COMBINATORICA Bolyai Society – Springer-Verlag

THE MINIMUM AREA OF CONVEX LATTICE n-GONS IMRE BÁRÁNY*, [NORIHIDE TOKUSHIGE](#page-14-0)

Received January 2, 2001

Let $A(n)$ be the minimum area of convex lattice *n*-gons. We prove that $\lim_{n \to \infty} A(n)/n^3$ exists. Our computations suggest that the value of the limit is very close to 0.0185067....

1. Introduction

What is the minimal area $A(n)$ a convex lattice polygon with n vertices can have? The first to answer this question was G.E. Andrews [[1](#page-14-0)]. He proved that $A(n) \geq c n^3$ with some universal constant c. V.I. Arnol'd arrived to the same question from another direction [\[2](#page-14-0)], and proved the same estimate. Further proofs are due to W. Schmidt [[10](#page-14-0)], Bárány–Pach [[3](#page-14-0)]. The best lower bound comes form Rabinowitz [[8](#page-14-0)] via an inequality of Rényi–Sulanke [\[9\]](#page-14-0)

$$
\frac{1}{8\pi^2} < \frac{A(n)}{n^3} \le \frac{1}{54} (1 + o(1)).
$$

The upper bound follows from [Remark 2](#page-2-0) below.

Our main result is:

Theorem 1. $\lim_{n \to \infty} A(n)/n^3$ *exists.*

Mathematics Subject Classification (2000): 52C05

^{*} Partially supported by Hungarian National Science Foundation Grants T 032452 and T 029255.

The value of the limit – as we are going to show – equals the minimum of finitely many explicit extremal problems. But the finitely many is about 10^{10} , too many to solve. Our computations show, however, that most likely

$$
\lim \frac{A(n)}{n^3} = 0.0185067\dots.
$$

We will also see that the convex lattice n-gon P with area $A(n)$ has elongated shape: after applying a suitable lattice preserving affine transformation, P has lattice width c_1n in direction $(0,1)$ and has width c_2n^2 in direction $(1,0)$ where c_1, c_2 positive constants. Almost all the paper is devoted to the proof of Theorem 1.

Remark 1. Actually, Andrews [\[1\]](#page-14-0) showed much more, namely the following (see also [[10](#page-14-0)], [[7](#page-14-0)]). If $P \subset \mathbb{R}^d$ is a convex lattice polytope with n vertices and volume $V > 0$, then

$$
cn^{\frac{d+1}{d-1}} \le V,
$$

where c is a constant depending only on dimension.

2. Reduction

Define P_n as the set of all convex lattice *n*-gons in \mathbb{R}^2 , then

$$
A(n) = \min\{\text{Area } P : P \in \mathcal{P}_n\}.
$$

In the next two claims, whose proof is given at the end of this section, we reduce the search for $A(n)$. As $A(n)$ is increasing it is enough to work with even n.

Claim 1. For even n, there exists a centrally symmetric $P \in \mathcal{P}_n$ with $A(n)$ AreaP*.*

Fix a centrally symmetric $P \in \mathcal{P}_n$ with $A(n) = \text{Area } P$ $(n = 2k \text{ even}).$ The edges are $z_1, z_2, \ldots, z_k, -z_1, \ldots, -z_k$ in this order. Clearly, each z_i is a primitive vector, i.e., its components are coprime. Write **P** for the set of all primitive vectors in **Z**2. Define

$$
C = \text{conv}\{z_1, z_2, \dots, z_k, -z_1, \dots, -z_k\}.
$$

Then P is the zonotope spanned by $\{z_1, \ldots, z_k\}$, i.e., $P = \sum_{i=1}^k [0, z_i]$. As it is well-known and easy to check

$$
\text{Area } P = \sum_{1 \le i < j \le k} |\det(z_i, z_j)|.
$$

Write C for the set of 0-symmetric convex bodies in \mathbb{R}^2 . So $C \in \mathcal{C}$ and define

$$
A(C) = \frac{1}{8} \sum_{u \in C \cap \mathbf{P}} \sum_{v \in C \cap \mathbf{P}} |\det(u, v)|.
$$

The following claim shows that $A(C) = \text{Area } P(C)$.

