at the outermost level of the parameter type specifi-
cation are ignored in this fashion; const and volatile type-specifiers buried within a parameter
type specification are significant and can be used to distinguish overloaded function declarations.

In particular, for any type T, “pointer to T,” “pointer to const T,” and “pointer to volatile T” are
considered distinct parameter types, as are “reference to T,” “reference to const T,” and “reference to
volatile T

— Two parameter declarations that differ only in their default arguments are equivalent. [Example: con-
sider the following:

void £ (int i, int j);

void £ (int i, int j = 99); // OK: redeclaration of £ (int, int)
void £ (int 1 = 88, int j); // OK: redeclaration of £ (int, int)
void £ (); // OK: overloaded declaration of £

void prog ()

f (1, 2); // OK:call £(int, int)
f (1); // OK:call £(int, int)
£ O; // Error: £ (int, int) or £()?
}
—end example] —end note]
13.2 Declaration matching [over.dcl]

Two function declarations of the same name refer to the same function if they are in the same scope and
have equivalent parameter declarations (13.1). A function member of a derived class is not in the same
scope as a function member of the same name in a base class. [Example:

class B {
public:

int f (int) ;
}i

class D : public B {
public:

int f (char*);
}i

Here D: : £ (char*) hidesB: : £ (int) rather than overloading it.

void h(D* pd)

{

pd->£f (1) ; // error:

// D::f (char*) hidesB: : f (int)
pd->B::f(1); // OK
pd->f ("Ben") ; // OK,callsD: : £

}
—end example]
A locally declared function is not in the same scope as a function in a containing scope. [Example:

int f (char*);
void g()
{
extern f (int) ;
f("asdf") ; // error: £ (int) hides £ (char¥*)
// sothereisno £ (char*) in this scope

}

116) When a parameter type includes a function type, such as in the case of a parameter type that is a pointer to function, the const
and volatile type-specifiers at the outermost level of the parameter type specifications for the inner function type are also ignored.

13-4 Overloading DRAFT: 11 April 2004 13.2 Declaration matching

void caller ()

{
extern void callee(int, int);
{
extern void callee(int) ; // hides callee (int, int)
callee (88, 99); // error:only callee (int) in scope
1
}

—end example]
Different versions of an overloaded member function can be given different access rules. [Example:

class buffer ({
private:
char* p;
int size;

protected:
buffer(int s, char* store) { size = s; p = store; }
/1]
public:
buffer(int s) { p = new char([size = s]; }
/]
}i

—end example]
13.3 Overload resolution [over.match]

Overload resolution is a mechanism for selecting the best function to call given a list of expressions that are
to be the arguments of the call and a set of candidate functions that can be called based on the context of
the call. The selection criteria for the best function are the number of arguments, how well the arguments
match the parameter-type-list of the candidate function, how well (for nonstatic member functions) the
object matches the implied object parameter, and certain other properties of the candidate function. [Note:
the function selected by overload resolution is not guaranteed to be appropriate for the context. Other
restrictions, such as the accessibility of the function, can make its use in the calling context ill-formed.]

Overload resolution selects the function to call in seven distinct contexts within the language:
— invocation of a function named in the function call syntax (13.3.1.1.1);

— invocation of a function call operator, a pointer-to-function conversion function, a reference-to-
pointer-to-function conversion function, or a reference-to-function conversion function on a class
object named in the function call syntax (13.3.1.1.2);

— invocation of the operator referenced in an expression (13.3.1.2);
— invocation of a constructor for direct-initialization (8.5) of a class object (13.3.1.3);
— invocation of a user-defined conversion for copy-initialization (8.5) of a class object (13.3.1.4);

— invocation of a conversion function for initialization of an object of a nonclass type from an expression
of class type (13.3.1.5); and

— invocation of a conversion function for conversion to an Ivalue to which a reference (8.5.3) will be
directly bound (13.3.1.6).

Each of these contexts defines the set of candidate functions and the list of arguments in its own unique
way. But, once the candidate functions and argument lists have been identified, the selection of the best
function is the same in all cases:

— First, a subset of the candidate functions—those that have the proper number of arguments and meet
certain other conditions—is selected to form a set of viable functions (13.3.2).

13.3 Overload resolution DRAFT: 11 April 2004 Overloading 13-5

— Then the best viable function is selected based on the implicit conversion sequences (13.3.3.1) needed
to match each argument to the corresponding parameter of each viable function.

If a best viable function exists and is unique, overload resolution succeeds and produces it as the result.
Otherwise overload resolution fails and the invocation is ill-formed. When overload resolution succeeds,
and the best viable function is not accessible (clause 11) in the context in which it is used, the program is
ill-formed.

13.3.1 Candidate functions and argument lists [over.match.funcs]

The subclauses of 13.3.1 describe the set of candidate functions and the argument list submitted to overload
resolution in each of the seven contexts in which overload resolution is used. The source transformations
and constructions defined in these subclauses are only for the purpose of describing the overload resolution
process. An implementation is not required to use such transformations and constructions.

The set of candidate functions can contain both member and non-member functions to be resolved against
the same argument list. So that argument and parameter lists are comparable within this heterogeneous set,
a member function is considered to have an extra parameter, called the implicit object parameter, which
represents the object for which the member function has been called. For the purposes of overload resolu-
tion, both static and non-static member functions have an implicit object parameter, but constructors do not.

Similarly, when appropriate, the context can construct an argument list that contains an implied object argu-
ment to denote the object to be operated on. Since arguments and parameters are associated by position
within their respective lists, the convention is that the implicit object parameter, if present, is always the
first parameter and the implied object argument, if present, is always the first argument.

For non-static member functions, the type of the implicit object parameter is “reference to cv X” where X is
the class of which the function is a member and cv is the cv-qualification on the member function declara-
tion. [Example: for a const member function of class X, the extra parameter is assumed to have type “ref-
erence to const X”.] For conversion functions, the function is considered to be a member of the class of
the implicit object argument for the purpose of defining the type of the implicit object parameter. For non-
conversion functions introduced by a using-declaration into a derived class, the function is considered to be
a member of the derived class for the purpose of defining the type of the implicit object parameter. For
static member functions, the implicit object parameter is considered to match any object (since if the func-
tion is selected, the object is discarded). [Note: no actual type is established for the implicit object parame-
ter of a static member function, and no attempt will be made to determine a conversion sequence for that
parameter (13.3.3).]

During overload resolution, the implied object argument is indistinguishable from other arguments. The
implicit object parameter, however, retains its identity since conversions on the corresponding argument
shall obey these additional rules:

— no temporary object can be introduced to hold the argument for the implicit object parameter;
— no user-defined conversions can be applied to achieve a type match with it; and

— even if the implicit object parameter is not const-qualified, an rvalue temporary can be bound to the
parameter as long as in all other respects the temporary can be converted to the type of the implicit
object parameter.

Because only one user-defined conversion is allowed in an implicit conversion sequence, special rules apply
when selecting the best user-defined conversion (13.3.3, 13.3.3.1). [Example:

class T {
public:
T();
/]
}i

13-6 Overloading DRAFT: 11 April 2004 13.3.1
Candidate functions and argument lists

public:
C(int) ;
/7
}i
Ta=1; // ill-formed: T (C (1)) not tried

—end example]

In each case where a candidate is a function template, candidate function template specializations are gen-
erated using template argument deduction (14.8.3, 14.8.2). Those candidates are then handled as candidate
functions in the usual Way.117 A given name can refer to one or more function templates and also to a set
of overloaded non-template functions. In such a case, the candidate functions generated from each function
template are combined with the set of non-template candidate functions.

13.3.1.1 Function call syntax [over.match.call]

Recall from 5.2.2, that a function call is a postfix-expression, possibly nested arbitrarily deep in parenthe-
ses, followed by an optional expression-list enclosed in parentheses:

(... (ope POSstfix-expression)...) . (expression-list,,.)

Overload resolution is required if the postfix-expression is the name of a function, a function template
(14.5.5), an object of class type, or a set of pointers-to-function.

13.3.1.1.1 describes how overload resolution is used in the first two of the above cases to determine the
function to call. 13.3.1.1.2 describes how overload resolution is used in the third of the above cases to
determine the function to call.

The fourth case arises from a postfix-expression of the form &F, where F names a set of overloaded func-
tions. In the context of a function call, &F is treated the same as the name F by itself. Thus,
(&F) (expression-list_,) is simply (F) (expression-list, .), which is discussed in 13.3.1.1.1. If the func-
tion selected by overload resolution according to 13.3.1.1.1 is a nonstatic member function, the program is
ill-formed.*® (The resolution of &F in other contexts is described in 13.4.)

13.3.1.1.1 Call to named function [over.call.func]

Of interest in 13.3.1.1.1 are only those function calls in which the postfix-expression ultimately contains a
name that denotes one or more functions that might be called. Such a postfix-expression, perhaps nested
arbitrarily deep in parentheses, has one of the following forms:

postfix-expression:
postfix-expression . id-expression
postfix-expression -> id-expression
primary-expression

These represent two syntactic subcategories of function calls: qualified function calls and unqualified func-
tion calls.

In qualified function calls, the name to be resolved is an id-expression and is preceded by an - > or . oper-
ator. Since the construct A->B is generally equivalent to (*2) . B, the rest of clause 13 assumes, without
loss of generality, that all member function calls have been normalized to the form that uses an object and
the . operator. Furthermore, clause 13 assumes that the postfix-expression that is the left operand of the .
operator has type “cv T” where T denotes a class'®. Under this assumption, the id-expression in the call is
looked up as a member function of T following the rules for looking up names in classes (10.2). The func-
tion declarations found by that lookup constitute the set of candidate functions. The argument list is the

17 The process of argument deduction fully determines the parameter types of the function template specializations, i.e., the parame-
ters of function template specializations contain no template parameter types. Therefore the function template specializations can be
treated as normal (non-template) functions for the remainder of overload resolution.

118) When F is a nonstatic member function, a reference of the form &A: : F is a pointer-to-member, which cannot be used with the
function-call syntax, and a reference of the form &F is an invalid use of the “&” operator on a nonstatic member function.

119) Note that cv-qualifiers on the type of objects are significant in overload resolution for both lvalue and class rvalue objects.

13.3.1.1.1 Call to named function DRAFT: 11 April 2004 Overloading 13-7

expression-list in the call augmented by the addition of the left operand of the . operator in the normalized
member function call as the implied object argument (13.3.1).

In unqualified function calls, the name is not qualified by an -> or . operator and has the more general
form of a primary-expression. The name is looked up in the context of the function call following the nor-
mal rules for name lookup in function calls (3.4). The function declarations found by that lookup constitute
the set of candidate functions. Because of the rules for name lookup, the set of candidate functions consists
(1) entirely of non-member functions or (2) entirely of member functions of some class T. In case (1), the
argument list is the same as the expression-list in the call. In case (2), the argument list is the expression-
list in the call augmented by the addition of an implied object argument as in a qualified function call. If
the keyword this (9.3.2) is in scope and refers to class T, or a derived class of T, then the implied object
argument is (*this). If the keyword this is not in scope or refers to another class, then a contrived
object of type T becomes the implied object argumentlzo). If the argument list is augmented by a contrived
object and overload resolution selects one of the non-static member functions of T, the call is ill-formed.