Claim 2. *If* $z \in C \cap P$ *then* $z = z_i$ *, or* $-z_i$ *for some i.*

This means that the search for $A(n)$, or for minimal $P \in \mathcal{P}_n$ is reduced to the following minimization problem.

$$
Min(n) = min\{A(C) : C \in \mathcal{C} \text{ with } |C \cap \mathbf{P}| = n\}.
$$

Observe that the solution C to the problem $\text{Min}(n)$ is invariant under lattice preserving linear transformation. Thus we may fix C in standard position. This means that the lattice width of C is $2b=2b(C)$ and is taken in direction (0,1). Recall (from [\[6\]](#page-14-0), say,) that the *width* of $K \subset \mathbb{R}^2$ in direction $z \in \mathbb{Z}^2$, $z\neq 0$ is

$$
w(z, K) = \max\{zx - zy : x, y \in K\},\
$$

and the *lattice width* of K is, by definition,

$$
w(K) = \min\{w(z, K) : z \in \mathbb{Z}^2, z \neq 0\}.
$$

Now let $[-a, a]$ be the intersection of C with the x axis. We may further assume that the tangent line to C at $(a,0)$ has slope ≥ 1 . A simple computation, (using the fact that the width of C in direction $(1,0)$ and $(1,-1)$ is at least 2b) shows that $2a \geq b$. We fix C in this standard position. We record the following inequalities:

$$
2a \ge b
$$
, $2ab \le$ Area $C \le 4ab$.

Remark 2. From now on we may assume $b \geq 2$ since for $b=1$, according to Claim 2, the minimal C is (with $n = 2k$)

conv
$$
\{\pm (0, 1), \pm (1, 1), \pm (2, 1), \ldots, \pm (k-2, 1), \pm (1, 0)\}
$$

which gives $\lim \frac{A(C)}{n^3} = \frac{1}{48}$, the example found in [\[8\]](#page-14-0).

When $C \in \mathcal{C}$ is a circle with $|C \cap \mathbf{P}| = n$, its radius, and then $A(C)$ are estimated easily showing $\lim_{n \to 3} \frac{A(C)}{n^3} = \frac{1}{54}$. This is the estimate given in the introduction.

Proof of [Claim 1](#page-1-0). Let $Q \in \mathcal{P}_n$ with vertices v_1, v_2, \ldots, v_{2k} $(n=2k)$ in this order. The diagonal $[v_i, v_{i+k}]$ cuts Q into two parts. Reflecting the part with smaller (or equal) area to the point $(v_i+v_{i+k})/2$ produces a lattice polygon with area \leq Area Q. So it is enough to show that, for some $i \in \{1, \ldots, k\}$, the reflected n-gon is convex. It is certainly convex if there are parallel tangent lines to Q at v_i and v_{i+k} .

If there are no such tangents then the lines of the edges incident to v_i intersect the ones incident to v_{i+k} on the same side of the line $v_i v_{i+k}$, on the left side, say. Then the lines of the edges, incident to v_{i+k} intersect the ones incident to v_{i+k+1} on the left side of the line $v_{i+1}v_{i+k+1}$, again. Starting with $i=1$ a contradiction is reached at $i=k+1$. П

We prove [Claim 2](#page-2-0) in stronger form:

Claim 2'. Assume that $x_1, \ldots, x_k \in \mathbb{R}^2$, and no two of them collinear. If $x \in \text{conv}\{\pm x_1,\ldots,\pm x_k\}$ and $x \neq \pm x_i$ ($\forall i$), then there is a *j* such that replacing x^j *by* x *gives a zonotope with smaller area.*