13.3.1.1.2 Call to object of class type [over.call.object]

If the primary-expression E in the function call syntax evaluates to a class object of type “cv T”, then the set
of candidate functions includes at least the function call operators of T. The function call operators of T are
obtained by ordinary lookup of the name operator () inthe context of (E) .operator ().

In addition, for each conversion function declared in T of the form
operator conversion-type-id () cv-qualifier;

where cv-qualifier is the same cv-qualification as, or a greater cv-qualification than, cv, and where conver-
sion-type-id denotes the type “pointer to function of (P1,...,Pn) returning R”, or the type “reference to
pointer to function of (P1,...,Pn) returning R”, or the type “reference to function of (P1,...,Pn) returning
R”, a surrogate call function with the unique name call-function and having the form

R call-function (conversion-type-id ¥, P1 al,..,Pn an) { return F (al,..,an); }

is also considered as a candidate function. Similarly, surrogate call functions are added to the set of candi-
date functions for each conversion function declared in a base class of T provided the function is not hidden
within T by another intervening declaration'??.

If such a surrogate call function is selected by overload resolution, the corresponding conversion function
will be called to convert E to the appropriate function pointer or reference, and the function will then be
invoked with the arguments of the call. If the conversion function cannot be called (e.g., because of an
ambiguity), the program is ill-formed.

The argument list submitted to overload resolution consists of the argument expressions present in the func-
tion call syntax preceded by the implied object argument (E). [Note: when comparing the call against the
function call operators, the implied object argument is compared against the implicit object parameter of
the function call operator. When comparing the call against a surrogate call function, the implied object
argument is compared against the first parameter of the surrogate call function. The conversion function
from which the surrogate call function was derived will be used in the conversion sequence for that parame-
ter since it converts the implied object argument to the appropriate function pointer or reference required by
that first parameter.] [Example:

120) An implied object argument must be contrived to correspond to the implicit object parameter attributed to member functions dur-
ing overload resolution. It is not used in the call to the selected function. Since the member functions all have the same implicit
object parameter, the contrived object will not be the cause to select or reject a function.
121) Note that this construction can yield candidate call functions that cannot be differentiated one from the other by overload resolu-
tion because they have identical declarations or differ only in their return type. The call will be ambiguous if overload resolution can-
not select a match to the call that is uniquely better than such undifferentiable functions.

13-8 Overloading DRAFT: 11 April 2004 13.3.1.1.2 Call to object of class type

int f1 (int);
int f2(float) ;
typedef int (*fpl) (int) ;
typedef int (*fp2) (float) ;
struct A {
operator fpl() { return £1; }
operator fp2() { return £2; }
}oas
int 1 = a(1); // Calls £1 via pointer returned from
// conversion function

—end example]
13.3.1.2 Operators in expressions [over.match.oper]

If no operand of an operator in an expression has a type that is a class or an enumeration, the operator is
assumed to be a built-in operator and interpreted according to clause 5. [Note: because ., . *,and : : can-
not be overloaded, these operators are always built-in operators interpreted according to clause 5. 2 : can-
not be overloaded, but the rules in this subclause are used to determine the conversions to be applied to the
second and third operands when they have class or enumeration type (5.16).] [Example:

class String
public:
String (const Stringé&) ;
String (char*) ;
operator char* ();
i

String operator + (const Stringé&, const Stringé&) ;

void f (void)

{

char* p= "one" + "two"; // ill-formed because neither
// operand has user defined type
int T =1 + 1; // Always evaluates to 2 even if

// user defined types exist which
// would perform the operation.

}

—end example]

If either operand has a type that is a class or an enumeration, a user-defined operator function might be
declared that implements this operator or a user-defined conversion can be necessary to convert the operand
to a type that is appropriate for a built-in operator. In this case, overload resolution is used to determine
which operator function or built-in operator is to be invoked to implement the operator. Therefore, the
operator notation is first transformed to the equivalent function-call notation as summarized in Table 8
(where @ denotes one of the operators covered in the specified subclause).

Table 8—relationship between operator and function call notation

Subclause | Expression | As member function As non-member function
13.5.1 @a (a) .operatore () operator@ (a)
13.5.2 a@b (a) .operatore@ (b) operator@ (a, b)
13.5.3 a=b (a) .operator= (b)

13.5.5 a [b] (a) .operator[] (b)

13.5.6 a-> (a) .operator-> ()

13.5.7 a@ (a) .operator@ (0) operator@ (a, 0)

For a unary operator @ with an operand of a type whose cv-unqualified version is T1, and for a binary oper-
ator @ with a left operand of a type whose cv-unqualified version is T1 and a right operand of a type whose
cv-unqualified version is T2, three sets of candidate functions, designated member candidates, non-member

13.3.1.2 Operators in expressions DRAFT: 11 April 2004 Overloading 13-9

candidates and built-in candidates, are constructed as follows:

— If T1 is a class type, the set of member candidates is the result of the qualified lookup of T1: : oper-
atore (13.3.1.1.1); otherwise, the set of member candidates is empty.

— The set of non-member candidates is the result of the unqualified lookup of operatore in the con-
text of the expression according to the usual rules for name lookup in unqualified function calls (3.4.2)
except that all member functions are ignored. However, if no operand has a class type, only those non-
member functions in the lookup set that have a first parameter of type T1 or “reference to (possibly
cv-qualified) T1”, when T1 is an enumeration type, or (if there is a right operand) a second parameter
of type T2 or “reference to (possibly cv-qualified) T2”, when T2 is an enumeration type, are candi-
date functions.

— For the operator ,, the unary operator &, or the operator - >, the built-in candidates set is empty. For
all other operators, the built-in candidates include all of the candidate operator functions defined in
13.6 that, compared to the given operator,

— have the same operator name, and
— accept the same number of operands, and

— accept operand types to which the given operand or operands can be converted according to
13.3.3.1, and

— do not have the same parameter-type-list as any non-template non-member candidate.
For the built-in assignment operators, conversions of the left operand are restricted as follows:
— no temporaries are introduced to hold the left operand, and

— no user-defined conversions are applied to the left operand to achieve a type match with the left-most
parameter of a built-in candidate.

For all other operators, no such restrictions apply.

The set of candidate functions for overload resolution is the union of the member candidates, the non-mem-
ber candidates, and the built-in candidates. The argument list contains all of the operands of the operator
The best function from the set of candidate functions is selected according to 13.3.2 and 13.3. 3! [Exam

ple:

struct A {
operator int () ;

A operator+ (const A&, const A&);
void m()
A a, b;
a + b; // operator+ (a,b) chosenover int (a) + int (b)

}
—end example]

If a built-in candidate is selected by overload resolution, the operands are converted to the types of the cor-
responding parameters of the selected operation function. Then the operator is treated as the corresponding
built-in operator and interpreted according to clause 5.

The second operand of operator - > is ignored in selecting an operator- > function, and is not an argu-
ment when the operator- > function is called. When operator- > returns, the operator - > is applied
to the value returned, with the original second operand. 123

122) If the set of candidate functions is empty, overload resolution is unsuccessful.
123) If the value returned by the operator-> function has class type, this may result in selecting and calling another operator->
function. The process repeats until an operator- > function returns a value of non-class type.

10

13-10 Overloading DRAFT: 11 April 2004 13.3.1.2 Operators in expressions

If the operator is the operator , , the unary operator &, or the operator - >, and there are no viable functions,
then the operator is assumed to be the built-in operator and interpreted according to clause 5.

[Note: the lookup rules for operators in expressions are different than the lookup rules for operator function
names in a function call, as shown in the following example:

struct A { };
void operator + (A, A);

struct B {
void operator + (B);
void £ ();

}i
A a;

void B::£() {

operator+ (a,a); // ERROR — global operator hidden by member
a + a; // OK — calls global operator+
}
—end note]
13.3.1.3 Initialization by constructor [over.match.ctor]

When objects of class type are direct-initialized (8.5), or copy-initialized from an expression of the same or
a derived class type (8.5), overload resolution selects the constructor. For direct-initialization, the candidate
functions are all the constructors of the class of the object being initialized. For copy-initialization, the can-
didate functions are all the converting constructors (12.3.1) of that class. The argument list is the expres-
sion-list within the parentheses of the initializer.

13.3.1.4 Copy-initialization of class by user-defined conversion [over.match.copy]

Under the conditions specified in 8.5, as part of a copy-initialization of an object of class type, a user-
defined conversion can be invoked to convert an initializer expression to the type of the object being initial-
ized. Overload resolution is used to select the user-defined conversion to be invoked. Assuming that “cvl
T” is the type of the object being initialized, with T a class type, the candidate functions are selected as fol-
lows:

— The converting constructors (12.3.1) of T are candidate functions.

— When the type of the initializer expression is a class type “cv s”, the conversion functions of s and its
base classes are considered. Those that are not hidden within s and yield a type whose cv-unqualified
version is the same type as T or is a derived class thereof are candidate functions. Conversion func-
tions that return “reference to X” return lvalues of type X and are therefore considered to yield X for
this process of selecting candidate functions.

In both cases, the argument list has one argument, which is the initializer expression. [Note: this argument
will be compared against the first parameter of the constructors and against the implicit object parameter of
the conversion functions.]

13.3.1.5 Initialization by conversion function [over.match.conv]

Under the conditions specified in 8.5, as part of an initialization of an object of nonclass type, a conversion
function can be invoked to convert an initializer expression of class type to the type of the object being ini-
tialized. Overload resolution is used to select the conversion function to be invoked. Assuming that “cvl
T” is the type of the object being initialized, and “cv S” is the type of the initializer expression, with S a
class type, the candidate functions are selected as follows:

— The conversion functions of S and its base classes are considered. Those that are not hidden within s
and yield type T or a type that can be converted to type T via a standard conversion sequence
(13.3.3.1.1) are candidate functions. Conversion functions that return a cv-qualified type are consid-
ered to yield the cv-unqualified version of that type for this process of selecting candidate functions.

13.3.15 DRAFT: 11 April 2004 Overloading 13-11
Initialization by conversion function

Conversion functions that return “reference to cv2 X” return lvalues of type “cv2 X and are therefore
considered to yield X for this process of selecting candidate functions.

The argument list has one argument, which is the initializer expression. [Note: this argument will be com-
pared against the implicit object parameter of the conversion functions.]

13.3.1.6 Initialization by conversion function for direct reference binding [over.match.ref]

Under the conditions specified in 8.5.3, a reference can be bound directly to an lvalue that is the result of
applying a conversion function to an initializer expression. Overload resolution is used to select the conver-
sion function to be invoked. Assuming that “cvl T” is the underlying type of the reference being initial-
ized, and “cv S” is the type of the initializer expression, with S a class type, the candidate functions are
selected as follows:

— The conversion functions of S and its base classes are considered. Those that are not hidden within S
and yield type “reference to cv2 T2”, where “cvl T” is reference-compatible (8.5.3) with “cv2 T2”,
are candidate functions.

The argument list has one argument, which is the initializer expression. [Note: this argument will be com-
pared against the implicit object parameter of the conversion functions.]

13.3.2 Viable functions [over.match.viable]

From the set of candidate functions constructed for a given context (13.3.1), a set of viable functions is cho-
sen, from which the best function will be selected by comparing argument conversion sequences for the
best fit (13.3.3). The selection of viable functions considers relationships between arguments and function
parameters other than the ranking of conversion sequences.