Proof. Assume first that x is on the boundary of conv $\{\pm x_1, \ldots, \pm x_k\}$. Then $x = (1 - u)x_s + ux_t$ for some $0 < u < 1$. We may also assume that $\sum_{i=1}^k |\det(x_i, x_s)| \geq \sum_{i=1}^k |\det(x_i, x_t)|$. Let $y_s = x$ and $y_i = x_i$ if $i \neq s$. Then

$$
\sum_{i=1}^{k} |\det(y_i, y_s)| = \sum_{i \neq s} |\det(x_i, x)| < \sum_{i=1}^{k} |\det(x_i, x)|
$$

\n
$$
= \sum_{i=1}^{k} |\det(x_i, (1-u)x_s + ux_t)|
$$

\n
$$
= \sum_{i=1}^{k} |(1-u) \det(x_i, x_s) + u \det(x_i, x_t)|
$$

\n
$$
\leq (1-u) \sum_{i=1}^{k} |\det(x_i, x_s)| + u \sum_{i=1}^{k} |\det(x_i, x_t)|
$$

\n
$$
\leq (1-u) \sum_{i=1}^{k} |\det(x_i, x_s)| + u \sum_{i=1}^{k} |\det(x_i, x_s)|
$$

\n
$$
= \sum_{i=1}^{k} |\det(x_i, x_s)|.
$$

Thus, replacing x_s by x makes the area smaller.

If x is in the interior of conv $\{\pm x_1,\ldots,\pm x_k\}$, then λx is on the boundary of this set with a unique $\lambda > 1$ (apart from the trivial case $x = 0$). The

previous argument shows that replacing x_s by λx makes the area smaller, and consequently, replacing x_s by x makes it smaller, too.

In the next two sections we approximate $|C \cap P|$ and $A(C)$ using that the density of **P** in \mathbb{Z}^2 is $6/\pi^2$ (cf. [\[5\]](#page-14-0)). We need to measure approximation by a quantity invariant under lattice preserving linear transformations. This is going to be the lattice width $2b = 2b(C)$.

3. Approximating *|C ∩***P***|*

Lemma 1.

$$
|C \cap \mathbf{P}| - \frac{6}{\pi^2} \text{Area } C \Big| \ll \text{Area } C \cdot \frac{\log b}{b}.
$$

Here and in what follows we use Vinogradov's \ll notation. Thus $f(n) \ll$ $g(n)$ means that $f(n) \leq Dg(n)$ with some universal constant D.

Proof. The proof is standard and uses the Möbius function $\mu(d)$ see [[5\]](#page-14-0). Set

$$
C^+ = C \cap \{(x, y) \in \mathbf{R}^2 : y > 0\}.
$$

Clearly, $|C \cap \mathbf{P}| = 2 + 2|C^+ \cap \mathbf{P}|$ and

 $\overline{}$ $\overline{}$ $\begin{array}{c} \hline \end{array}$

$$
|C^+\cap \mathbf{P}|=\sum_{(u,v)\in C^+\cap \mathbf{Z}^2}\sum_{\substack{d|u\\d|v}}\mu(d)=\sum_{d=1}^\infty \mu(d)\sum_{\substack{(u,v)\in C^+\cap \mathbf{Z}^2\\d|u,d|v}}1=\sum_{d=1}^b \mu(d)\left|\frac{1}{d}C^+\cap \mathbf{Z}^2\right|.
$$

Claim 3.

$$
\left| \left| \frac{1}{d} C^+ \cap \mathbf{Z}^2 \right| - \frac{1}{d^2} \text{Area } C^+ \right| \le \frac{12a}{d}.
$$