First, to be a viable function, a candidate function shall have enough parameters to agree in number with
the arguments in the list.

— If there are m arguments in the list, all candidate functions having exactly m parameters are viable.

— A candidate function having fewer than m parameters is viable only if it has an ellipsis in its parameter
list (8.3.5). For the purposes of overload resolution, any argument for which there is no corresponding
parameter is considered to “match the ellipsis” (13.3.3.1.3) .

— A candidate function having more than m parameters is viable only if the (m+1)-st parameter has a
default argument (8.3.6).124 For the purposes of overload resolution, the parameter list is truncated on
the right, so that there are exactly m parameters.

Second, for F to be a viable function, there shall exist for each argument an implicit conversion sequence
(13.3.3.1) that converts that argument to the corresponding parameter of F. If the parameter has reference
type, the implicit conversion sequence includes the operation of binding the reference, and the fact that a
reference to non-const cannot be bound to an rvalue can affect the viability of the function (see
13.3.3.1.4).

13.3.3 Best Viable Function [over.match.best]
Define ICSi(F) as follows:

— if F is a static member function, ICS1(F) is defined such that ICS1(F) is neither better nor worse than
ICS1(G) for any function G, and, symmetrically, ICS1(G) is neither better nor worse than ICSl(F)lZS);
otherwise,

— let ICSi(F) denote the implicit conversion sequence that converts the i-th argument in the list to the
type of the i-th parameter of viable function F. 13.3.3.1 defines the implicit conversion sequences and
13.3.3.2 defines what it means for one implicit conversion sequence to be a better conversion sequence
or worse conversion sequence than another.

124) According to 8.3.6, parameters following the (m+1)-st parameter must also have default arguments.

) If a function is a static member function, this definition means that the first argument, the implied object parameter, has no effect
in the determination of whether the function is better or worse than any other function.

13-12 Overloading DRAFT: 11 April 2004 13.3.3 Best Viable Function

Given these definitions, a viable function F1 is defined to be a better function than another viable function
F2 if for all arguments i, ICSi(F1) is not a worse conversion sequence than ICSi(F2), and then

— for some argument j, ICSj(F1) is a better conversion sequence than ICSj(¥2), or, if not that,
— F1isanon-template function and F2 is a function template specialization, or, if not that,

— F1 and F2 are function template specializations, and the function template for F1 is more specialized
than the template for F2 according to the partial ordering rules described in 14.5.5.2, or, if not that,

— the context is an initialization by user-defined conversion (see 8.5, 13.3.1.5, and 13.3.1.6) and the stan-
dard conversion sequence from the return type of F1 to the destination type (i.e., the type of the entity
being initialized) is a better conversion sequence than the standard conversion sequence from the
return type of F2 to the destination type. [Example:

struct A {
A();
operator int () ;
operator double() ;
Y
int 1 = a; // a.operator int () followed by no conversion
// is better than a . operator double () followed by
// aconversion to int
float x = a; // ambiguous: both possibilities require conversions,
// and neither is better than the other

—end example]

2 If there is exactly one viable function that is a better function than all other viable functions, then it is the
one selected by overload resolution; otherwise the call is ill-formed%®).

3 [Example:

void Fcn(const int*, short);
void Fecn(int*, int);

int 1i;
short s = 0;

void £() {
Fen(&i, s); // is ambiguous because
// &1 — int* is better than &i — const int*
// but s — short is also better than s — int

Fen(&i, 1L); // calls Fen (int*, int), because
// &1 — int* is better than &i — const int*
// and 1L, — short and 1L — int are indistinguishable

Fen(&i,’'c’) ; // calls Fen (int*, int), because
// &1 — int* is better than &i — const int*
// and ¢ — int is better than ¢ — short

}
—end example]

4 If the best viable function resolves to a function for which multiple declarations were found, and if at least
two of these declarations — or the declarations they refer to in the case of using-declarations - specify a
default argument that made the function viable, the program is ill-formed. [Example:

126) The algorithm for selecting the best viable function is linear in the number of viable functions. Run a simple tournament to find a
function w that is not worse than any opponent it faced. Although another function F that w did not face might be at least as good as w,
F cannot be the best function because at some point in the tournament F encountered another function G such that F was not better
than G. Hence, W is either the best function or there is no best function. So, make a second pass over the viable functions to verify that
W is better than all other functions.

13.3.3 Best Viable Function DRAFT: 11 April 2004 Overloading 13-13

namespace A {

extern "C" void f (int = 5);
}
namespace B {

extern "C" void f (int = 5);
}

using A::f;
using B::f;

void use()
£(3); // OK, default argument was not used for viability
£(); // Error: found default argument twice

}

—end example]
13.3.3.1 Implicit conversion sequences [over.best.ics]

An implicit conversion sequence is a sequence of conversions used to convert an argument in a function call
to the type of the corresponding parameter of the function being called. The sequence of conversions is an
implicit conversion as defined in clause 4, which means it is governed by the rules for initialization of an
object or reference by a single expression (8.5, 8.5.3).

Implicit conversion sequences are concerned only with the type, cv-qualification, and lvalue-ness of the
argument and how these are converted to match the corresponding properties of the parameter. Other prop-
erties, such as the lifetime, storage class, alignment, or accessibility of the argument and whether or not the
argument is a bit-field are ignored. So, although an implicit conversion sequence can be defined for a given
argument-parameter pair, the conversion from the argument to the parameter might still be ill-formed in the
final analysis.

A well-formed implicit conversion sequence is one of the following forms:
— astandard conversion sequence (13.3.3.1.1),

— auser-defined conversion sequence (13.3.3.1.2), or

— an ellipsis conversion sequence (13.3.3.1.3).

However, when considering the argument of a user-defined conversion function that is a candidate by
13.3.1.3 when invoked for the copying of the temporary in the second step of a class copy-initialization, or
by 13.3.1.4, 13.3.1.5, or 13.3.1.6 in all cases, only standard conversion sequences and ellipsis conversion
sequences are allowed.

For the case where the parameter type is a reference, see 13.3.3.1.4.

When the parameter type is not a reference, the implicit conversion sequence models a copy-initialization
of the parameter from the argument expression. The implicit conversion sequence is the one required to
convert the argument expression to an rvalue of the type of the parameter. [Note: when the parameter has a
class type, this is a conceptual conversion defined for the purposes of clause 13; the actual initialization is
defined in terms of constructors and is not a conversion.] Any difference in top-level cv-qualification is
subsumed by the initialization itself and does not constitute a conversion. [Example: a parameter of type A
can be initialized from an argument of type const A. The implicit conversion sequence for that case is
the identity sequence; it contains no “conversion” from const A to A.] When the parameter has a class
type and the argument expression has the same type, the implicit conversion sequence is an identity conver-
sion. When the parameter has a class type and the argument expression has a derived class type, the
implicit conversion sequence is a derived-to-base Conversion from the derived class to the base class.
[Note: there is no such standard conversion; this derived-to-base Conversion exists only in the description
of implicit conversion sequences.] A derived-to-base Conversion has Conversion rank (13.3.3.1.1).

In all contexts, when converting to the implicit object parameter or when converting to the left operand of
an assignment operation only standard conversion sequences that create no temporary object for the result

10

11

13-14 Overloading DRAFT: 11 April 2004 13.3.3.1 Implicit conversion sequences

are allowed.

If no conversions are required to match an argument to a parameter type, the implicit conversion sequence
is the standard conversion sequence consisting of the identity conversion (13.3.3.1.1).

If no sequence of conversions can be found to convert an argument to a parameter type or the conversion is
otherwise ill-formed, an implicit conversion sequence cannot be formed.

If several different sequences of conversions exist that each convert the argument to the parameter type, the
implicit conversion sequence associated with the parameter is defined to be the unique conversion sequence
designated the ambiguous conversion sequence. For the purpose of ranking implicit conversion sequences
as described in 13.3.3.2, the ambiguous conversion sequence is treated as a user-defined sequence that is
indistinguishable from any other user-defined conversion sequence127). If a function that uses the ambigu-
ous conversion sequence is selected as the best viable function, the call will be ill-formed because the con-
version of one of the arguments in the call is ambiguous.

The three forms of implicit conversion sequences mentioned above are defined in the following subclauses.
13.3.3.1.1 Standard conversion sequences [over.ics.scs]

Table 9 summarizes the conversions defined in clause 4 and partitions them into four disjoint categories:
Lvalue Transformation, Qualification Adjustment, Promotion, and Conversion. [Note: these categories are
orthogonal with respect to lvalue-ness, cv-qualification, and data representation: the Lvalue Transforma-
tions do not change the cv-qualification or data representation of the type; the Qualification Adjustments do
not change the lvalue-ness or data representation of the type; and the Promotions and Conversions do not
change the Ivalue-ness or cv-qualification of the type.]

[Note: As described in clause 4, a standard conversion sequence is either the Identity conversion by itself
(that is, no conversion) or consists of one to three conversions from the other four categories. At most one
conversion from each category is allowed in a single standard conversion sequence. If there are two or
more conversions in the sequence, the conversions are applied in the canonical order: Lvalue Transforma-
tion, Promotion or Conversion, Qualification Adjustment. —end note]

Each conversion in Table 9 also has an associated rank (Exact Match, Promotion, or Conversion). These
are used to rank standard conversion sequences (13.3.3.2). The rank of a conversion sequence is deter-
mined by considering the rank of each conversion in the sequence and the rank of any reference binding
(13.3.3.1.4). If any of those has Conversion rank, the sequence has Conversion rank; otherwise, if any of
those has Promotion rank, the sequence has Promotion rank; otherwise, the sequence has Exact Match rank.

127) The ambiguous conversion sequence is ranked with user-defined conversion sequences because multiple conversion sequences
for an argument can exist only if they involve different user-defined conversions. The ambiguous conversion sequence is indistin-
guishable from any other user-defined conversion sequence because it represents at least two user-defined conversion sequences, each
with a different user-defined conversion, and any other user-defined conversion sequence must be indistinguishable from at least one of
them.

This rule prevents a function from becoming non-viable because of an ambiguous conversion sequence for one of its parameters. Con-
sider this example,

class Bj;

class A { A (B&); };

class B operator A (); };

class C (B&) ; };
(
(

f(b); // ambiguous because b -> C via constructor and
// b — A via constructor or conversion function.

If it were not for this rule, £ (A) would be eliminated as a viable function for the call £ (b) causing overload resolution to select
£ (C) as the function to call even though it is not clearly the best choice. On the other hand, if an £ (B) were to be declared then
£ (b) would resolve to that £ (B) because the exact match with £ (B) is better than any of the sequences required to match £ ().

13.3.3.1.1 Standard conversion sequences DRAFT: 11 April 2004 Overloading 13-15

Table 9—conversions

Conversion Category Rank Subclause
No conversions required Identity

Lvalue-to-rvalue conversion 4.1
Array-to-pointer conversion Lvalue Transformation Exact Match 4.2
Function-to-pointer conversion 4.3
Qualification conversions Qualification Adjustment 4.4
Integ.ral pro.motlons - Promotion Promotion 45
Floating point promotion 4.6
Integral conversions 4.7
Floating point conversions 4.8
Floating-integral conversions i . 4.9

- - Conversion Conversion
Pointer conversions 4.10
Pointer to member conversions 411
Boolean conversions 4.12
13.3.3.1.2 User-defined conversion sequences [over.ics.user]

A user-defined conversion sequence consists of an initial standard conversion sequence followed by a user-
defined conversion (12.3) followed by a second standard conversion sequence. If the user-defined conver-
sion is specified by a constructor (12.3.1), the initial standard conversion sequence converts the source type
to the type required by the argument of the constructor. If the user-defined conversion is specified by a con-
version function (12.3.2), the initial standard conversion sequence converts the source type to the implicit
object parameter of the conversion function.

The second standard conversion sequence converts the result of the user-defined conversion to the target
type for the sequence. Since an implicit conversion sequence is an initialization, the special rules for
initialization by user-defined conversion apply when selecting the best user-defined conversion for a user-
defined conversion sequence (see 13.3.3 and 13.3.3.1).

If the user-defined conversion is specified by a template conversion function, the second standard conver-
sion sequence must have exact match rank.

A conversion of an expression of class type to the same class type is given Exact Match rank, and a conver-
sion of an expression of class type to a base class of that type is given Conversion rank, in spite of the fact
that a copy constructor (i.e., a user-defined conversion function) is called for those cases.

13.3.3.1.3 Ellipsis conversion sequences [over.ics.ellipsis]

An ellipsis conversion sequence occurs when an argument in a function call is matched with the ellipsis
parameter specification of the function called.

13.3.3.1.4 Reference binding [over.ics.ref]

When a parameter of reference type binds directly (8.5.3) to an argument expression, the implicit conver-
sion sequence is the identity conversion, unless the argument expression has a type that is a derived class of
the parameter type, in which case the implicit conversion sequence is a derived-to-base Conversion
(13.3.3.1). [Example:

struct A {};

struct B : public A {} b;

int f (A&);

int f(B&);

int i = £(b); // Calls £ (B&), an exact match, rather than
// £ (A&), a conversion

—end example] If the parameter binds directly to the result of applying a conversion function to the

13-16 Overloading DRAFT: 11 April 2004 13.3.3.1.4 Reference binding

argument expression, the implicit conversion sequence is a user-defined conversion sequence (13.3.3.1.2),
with the second standard conversion sequence either an identity conversion or, if the conversion function
returns an entity of a type that is a derived class of the parameter type, a derived-to-base Conversion.

When a parameter of reference type is not bound directly to an argument expression, the conversion
sequence is the one required to convert the argument expression to the underlying type of the reference
according to 13.3.3.1. Conceptually, this conversion sequence corresponds to copy-initializing a temporary
of the underlying type with the argument expression. Any difference in top-level cv-qualification is sub-
sumed by the initialization itself and does not constitute a conversion.

A standard conversion sequence cannot be formed if it requires binding a reference to non-const to an
rvalue (except when binding an implicit object parameter; see the special rules for that case in 13.3.1).
[Note: this means, for example, that a candidate function cannot be a viable function if it has a non-const
reference parameter (other than the implicit object parameter) and the corresponding argument is a tempo-
rary or would require one to be created to initialize the reference (see 8.5.3).]

Other restrictions on binding a reference to a particular argument that are not based on the types of the ref-
erence and the argument do not affect the formation of a standard conversion sequence, however. [Exam-
ple: a function with a “reference to int” parameter can be a viable candidate even if the corresponding
argument is an int bit-field. The formation of implicit conversion sequences treats the int bit-field as an
int lvalue and finds an exact match with the parameter. If the function is selected by overload resolution,
the call will nonetheless be ill-formed because of the prohibition on binding a non-const reference to a
bit-field (8.5.3).]

The binding of a reference to an expression that is reference-compatible with added qualification influences
the rank of a standard conversion; see 13.3.3.2 and 8.5.3.

13.3.3.2 Ranking implicit conversion sequences [over.ics.rank]

13.3.3.2 defines a partial ordering of implicit conversion sequences based on the relationships better con-
version sequence and better conversion. If an implicit conversion sequence S1 is defined by these rules to
be a better conversion sequence than S2, then it is also the case that S2 is a worse conversion sequence than
S1. If conversion sequence S1 is neither better than nor worse than conversion sequence S2, S1 and S2 are
said to be indistinguishable conversion sequences.

When comparing the basic forms of implicit conversion sequences (as defined in 13.3.3.1)

— astandard conversion sequence (13.3.3.1.1) is a better conversion sequence than a user-defined conver-
sion sequence or an ellipsis conversion sequence, and

— auser-defined conversion sequence (13.3.3.1.2) is a better conversion sequence than an ellipsis conver-
sion sequence (13.3.3.1.3).

Two implicit conversion sequences of the same form are indistinguishable conversion sequences unless one
of the following rules apply:

— Standard conversion sequence S1 is a better conversion sequence than standard conversion sequence
s2 if

— S1 is a proper subsequence of S2 (comparing the conversion sequences in the canonical form
defined by 13.3.3.1.1, excluding any Lvalue Transformation; the identity conversion sequence is
considered to be a subsequence of any non-identity conversion sequence) or, if not that,

— the rank of S1 is better than the rank of S2, or S1 and S2 have the same rank and are distin-
guishable by the rules in the paragraph below, or, if not that,

— S1 and s2 differ only in their qualification conversion and yield similar types T1 and T2 (4.4),
respectively, and the cv-qualification signature of type T1 is a proper subset of the cv-qualifica-
tion signature of type T2, and S1 is not the deprecated string literal array-to-pointer conversion
(4.2). [Example:

13.3.3.2 DRAFT: 11 April 2004 Overloading 13-17
Ranking implicit conversion sequences

int f (const int *);

int f (int *);

int i;

int §j = f(&i); // Calls £ (int *)

—end example] or, if not that,

— S1 and s2 are reference bindings (8.5.3), and the types to which the references refer are the same
type except for top-level cv-qualifiers, and the type to which the reference initialized by S2 refers
is more cv-qualified than the type to which the reference initialized by S1 refers. [Example:

int f (const int &);
int f(int &);

int g(const int &);
int g(int);

int 1i;
int j

j o= £(1i); // Calls £ (int &)
int k

g(i); // ambiguous

class X {

public:
void f() const;
void £();

bi

void g(const X& a, X b)

{

a.f(); // CallsX::f () const
b.f(); // Callsx::£()

}
—end example]

— User-defined conversion sequence U1 is a better conversion sequence than another user-defined con-
version sequence U2 if they contain the same user-defined conversion function or constructor and if
the second standard conversion sequence of U1 is better than the second standard conversion sequence
of U2. [Example:

struct A {
operator short () ;
}oa;
int £ (int);
int f(float) ;
int 1 = f(a); // Calls £ (int), because short — int is
// better than short — float.

—end example]

Standard conversion sequences are ordered by their ranks: an Exact Match is a better conversion than a Pro-
motion, which is a better conversion than a Conversion. Two conversion sequences with the same rank are
indistinguishable unless one of the following rules applies:

— A conversion that is not a conversion of a pointer, or pointer to member, to bool is better than another
conversion that is such a conversion.

— If class B is derived directly or indirectly from class 2, conversion of B* to A* is better than conver-
sion of B* to void*, and conversion of A* to void~ is better than conversion of B* to void*.

— If class B is derived directly or indirectly from class A and class C is derived directly or indirectly from
Bl

— conversion of C* to B* is better than conversion of C* to A*, [Example:

13-18 Overloading DRAFT: 11 April 2004 13.3.3.2
Ranking implicit conversion sequences

struct A {};

struct B : public A {};

struct C : public B {};

C *pc;

int £(A *);

int £(B *);

int i = £(pc); // Calls £ (B *)

—end example]

— binding of an expression of type C to a reference of type B& is better than binding an expression
of type C to a reference of type Ag,

— conversion of A: : * to B: : * is better than conversion of A: : * to C: : *,
— conversion of C to B is better than conversion of C to A,
— conversion of B* to A* is better than conversion of C* to Ax*,

— binding of an expression of type B to a reference of type A& is better than binding an expression
of type C to a reference of type Ag,

— conversion of B: : * to C: : * is better than conversion of A: : * to C: : *, and

— conversion of B to A is better than conversion of C to A.

[Note: compared conversion sequences will have different source types only in the context of compar-
ing the second standard conversion sequence of an initialization by user-defined conversion (see
13.3.3); in all other contexts, the source types will be the same and the target types will be different.]

13.4 Address of overloaded function [over.over]

A use of an overloaded function name without arguments is resolved in certain contexts to a function, a
pointer to function or a pointer to member function for a specific function from the overload set. A func-
tion template name is considered to name a set of overloaded functions in such contexts. The function
selected is the one whose type matches the target type required in the context. The target can be

— an object or reference being initialized (8.5, 8.5.3),

— the left side of an assignment (5.17),

— aparameter of a function (5.2.2),

— aparameter of a user-defined operator (13.5),

— the return value of a function, operator function, or conversion (6.6.3),
— an explicit type conversion (5.2.3, 5.2.9, 5.4), or

— anon-type template-parameter (14.3.2).

The overloaded function name can be preceded by the & operator. An overloaded function name shall not
be used without arguments in contexts other than those listed. [Note: any redundant set of parentheses sur-
rounding the overloaded function name is ignored (5.1).]

If the name is a function template, template argument deduction is done (14.8.2.2), and if the argument
deduction succeeds, the resulting template argument list is used to generate a single function template spe-
cialization, which is added to the set of overloaded functions considered. [Note: As described in 14.8.1, if
deduction fails and the function template name is followed by an explicit template argument list, the tem-
plate-id is then examined to see whether it identifies a single function template specialization. If it does, the
template-id is considered to be an Ivalue for that function template specialization. The target type is not
used in that determination.]

Non-member functions and static member functions match targets of type “pointer-to-function” or “refer-
ence-to-function.” Nonstatic member functions match targets of type “pointer-to-member-function;” the
function type of the pointer to member is used to select the member function from the set of overloaded

13.4 Address of overloaded function DRAFT: 11 April 2004 Overloading 13-19

member functions. If a nonstatic member function is selected, the reference to the overloaded function
name is required to have the form of a pointer to member as described in 5.3.1.

If more than one function is selected, any function template specializations in the set are eliminated if the
set also contains a non-template function, and any given function template specialization 1 is eliminated if
the set contains a second function template specialization whose function template is more specialized than
the function template of F1 according to the partial ordering rules of 14.5.5.2. After such eliminations, if
any, there shall remain exactly one selected function.

[Example:

int f (double) ;
int £ (int) ;

int (*pfd) (double) &f; // selects £ (double)

int (*pfi) (int) = &f; // selects £ (int)
int (*pfe) (...) = &£; // error: type mismatch
int (&rfi) (int) = £; // selects £ (int)
int (&rfd) (double) = £f; // selects £ (double)
void g() {

(int (*) (int))&f; // cast expression as selector
1

The initialization of pfe is ill-formed because no £ () with type int (...) has been declared, and not
because of any ambiguity. For another example,

struct X {
int f (int);
static int f (long) ;

}i

int (X::*pl) (int) = &X::f; // OK

int (*p2) (int) = &X::f; // error: mismatch

int (*p3) (long) = &X::f; // OK

int (X::*p4) (long) = &X::f; // error: mismatch

int (X::*p5) (int) = &(X::£f); // error: wrong syntax for
// pointer to member

int (*p6) (long) = &(X::f); // OK

—end example]

[Note: if £ () and g () are both overloaded functions, the cross product of possibilities must be considered
to resolve £ (&g), or the equivalent expression £ (g) .]

[Note: there are no standard conversions (clause 4) of one pointer-to-function type into another. In particu-
lar, even if B is a public base of D, we have

D* f();
B* (*pl) () = &f; // error
void g(D¥*) ;
void (*p2) (B*) = &g; // error
—end note]
13.5 Overloaded operators [over.oper]

A function declaration having one of the following operator-function-ids as its name declares an operator
function. An operator function is said to implement the operator named in its operator-function-id.

operator-function-id:
operator operator
operator operator < template-argument-list,, >

13-20 Overloading DRAFT: 11 April 2004 13.5 Overloaded operators

operator: one of

new delete new [] delete[]

+ - * / % " & | -
! = < > += -= * = /= %=
= &= | = << >> >>= <<= == =
<= >= && | | ++ - - , ->%* ->
() [

[Note: the last two operators are function call (5.2.2) and subscripting (5.2.1). The operators new[],
deletell, (), and [] are formed from more than one token.]

Both the unary and binary forms of
+ - * &
can be overloaded.

The following operators cannot be overloaded:

. * HE ?:
nor can the preprocessing symbols # and ## (clause 16).

Operator functions are usually not called directly; instead they are invoked to evaluate the operators they
implement (13.5.1 - 13.5.7). They can be explicitly called, however, using the operator-function-id as the
name of the function in the function call syntax (5.2.2). [Example:

complex z = a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof (int) *n) ;

—end example]

The allocation and deallocation functions, operator new, operator new[], operator delete
and operator delete [], are described completely in 3.7.3. The attributes and restrictions found in the
rest of this subclause do not apply to them unless explicitly stated in 3.7.3.

An operator function shall either be a non-static member function or be a non-member function and have at
least one parameter whose type is a class, a reference to a class, an enumeration, or a reference to an enu-
meration. It is not possible to change the precedence, grouping, or number of operands of operators. The
meaning of the operators =, (unary) &, and , (comma), predefined for each type, can be changed for spe-
cific class and enumeration types by defining operator functions that implement these operators. Operator
functions are inherited in the same manner as other base class functions.

The identities among certain predefined operators applied to basic types (for example, ++a = a+=1) need
not hold for operator functions. Some predefined operators, such as +=, require an operand to be an Ivalue
when applied to basic types; this is not required by operator functions.

An operator function cannot have default arguments (8.3.6), except where explicitly stated below. Operator
functions cannot have more or fewer parameters than the number required for the corresponding operator,
as described in the rest of this subclause.

Operators not mentioned explicitly in subclauses 13.5.3 through 13.5.7 act as ordinary unary and binary
operators obeying the rules of 13.5.1 or 13.5.2.

13.5.1 Unary operators [over.unary]

A prefix unary operator shall be implemented by a non-static member function (9.3) with no parameters or
a non-member function with one parameter. Thus, for any prefix unary operator @, @x can be interpreted as
either x. operator@ () or operator@ (x). If both forms of the operator function have been declared,
the rules in 13.3.1.2 determine which, if any, interpretation is used. See 13.5.7 for an explanation of the
postfix unary operators ++ and - -.

The unary and binary forms of the same operator are considered to have the same name. [Note: conse-
quently, a unary operator can hide a binary operator from an enclosing scope, and vice versa.]

13.5.1 Unary operators DRAFT: 11 April 2004 Overloading 13-21

13.5.2 Binary operators [over.binary]

A binary operator shall be implemented either by a non-static member function (9.3) with one parameter or
by a non-member function with two parameters. Thus, for any binary operator @, x@y can be interpreted as
either x.operatore (y) or operatore (x,y). If both forms of the operator function have been
declared, the rules in 13.3.1.2 determines which, if any, interpretation is used.

13.5.3 Assignment [over.ass]

An assignment operator shall be implemented by a non-static member function with exactly one parameter.
Because a copy assignment operator operator= is implicitly declared for a class if not declared by the
user (12.8), a base class assignment operator is always hidden by the copy assignment operator of the
derived class.

Any assignment operator, even the copy assignment operator, can be virtual. [Note: for a derived class D
with a base class B for which a virtual copy assignment has been declared, the copy assignment operator in
D does not override B’s virtual copy assignment operator. [Example:

struct B {
virtual int operator= (int);
virtual B& operator= (const B&) ;

}i
struct D : B {
virtual int operator= (int);
virtual D& operator= (const B&) ;
}i
D dobjl;
D dobj2;
B* bptr = &dobjl;
void £() {
bptr->operator=(99) ; // callsD: :operator= (int)
*bptr = 99; // ditto
bptr->operator=(dobj2); //callsD::operator=(const B&)
*bptr = dobj2; // ditto
dobjl = dobj2; // calls implicitly-declared
// D::operator= (const D&)
}

—end example] —end note]
13.5.4 Function call [over.call]

operator () shall be a non-static member function with an arbitrary number of parameters. It can have
default arguments. It implements the function call syntax

postfix-expression (expression-listy,)

where the postfix-expression evaluates to a class object and the possibly empty expression-list matches the
parameter list of an operator () member function of the class. Thus, a call x (argl, ...) Iis inter-
preted as x.operator () (argl, ...) foraclass object x of type T if T: :operator () (T1, T2,
T3) exists and if the operator is selected as the best match function by the overload resolution mechanism
(13.3.3).

13.5.5 Subscripting [over.sub]

operator [] shall be a non-static member function with exactly one parameter. It implements the sub-
scripting syntax

postfix-expression [expression 1]
Thus, a subscripting expression x [y] is interpreted as x . operator [] (y) for a class object x of type T

if T: :operator[] (T1) exists and if the operator is selected as the best match function by the overload
resolution mechanism (13.3.3).

13-22 Overloading DRAFT: 11 April 2004 13.5.5 Subscripting

13.5.6 Class member access [over.ref]

operator-> shall be a non-static member function taking no parameters. It implements class member
access using - >

postfix-expression - > id-expression

An expression x->m is interpreted as (x.operator->())->m for a class object x of type T if
T: :operator-> () exists and if the operator is selected as the best match function by the overload reso-
lution mechanism (13.3).

13.5.7 Increment and decrement [over.inc]

The user-defined function called operator++ implements the prefix and postfix ++ operator. If this
function is a member function with no parameters, or a non-member function with one parameter of class
or enumeration type, it defines the prefix increment operator ++ for objects of that type. If the function is a
member function with one parameter (which shall be of type int) or a non-member function with two
parameters (the second of which shall be of type int), it defines the postfix increment operator ++ for

objects of that type. When thfzé))ostfix increment is called as a result of using the ++ operator, the int

argument will have value zero. [Example:

class X {

public:
X& operator++ () ; // prefix ++a
X operator++ (int) ; // postfix a++

}i

class Y { };

Y& operator++ (Y&) ; // prefix ++b

Y operator++ (Y&, int); // postfix b++

void £(X a, Y b) {

++a; // a.operator++() ;
a++; // a.operator++(0) ;
++b; // operator++ (b) ;
b++; // operator++ (b, 0) ;

a.operator++ () ;
a.operator++(0) ;
operator++ (b) ;

// explicit call: like ++a;
// explicit call: like a++;
// explicit call: like ++b;

operator++ (b, 0); // explicit call: like b++;

}

—end example]
The prefix and postfix decrement operators - - are handled analogously.
13.6 Built-in operators [over.built]

The candidate operator functions that represent the built-in operators defined in clause 5 are specified in this
subclause. These candidate functions participate in the operator overload resolution process as described in
13.3.1.2 and are used for no other purpose. [Note: because built-in operators take only operands with non-
class type, and operator overload resolution occurs only when an operand expression originally has class or
enumeration type, operator overload resolution can resolve to a built-in operator only when an operand has
a class type that has a user-defined conversion to a non-class type appropriate for the operator, or when an
operand has an enumeration type that can be converted to a type appropriate for the operator. Also note
that some of the candidate operator functions given in this subclause are more permissive than the built-in
operators themselves. As described in 13.3.1.2, after a built-in operator is selected by overload resolution
the expression is subject to the requirements for the built-in operator given in clause 5, and therefore to any

128) Calling operator++ explicitly, as in expressions like a.operator++ (2), has no special properties: The argument to
operator++ is 2.

10

11

12

13.6 Built-in operators DRAFT: 11 April 2004 Overloading 13-23

additional semantic constraints given there. If there is a user-written candidate with the same name and
parameter types as a built-in candidate operator function, the built-in operator function is hidden and is not
included in the set of candidate functions.]

In this subclause, the term promoted integral type is used to refer to those integral types which are pre-
served by integral promotion (including e.g. int and long but excluding e.g. char). Similarly, the term
promoted arithmetic type refers to floating types plus promoted integral types. [Note: in all cases where a
promoted integral type or promoted arithmetic type is required, an operand of enumeration type will be
acceptable by way of the integral promotions.]

For every pair (T, VQ), where T is an arithmetic type, and VQ is either volatile or empty, there exist
candidate operator functions of the form

VQ T& operator++ (VQT&) ;
T operator++ (VQT&, int);

For every pair (T, VQ), where T is an arithmetic type other than bool, and VQ is either volatile or
empty, there exist candidate operator functions of the form

VQT& operator-- (VQT&) ;

T operator-- (VQT&, int);
For every pair (T, VQ), where T is a cv-qualified or cv-unqualified object type, and VQ is either volatile
or empty, there exist candidate operator functions of the form

T*VQ«& operator++ (T*VQ&) ;
T*VQ& operator--(T*VQs&) ;
T* operator++ (T*VQs&, int) ;
T* operator-- (T*VQ&, int);
For every cv-qualified or cv-unqualified object type T, there exist candidate operator functions of the form

T& operator* (T*) ;

For every function type T, there exist candidate operator functions of the form

T& operator* (T*) ;

For every type T, there exist candidate operator functions of the form

T* operator+ (T*) ;

For every promoted arithmetic type T, there exist candidate operator functions of the form

T operator+ (T)
T operator- (T)

For every promoted integral type T, there exist candidate operator functions of the form
T operator” (T) ;
For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, C1 is the same type as C2 or is a

derived class of C2, T is an object type or a function type, and CV1 and CV2 are cv-qualifier-seqgs, there
exist candidate operator functions of the form

CV12Ts& operator->*(CV1Cl*, CV2TC2::*);
where CV12 is the union of CV1 and CV2.

For every pair of promoted arithmetic types L and R, there exist candidate operator functions of the form

13

14

15

16

17

18

19

13-24 Overloading DRAFT: 11 April 2004 13.6 Built-in operators

LR operator* (L, R);
LR operator/ (L, R);
LR operator+ (L, R);
LR operator- (L, R);
bool operator< (L, R);
bool operator> (L, R);
bool operator<=(L, R);
bool operator>=(L, R);
bool operator==(L, R);
bool operator!=(L, R);

where LR is the result of the usual arithmetic conversions between types L and R.

For every cv-qualified or cv-unqualified object type T there exist candidate operator functions of the form

T* operator+ (T*, std::ptrdiff t);
T& operator[] (T*, std::ptrdiff t);
T* operator- (T*, std::ptrdiff t);
T* operator+ (std::ptrdiff t, T*);
T& operator[] (std::ptrdiff t, T¥);

For every T, where T is a pointer to object type, there exist candidate operator functions of the form

std::ptrdiff t operator-(T, T);

For every pointer or enumeration type T, there exist candidate operator functions of the form

bool operator< (T, T);
bool operator> (T, T);
bool operator<=(T, T);
bool operator>=(T, T);
bool operator==(T, T);
bool operator!=(T, T);

For every pointer to member type T, there exist candidate operator functions of the form

bool operator==(T, T);
bool operator!=(T, T);

For every pair of promoted integral types L and R, there exist candidate operator functions of the form

LR operator% (L, R);
LR operator&(L, R);
LR operator” (L, R);
LR operator| (L, R);
L operator<< (L, R);
L operator>>(L, R);

where LR is the result of the usual arithmetic conversions between types L and R.

For every triple (L, VQ, R), where L is an arithmetic type, VQ is either volatile or empty, and R is a pro-
moted arithmetic type, there exist candidate operator functions of the form

VQ L& operator=(VQL&, R);
VQ L& operator*=(VQL&, R)
VQ L& operator/=(VQL&, R);
VQ L& operator+=(VQL&, R)
VQ L& operator-=(VQL&, R)

For every pair (T, VQ), where T is any type and VQ is either volatile or empty, there exist candidate

operator functions of the form
T*VQ«& operator= (T*VQ&, T*);

20

21

22

23

24

25

13.6 Built-in operators DRAFT: 11 April 2004 Overloading 13-25

For every pair (T, VQ), where T is an enumeration or pointer to member type and VQ is either volatile
or empty, there exist candidate operator functions of the form

VQ T& operator=(VQ T&, T);

For every pair (T, VQ), where T is a cv-qualified or cv-unqualified object type and VQ is either volatile
or empty, there exist candidate operator functions of the form

T*VQs& operator+=(T*VQ&, std::ptrdiff t);
T*VQ& operator-=(T*VQ&, std::ptrdiff t);

For every triple (L, VQ, R), where L is an integral type, VQ is either volatile or empty, and R is a pro-
moted integral type, there exist candidate operator functions of the form

VQ L& operator%=(VQL&, R);
VQ L& operator<<=(VQL&, R);
VQ L& operator>>=(VQL&, R);
VQ L& operator&=(VQL&, R);
VQ L& operator”=(VQL&, R);
VQ L& operator|=(VQL&, R);

There also exist candidate operator functions of the form

bool operator! (bool) ;
bool operator&& (bool, bool) ;
bool operator]| | (bool, bool);

For every pair of promoted arithmetic types L and R, there exist candidate operator functions of the form
LR operator? (bool, L, R);

where LR is the result of the usual arithmetic conversions between types L and R. [Note: as with all these
descriptions of candidate functions, this declaration serves only to describe the built-in operator for pur-
poses of overload resolution. The operator “?” cannot be overloaded.]

For every type T, where T is a pointer or pointer-to-member type, there exist candidate operator functions
of the form

T operator? (bool, T, T);

14 Templates [temp]

A template defines a family of classes or functions.

template-declaration :
exporty, template < template-parameter-list > declaration

template-parameter-list :
template-parameter
template-parameter-list , template-parameter

The declaration in a template-declaration shall
— declare or define a function or a class, or

— define a member function, a member class or a static data member of a class template or of a class
nested within a class template, or

— define a member template of a class or class template.

A template-declaration is a declaration. A template-declaration is also a definition if its declaration
defines a function, a class, or a static data member.

A template-declaration can appear only as a namespace scope or class scope declaration. In a function
template declaration, the declarator-id shall be a template-name (i.e., not a template-id). [Note: in a class
template declaration, if the class name is a template-id, the declaration declares a class template partial spe-
cialization (14.5.4).]

In a template-declaration, explicit specialization, or explicit instantiation the init-declarator-list in the dec-
laration shall contain at most one declarator. When such a declaration is used to declare a class template,
no declarator is permitted.

A template name has linkage (3.5). A non-member function template can have internal linkage; any other
template name shall have external linkage. Entities generated from a template with internal linkage are dis-
tinct from all entities generated in other translation units. A template, a template explicit specialization
(14.7.3), or a class template partial specialization shall not have C linkage. If the linkage of one of these is
something other than C or C+, the behavior is implementation-defined. Template definitions shall obey the
one definition rule (3.2). [Note: default arguments for function templates and for member functions of class
templates are considered definitions for the purpose of template instantiation (14.5) and must also obey the
one definition rule.]

A class template shall not have the same name as any other template, class, function, object, enumeration,
enumerator, namespace, or type in the same scope (3.3), except as specified in (14.5.4). Except that a func-
tion template can be overloaded either by (non-template) functions with the same name or by other function
templates with the same name (14.8.3), a template name declared in namespace scope or in class scope
shall be unique in that scope.

A template-declaration may be preceded by the export keyword. Such a template is said to be exported.
Declaring exported a class template is equivalent to declaring exported all of its non-inline member func-
tions, static data members, member classes, member class templates, and non-inline member function tem-
plates.

10

14-2 Templates DRAFT: 11 April 2004 14 Templates

If a template is exported in one translation unit, it shall be exported in all translation units in which it
appears; no diagnostic is required. A declaration of an exported template shall appear with the export
keyword before any point of instantiation (14.6.4.1) of that template in that translation unit. In addition, the
first declaration of an exported template containing the export keyword must not follow the definition of
that template. The export keyword shall not be used in a friend declaration.

Templates defined in an unnamed namespace, inline functions, and inline function templates shall not be
exported. An exported non-class template shall be defined only once in a program; no diagnostic is
required. An exported non-class template need only be declared (and not necessarily defined) in a transla-
tion unit in which it is instantiated.

A non-exported non-class template must be defined in every translation unit in which it is implicitly instan-
tiated (14.7.1), unless the corresponding specialization is explicitly instantiated (14.7.2) in some translation
unit; no diagnostic is required.

[Note: an implementation may require that a translation unit containing the definition of an exported tem-
plate be compiled before any translation unit containing an instantiation of that template.]

14.1 Template parameters [temp.param]

The syntax for template-parameters is:

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifier,y
class identifier,, = type-id
typename identifier,,
typename identifier,, = type-id
template < template-parameter-list > class identifier,
template < template-parameter-list > class identifier,, = id-expression

There is no semantic difference between class and typename in a template-parameter. typename
followed by an unqualified-id names a template type parameter. typename followed by a qualified-id
denotes the type in a non-type 129 parameter-declaration. A storage class shall not be specified in a tem-
plate-parameter declaration. [Note: a template parameter may be a class template. For example,

template<class T> class myarray { /* ... */ };

template<class K, class V, template<class T> class C = myarray>
class Map {

C<K> key;
C<V> value;
/]
i
—end note]

A type-parameter defines its identifier to be a typedef-name (if declared with class or typename) or
template-name (if declared with template) in the scope of the template declaration. [Note: because of
the name lookup rules, a template-parameter that could be interpreted as either a non-type template-param-
eter or a type-parameter (because its identifier is the name of an already existing class) is taken as a type-
parameter. For example,

129) Since template template-parameters and template template-arguments are treated as types for descriptive purposes, the terms
non-type parameter and non-type argument are used to refer to non-type, non-template parameters and arguments.

14.1 Template parameters DRAFT: 11 April 2004 Templates 14-3

class T { /* ... */ };
int 1i;

template<class T, T i> void £ (T t)

{

T tl =
::T t

; // template-parameters T and i
:i; // global namespace members T and i

N
I -

}

Here, the template £ has a type-parameter called T, rather than an unnamed non-type template-parameter
of class T.]

A non-type template-parameter shall have one of the following (optionally cv-qualified) types:
— integral or enumeration type,

— pointer to object or pointer to function,

— reference to object or reference to function,

— pointer to member.

[Note: other types are disallowed either explicitly below or implicitly by the rules governing the form of
template-arguments (14.3).] The top-level cv-qualifiers on the template-parameter are ignored when deter-
mining its type.

A non-type non-reference template-parameter is not an Ivalue. It shall not be assigned to or in any other
way have its value changed. A non-type non-reference template-parameter cannot have its address taken.
When a non-type non-reference template-parameter is used as an initializer for a reference, a temporary is
always used. [Example:

template<const X& x, int i> void £ ()

{
1++; // error: change of template-parameter value
&X; // OK
&i; // error: address of non-reference template-parameter
int& ri = i; // error: non-const reference bound to temporary
const int& cri = 1i; // OK: const reference bound to temporary

1

—end example]

A non-type template-parameter shall not be declared to have floating point, class, or void type. [Example:

template<double d> class X; // error
template<double* pd> class Y; // OK
template<double& rd> class Z; // OK

—end example]

A non-type template-parameter of type “array of T” or “function returning T” is adjusted to be of type
“pointer to T” or “pointer to function returning T”, respectively. [Example:

template<int *a> struct R { /* ... */ };

template<int b[5]> struct S { /* ... */ };

int p;

R<&p> w; // OK

S<&p> X; // OK due to parameter adjustment

int v[5];

R<v> y; // OK due to implicit argument conversion
S<v> Z; // OK due to both adjustment and conversion

—end example]

10

11

12

13

14
15

16

14-4 Templates DRAFT: 11 April 2004 14.1 Template parameters

A default template-argument is a template-argument (14.3) specified after = in a template-parameter. A
default template-argument may be specified for any kind of template-parameter (type, non-type, template).
A default template-argument may be specified in a template declaration. A default template-argument shall
not be specified in the template-parameter-lists of the definition of a member of a class template that
appears outside of the member’s class. A default template-argument shall not be specified in a friend class
template declaration. If a friend function template declaration specifies a default template-argument, that
declaration shall be a definition and shall be the only declaration of the function template in the translation
unit.

The set of default template-arguments available for use with a template declaration or definition is obtained
by merging the default arguments from the definition (if in scope) and all declarations in scope in the same
way default function arguments are (8.3.6). [Example:

template<class T1l, class T2 = int> class A;
template<class Tl = int, class T2> class A;

is equivalent to
template<class Tl = int, class T2 = int> class A;
—end example]

If a template-parameter of a class template has a default template-argument, all subsequent template-
parameters shall have a default template-argument supplied. [Note: This is not a requirement for function
templates because template arguments might be deduced (14.8.2).] [Example:

template<class Tl = int, class T2> class B; // error
—end example]

A template-parameter shall not be given default arguments by two different declarations in the same scope.
[Example:

template<class T = ints> class X;
template<class T = int> class X { /*... */ }; //error

—end example]

The scope of a template-parameter extends from its point of declaration until the end of its template. In par-
ticular, a template-parameter can be used in the declaration of subsequent template-parameters and their
default arguments. [Example:

template<class T, T* p, class U = T> class X { /* ... */ };
template<class T> void f£(T* p = new T);

—end example]
A template-parameter shall not be used in its own default argument.

When parsing a default template-argument for a non-type template-parameter, the first non-nested > is
taken as the end of the template-parameter-list rather than a greater-than operator. [Example:

template<int i = 3 > 4 > // syntax error
class X { /* ... */ };

template<int i = (3 > 4) > // OK
class Y { /* ... */ };

—end example]

A template-parameter of a template template-parameter is permitted to have a default template-argument.
When such default arguments are specified, they apply to the template template-parameter in the scope of
the template template-parameter. [Example:

14.1 Template parameters DRAFT: 11 April 2004 Templates 14-5

template <class T = float> struct B {};

template <template <class TT = float> class T> struct A {
inline void f () ;
inline void g{() ;

}i

template <template <class TT> class T> void A<T>::f() {
T<> t; //error-TT has no default template argument

}

template <template <class TT = char> class T>void A<T>::g() {
T<> t; //OK-T<chars>
}

—end example]
14.2 Names of template specializations [temp.names]
A template specialization (14.7) can be referred to by a template-id:

template-id :
template-name < template-argument-list,,, >

template-name :
identifier

template-argument-list :
template-argument
template-argument-list , template-argument

template-argument :
assignment-expression
type-id
id-expression

[Note: the name lookup rules (3.4) are used to associate the use of a name with a template declaration; that
is, to identify a name as a template-name.]

For a template-name to be explicitly qualified by the template arguments, the name must be known to refer
to a template.

After name lookup (3.4) finds that a name is a template-name, if this name is followed by a <, the < is
always taken as the beginning of a template-argument-list and never as a name followed by the less-than
operator. When parsing a template-id, the first non-nested >130) js taken as the end of the template-argu-
ment-list rather than a greater-than operator. [Example:

template<int i> class X { /* ... */ };

X< 152 > x1; // syntax error

X< (1>2) > x2; // OK
template<class T> class Y { /* ... */ };

Y< X<1> > x3; // OK

Y<X<6>> 1> > x4 ; // OK: Y< X< (6>>1) > >

—end example]

When the name of a member template specialization appears after . or - > in a postfix-expression, or after
a nested-name-specifier in a qualified-id, and the postfix-expression or qualified-id explicitly depends on a
template-parameter (14.6.2) but does not refer to a member of the current instantiation (14.6.2.1), the mem-
ber template name must be prefixed by the keyword template. Otherwise the name is assumed to hame
a non-template. [Example:

130) A > that encloses the type-id of a dynamic_cast, static_cast, reinterpret cast Or const_cast, or which
encloses the template-arguments of a subsequent template-id, is considered nested for the purpose of this description.

14-6 Templates DRAFT: 11 April 2004 14.2 Names of template specializations

class X {
public:
template<std::size_t> X* alloc();
template<std::size t> static X* adjust();
}i
template<class T> void £ (T* p)
{
T* pl = p->alloc<200>();
// ill-formed: < means less than

T* p2 p->template alloc<200>() ;

// OK: < starts template argument list

T::adjust<100>() ;
// ill-formed: < means less than

T::template adjust<100>() ;
// OK: < starts template argument list

}
—end example]

If a name prefixed by the keyword template is not the name of a template, the program is ill-formed.
[Note: the keyword template may not be applied to non-template members of class templates.] Further-
more, nhames of member templates shall not be prefixed by the keyword template if the postfix-expres-
sion or qualified-id does not appear in the scope of a template. [Note: just as is the case with the type-
name prefix, the template prefix is allowed in cases where it is not strictly necessary; i.e., when the
expression on the left of the -> or ., or the nested-name-specifier is not dependent on a template-parame-
ter.]

A template-id that names a class template specialization is a class-name (clause 9).
14.3 Template arguments [temp.arg]

There are three forms of template-argument, corresponding to the three forms of template-parameter: type,
non-type and template. The type and form of each template-argument specified in a template-id shall
match the type and form specified for the corresponding parameter declared by the template in its template-
parameter-list. [Example:

template<class T> class Array {

T* v;
int sz;
public:
explicit Array(int) ;
T& operator[] (int) ;
T& elem(int i) { return vI[il; }
/]
}i

Array<int> v1(20) ;
typedef std::complex<double> dcomplex; // std::complex isa standard
// library template

Array<dcomplex> v2(30);
Array<dcomplex> v3(40) ;
void bar()

v1l[3] = 7;

v2[3] v3.elem(4) = dcomplex(7,8);

}

—end example]

14.3 Template arguments DRAFT: 11 April 2004 Templates 14-7

In a template-argument, an ambiguity between a type-id and an expression is resolved to a type-id, regard-
less of the form of the corresponding template-parameter.l3l) [Example:

template<class T> void f();
template<int I> wvoid f();

void g{()

{
}

—end example]

f<int () > () ; // int () is a type-id: call the first £ ()

The name of a template-argument shall be accessible at the point where it is used as a template-argument.
[Note: if the name of the template-argument is accessible at the point where it is used as a template-argu-
ment, there is no further access restriction in the resulting instantiation where the corresponding template-
parameter name is used.] [Example:

template<class T> class X {
static T t;

}i
class Y {
private:
struct S { /* ... */ };
X<S> X; // OK: s is accessible
// X<Y: :S> has a static member of type Y: : S
// OK: even though Y : : S is private
}i
X<Y::8> y; // error: S not accessible

—end example] For a template-argument of class type, the template definition has no special access rights
to the inaccessible members of the template argument type.

When default template-arguments are used, a template-argument list can be empty. In that case the empty
<> brackets shall still be used as the template-argument-list. [Example:

template<class T = char> class String;
String<>* p; // OK: String<chars>
String* q; // syntax error

—end example]

An explicit destructor call (12.4) for an object that has a type that is a class template specialization may
explicitly specify the template-arguments. [Example:

template<class T> struct A {

“A();
}i
void f(A<int>* p, A<int>* q)
p->A<int>::"A(); // OK: destructor call
g->A<int>::"A<int> () ; // OK: destructor call
1

—end example]

If the use of a template-argument gives rise to an ill-formed construct in the instantiation of a template spe-
cialization, the program is ill-formed.

When the template in a template-id is an overloaded function template, both non-template functions in the
overload set and function templates in the overload set for which the template-arguments do not match the

131) There is no such ambiguity in a default template-argument because the form of the template-parameter determines the allowable
forms of the template-argument.

14-8 Templates DRAFT: 11 April 2004 14.3 Template arguments

template-parameters are ignored. If none of the function templates have matching template-parameters,
the program is ill-formed.

14.3.1 Template type arguments [temp.arg.type]
A template-argument for a template-parameter which is a type shall be a type-id.

The following types shall not be used as a template-argument for a template type-parameter:

— atype whose name has no linkage

— anunnamed class or enumeration type that has no name for linkage purposes (7.1.3)

— acv-qualified version of one of the types in this list

— atype created by application of declarator operators to one of the types in this list

— afunction type that uses one of the types in this list

[Example:
template <class T> class X { /* ... */ };
void f()
{
struct S { /* ... */ };
X<S> x3; // error: local type used as template-argument
X<S*> x4; // error: pointer to local type used as template-argument
}

—end example] [Note: a template type argument may be an incomplete type (3.9).]

If a declaration acquires a function type through a type dependent on a template-parameter and this causes
a declaration that does not use the syntactic form of a function declarator to have function type, the pro-
gram is ill-formed. [Example:

template<class T> struct A {
static T t;

typedef int function() ;
A<functions> a; // ill-formed: would declare A<functions: : t

// as a static member function

—end example]

If a template-argument for a template-parameter T names a type “reference to cvl S”, an attempt to create
the type “reference to cv2 T” creates the type “reference to cvl2 s”, where cv12 is the union of the cv-
qualifiers cvl and cv2. Redundant cv-qualifiers are ignored. [Example:

template <class T> class X
f (const T&) ;
VAV

}i

X<int&> x; // X<inté&>: : £ has the parameter type const int&

—end example]

14.3.2 Template non-type arguments [temp.arg.nontype]
A template-argument for a non-type, non-template template-parameter shall be one of:
— an integral constant-expression of integral or enumeration type; or

— the name of a non-type template-parameter; or

3

14.3.2 Template non-type arguments DRAFT: 11 April 2004 Templates 14-9

the address of an object or function with external linkage, including function templates and function
template-ids but excluding non-static class members, expressed as & id-expression where the & is
optional if the name refers to a function or array, or if the corresponding template-parameter is a refer-
ence; or

a pointer to member expressed as described in 5.3.1 .

[Note: A string literal (2.13.4) does not satisfy the requirements of any of these categories and thus is not an
acceptable template-argument. [Example:

template<class T, char* p> class X {

!/
X();
X (const char* q) { /* ... */ }
}i
X<int, "Studebaker"> x1; // error: string literal as template-argument
char p[] = "Vivisectionist";
X<int,p> x2; // OK

—end example] —end note]

[Note: Addresses of array elements and names or addresses of non-static class members are not acceptable
template-arguments. [Example:

template<int* p> class X { };

int af[10];
struct S { int m; static int s; } s;

X<&a[2]> x3; // error: address of array element
X<&s.m> xX4; // error: address of non-static member
X<&s.s> x5; // error: &S: : s must be used
X<&S::8> x6; // OK: address of static member

—end example] —end note]

[Note: Temporaries, unnamed Ivalues, and named Ivalues that do not have external linkage are not accept-
able template-arguments when the corresponding template-parameter has reference type. [Example:

template<const int& CRI> struct B { /* ... */ };

B<l> Db2; // error: temporary would be required for template argument
int ¢ = 1;

B<c> bl; // OK

—end example] —end note]

The following conversions are performed on each expression used as a non-type template-argument. If a
non-type template-argument cannot be converted to the type of the corresponding template-parameter then
the program is ill-formed.

for a non-type template-parameter of integral or enumeration type, integral promotions (4.5) and inte-
gral conversions (4.7) are applied.

for a non-type template-parameter of type pointer to object, qualification conversions (4.4) and the
array-to-pointer conversion (4.2) are applied. [Note: In particular, neither the null pointer conversion
(4.10) nor the derived-to-base conversion (4.10) are applied. Although 0 is a valid template-argument
for a non-type template-parameter of integral type, it is not a valid template-argument for a non-type
template-parameter of pointer type.]

For a non-type template-parameter of type reference to object, no conversions apply. The type
referred to by the reference may be more cv-qualified than the (otherwise identical) type of the

14-10 Templates DRAFT: 11 April 2004 14.3.2 Template non-type arguments

template-argument. The template-parameter is bound directly to the template-argument, which must
be an Ivalue.

— For a non-type template-parameter of type pointer to function, only the function-to-pointer conversion
(4.3) is applied. If the template-argument represents a set of overloaded functions (or a pointer to
such), the matching function is selected from the set (13.4).

— For a non-type template-parameter of type reference to function, no conversions apply. If the tem-
plate-argument represents a set of overloaded functions, the matching function is selected from the set
(13.4).

— For a non-type template-parameter of type pointer to member function, no conversions apply. If the
template-argument represents a set of overloaded member functions, the matching member function is
selected from the set (13.4).

— For a non-type template-parameter of type pointer to data member, qualification conversions (4.4) are
applied.

[Example:
template<const int* pcis> struct X { /* ... */ };
int ai[10];
X<ai> xi; // array to pointer and qualification conversions
struct Y { /* ... */ };
template<const Y& b> struct Z { /* ... */ };
Y vy;
Z<y> Z; // no conversion, but note extra cv-qualification
template<int (&pa) [5]> struct W { /* ... */ };
int b[5];
W w; // no conversion

void f (char) ;
void f (int) ;

template<void (*pf) (int)> struct A { /* ... */ };

A<&f> a; // selects £ (int)
—end example]
14.3.3 Template template arguments [temp.arg.template]

A template-argument for a template template-parameter shall be the name of a class template, expressed as
id-expression. Only primary class templates are considered when matching the template template argument
with the corresponding parameter; partial specializations are not considered even if their parameter lists
match that of the template template parameter.

Any partial specializations (14.5.4) associated with the primary class template are considered when a spe-
cialization based on the template template-parameter is instantiated. If a specialization is not visible at the
point of instantiation, and it would have been selected had it been visible, the program is ill-formed; no
diagnostic is required. [Example:

14.3.3 Template template arguments DRAFT: 11 April 2004 Templates 14-11

template<class T> class A { // primary template
int x;
}i _ o
template<class T> class A<T*> { // partial specialization
long x;
}i
template<template<class U> class V> class C {
V<int> vy;
V<int*> z;
}i N _
C<A> ¢; // V<ints> within C<A> uses the primary template,

// s0c.y.xhastype int
// V<int*> within C<A> uses the partial specialization,
// s0c.z.xhastype long

—end example]
14.4 Type equivalence [temp.type]

Two template-ids refer to the same class or function if their template names are identical, they refer to the
same template, their type template-arguments are the same type, their non-type template-arguments of inte-
gral or enumeration type have identical values, their non-type template-arguments of pointer or reference
type refer to the same external object or function, and their template template-arguments refer to the same
template. [Example:

template<class E, int size> class buffer { /* ... */ };
buffer<char,2*512> x;
buffer<char,1024> vy;

declares x and y to be of the same type, and

template<class T, void(*err_ fct) ()> class list { /* ... */ };
list<int, &error handlerls> x1;
list<int, &error handler2s> x2;
list<int, &error handler2s> x3;
list<char, &error_handler2> x4;

declares x2 and x3 to be of the same type. Their type differs from the types of x1 and x4.]
14.5 Template declarations [temp.decls]

A template-id, that is, the template-name followed by a template-argument-list shall not be specified in the
declaration of a primary template declaration. [Example:

template<class T1l, class T2, int I> class A<T1, T2, I> { }; // error
template<class T1l, int I> void sort<T1l, I>(T1l datalI]); // error

—end example] [Note: however, this syntax is allowed in class template partial specializations (14.5.4).]

For purposes of name lookup and instantiation, default arguments of function templates and default argu-
ments of member functions of class templates are considered definitions; each default argument is a sepa-
rate definition which is unrelated to the function template definition or to any other default arguments.

14.5.1 Class templates [temp.class]

A class template defines the layout and operations for an unbounded set of related types. [Example: a sin-
gle class template List might provide a common definition for list of int, list of £loat, and list of
pointers to Shapes.]

14-12 Templates DRAFT: 11 April 2004 14.5.1 Class templates

[Example: An array class template might be declared like this:

template<class T> class Array {
T* v;
int sz;
public:
explicit Array(int);
T& operator[] (int) ;
T& elem(int i) { return vI[i]; }

//
}i
The prefix template <class T> specifies that a template is being declared and that a type-name T will
be used in the declaration. In other words, Array is a parameterized type with T as its parameter.]

When a member function, a member class, a static data member or a member template of a class template is
defined outside of the class template definition, the member definition is defined as a template definition in
which the template-parameters are those of the class template. The names of the template parameters used
in the definition of the member may be different from the template parameter names used in the class tem-
plate definition. The template argument list following the class template name in the member definition
shall name the parameters in the same order as the one used in the template parameter list of the member.

[Example:
template<class T1l, class T2> struct A {

void f£1();

void £2 () ;
}i
template<class T2, class Tl> void A<T2,T1l>::£1() { } // OK
template<class T2, class Tl> void A<T1,T2>::f2() { } // error

—end example]

In a redeclaration, partial specialization, explicit specialization or explicit instantiation of a class template,
the class-key shall agree in kind with the original class template declaration (7.1.5.3).

14.5.1.1 Member functions of class templates [temp.mem.func]

A member function of a class template may be defined outside of the class template definition in which it is
declared. [Example:

template<class T> class Array {
T* v;
int sz;
public:
explicit Array(int);
T& operator[] (int) ;
T& elem(int i) { return vI[i]; }

s
}i

declares three function templates. The subscript function might be defined like this:

template<class T> T& Array<Ts>::operator[] (int i)

{

if (i<0 || sz<=1i) error("Array: range error");
return v[i];

}

—end example]

The template-arguments for a member function of a class template are determined by the template-argu-
ments of the type of the object for which the member function is called. [Example: the template-argument
for Array<T>: :operator [] () will be determined by the Array to which the subscripting operation

is applied.

145.1.1 DRAFT: 11 April 2004 Templates 14-13

Member functions of class templates

Array<int> v1(20) ;
Array<dcomplex> v2(30) ;

7; // Array<ints>: :operator[] ()

v1[3]
// Array<dcomplexs>: :operator[] ()

v2[3] = dcomplex(7,8);

—end example]

14.5.1.2 Member classes of class templates

A class member of a class template may be defined outside the class template definition in which it is
declared. [Note: the class member must be defined before its first use that requires an instantiation (14.7.1).

For example,

[temp.mem.class]

template<class T> struct A {
class B;
}i
A<ints>::B* bl; // OK: requires A to be defined but notA: : B
template<class T> class A<T>::B { };
A<int>::B Db2; // OK: requires A: : B to be defined

—end note]
14.5.1.3 Static data members of class templates [temp.static]
A definition for a static data member may be provided in a namespace scope enclosing the definition of the
static member’s class template. [Example:
template<class T> class X {
static T s;
i

template<class T> T X<T>::s = 0;

—end example]

14.5.2 Member templates [temp.mem]

A template can be declared within a class or class template; such a template is called a member template.
A member template can be defined within or outside its class definition or class template definition. A
member template of a class template that is defined outside of its class template definition shall be specified
with the template-parameters of the class template followed by the template-parameters of the member
template. [Example:

template<class T> class string ({

public:
template<class T2> int compare (const T2&) ;
template<class T2> string(const string<T2>& s) { /* ... */ }
/]

template<class T> template<class T2> int string<Ts>::compare (const T2& s)

{
}

—end example]

A local class shall not have member templates. Access control rules (clause 11) apply to member template
names. A destructor shall not be a member template. A normal (non-template) member function with a
given name and type and a member function template of the same name, which could be used to generate a
specialization of the same type, can both be declared in a class. When both exist, a use of that name and
type refers to the non-template member unless an explicit template argument list is supplied. [Example:

/]

14-14 Templates DRAFT: 11 April 2004 14.5.2 Member templates

template <class T> struct A {
void f (int) ;
template <class T2> void £ (T2);

}i
template <> void A<int>::f(int) { } // non-template member
template <> template <> void A<int>::f<>(int) { } // template member
int main()
{

A<char> ac;

ac.f(1); // non-template

ac.f('c’); // template

ac.f<>(1); // template
1

—end example]

A member function template shall not be virtual. [Example:

template <class T> struct AA {
template <class C> virtual void g(C); // error
virtual void f(); // OK

Vi
—end example]

A specialization of a member function template does not override a virtual function from a base class.
[Example:

class B {
virtual void f (int) ;

}i

class D : public B {
template <class T> void £(T); // does not override B: : £ (int)
void f(int 1) { f<>(1); } // overriding function that calls

// the template instantiation

i
—end example]

A specialization of a template conversion function is referenced in the same way as a non-template conver-
sion function that converts to the same type. [Example:

struct A {
template <class T> operator T*();

}i
template <class T> A::operator T*(){ return 0; }
template <> A::operator char*(){ return 0; } // specialization
template A::operator void* () ; // explicit instantiation
int main()
{
A a;
int* ip;
ip = a.operator int*(); // explicit call to template operator
// A::operator int* ()
}

—end example] [Note: because the explicit template argument list follows the function template name, and
because conversion member function templates and constructor member function templates are called with-
out using a function name, there is no way to provide an explicit template argument list for these function

14.5.2 Member templates DRAFT: 11 April 2004 Templates 14-15

templates.]

A specialization of a template conversion function is not found by name lookup. Instead, any template con-
version functions visible in the context of the use are considered. For each such operator, if argument
deduction succeeds (14.8.2.3), the resulting specialization is used as if found by name lookup.

A using-declaration in a derived class cannot refer to a specialization of a template conversion function in a
base class.

Overload resolution (13.3.3.2) and partial ordering (14.5.5.2) are used to select the best conversion function
among multiple template conversion functions and/or non-template conversion functions.

14.5.3 Friends [temp.friend]

A friend of a class or class template can be a function template or class template, a specialization of a func-
tion template or class template, or an ordinary (non-template) function or class. For a friend function decla-
ration that is not a template declaration:

— if the name of the friend is a qualified or unqualified template-id, the friend declaration refers to a spe-
cialization of a function template, otherwise

— if the name of the friend is a qualified-id and a matching non-template function is found in the speci-
fied class or namespace, the friend declaration refers to that function, otherwise,

— if the name of the friend is a qualified-id and a matching specialization of a function template is found
in the specified class or namespace, the friend declaration refers to that function template specializa-
tion, otherwise,

— the name shall be an unqualified-id that declares (or redeclares) an ordinary (non-template) function.

[Example:

template<class T> class task;
template<class T> task<T>* preempt (task<T>*) ;

template<class T> class task {

/]

friend void next time();

friend void process (task<T>*) ;

friend task<T>* preempt<Ts>(task<T>*);
template<class C> friend int func(C);

friend class task<ints>;

template<class P> friend class frd;

/]

}i

Here, each specialization of the task class template has the function next time as a friend; because
process does not have explicit template-arguments, each specialization of the task class template has
an appropriately typed function process as a friend, and this friend is not a function template specializa-
tion; because the friend preempt has an explicit template-argument <T>, each specialization of the task
class template has the appropriate specialization of the function template preempt as a friend; and each
specialization of the task class template has all specializations of the function template func as friends.
Similarly, each specialization of the task class template has the class template specialization task<int>
as a friend, and has all specializations of the class template £rd as friends. —end example]

A friend function declaration that is not a template declaration and in which the name of the friend is an
unqualified template-id shall refer to a specialization of a function template declared in the nearest enclos-
ing namespace scope. [Example:

14-16 Templates DRAFT: 11 April 2004 14.5.3 Friends

namespace N {
template <class T> void £ (T);
void g(int) ;
namespace M {
template <class T> void h(T);
template <class T> void i(T);
struct A {

friend void f<>(int); // ill-formed — N: : £
friend void h<> (int) ; // OK—=M::h

friend void g(int); // OK —new decl of M: : g
template <class T> void i(T);

friend void i<>(int) ; // ill-formed — A: :i

}

—end example]

A friend template may be declared within a class or class template. A friend function template may be
defined within a class or class template, but a friend class template may not be defined in a class or class
template. In these cases, all specializations of the friend class or friend function template are friends of the
class or class template granting friendship. [Example:

class A {

template<class T> friend class B; // OK

template<class T> friend void £(T){ /* ... */ } // OK
}i

—end example]

A template friend declaration specifies that all specializations of that template, whether they are implicitly
instantiated (14.7.1), partially specialized (14.5.4) or explicitly specialized (14.7.3), are f