Proof. It suffices to show this for $d = 1$. Let $Q(z)$ denote the unit square centered at $z \in \mathbb{Z}^2$. Call $z \in \mathbb{Z}^2$ inside if $Q(z) \subset C^+$, boundary if $z \in C^+$ but $Q(z) \not\subset C^+$, and *outside* if $z \notin C^+$ and $Q(z) \cap \text{int } C^+ \neq \emptyset$. (Note that we will use the same inside, boundary, and outside squares $Q(z)$ in the next section.) Clearly

$$
|C^+ \cap \mathbf{Z}^2| = |\{z \in \mathbf{Z}^2 : \text{inside}\}| + |\{z \in \mathbf{Z}^2 : \text{boundary}\}|
$$

= Area C⁺ + $\sum_{z \text{ boundary}}$ Area (Q(z) \ \ C⁺) - $\sum_{z \text{ outside}}$ Area (Q(z) \cap C⁺),

and the number of boundary and outside $z \in \mathbb{Z}^2$ is at most the perimeter of the smallest aligned box containing C^+ , which is $2b+2(2a+b)\leq 12a$.

With [Claim 3](#page-4-0) we have

$$
\left| \sum_{d=1}^{b} \mu(d) \left(\left| \frac{1}{d} C^{+} \cap \mathbf{Z}^{2} \right| - \frac{1}{d^{2}} \text{Area} C^{+} \right) \right| \leq \sum_{d=1}^{b} \left| \left| \frac{1}{d} C^{+} \cap \mathbf{Z}^{2} \right| - \frac{1}{d^{2}} \text{Area} C^{+} \right|
$$

$$
\leq \sum_{d=1}^{b} \frac{12a}{d} \leq 12a(1 + \log b).
$$

Thus

$$
\left| |C^+ \cap \mathbf{P}| - \sum_{d=1}^b \frac{\mu(d)}{d^2} \text{Area } C^+ \right| \le 12a(1 + \log b).
$$

Note that
$$
\left| \sum_{d=1}^{b} \frac{\mu(d)}{d^2} - \frac{6}{\pi^2} \right| \le \sum_{d=b+1}^{\infty} \frac{1}{d^2} < \frac{1}{b}.
$$
 Then

$$
\left| |C \cap \mathbf{P}| - \frac{6}{\pi^2} \text{Area } C \right| \le 2 + \frac{1}{b} \text{Area } C + 24a(1 + \log b)
$$

$$
\le \text{Area } C \left(\frac{2}{2ab} + \frac{1}{b} + \frac{12(1 + \log b)}{b} \right)
$$

$$
\ll \text{Area } C \cdot \frac{\log b}{b}.
$$

This completes the proof of [Lemma 1](#page-4-0).

4. Approximating $A(C)$

 \Box

Lemma 2.

$$
\left| \sum_{u \in C^+ \cap \mathbf{P}} \sum_{v \in C^+ \cap \mathbf{P}} |\det(u, v)| - \left(\frac{6}{\pi^2}\right)^2 \int_{C^+} \int_{C^+} |\det(x, y)| dx dy \right| \ll (\text{Area } C^+)^3 \frac{\log b}{b}.
$$

Proof. It is very simple to see that

$$
\det(u, v) = \int_{x \in Q(u)} \int_{y \in Q(v)} \det(x, y) dx dy.
$$

Then this holds for $|\det(u,v)|$ with $|\det(x,y)|$ as the integrand if $\det(x,y)$ has constant sign on $Q(u) \times Q(v)$. This happens if $Q(u)$ and $Q(v)$ are separated by a line going through the origin. In case they are not separated, there are $\xi, \eta \in \mathbf{R}^2$ with $\|\xi\|_{\text{max}}, \|\eta\|_{\text{max}} \leq \frac{1}{2}$ such that

$$
0 = \det(u + \xi, v + \eta) = (u_1 + \xi_1)(v_2 + \eta_2) - (u_2 + \xi_2)(v_1 + \eta_1).
$$

This shows that

$$
\det(u, v) = u_1v_2 - u_2v_1 = -u_1\eta_2 - \xi_1v_2 - \xi_1\eta_2 + u_2\eta_1 + v_1\xi_2 + \xi_2\eta_1
$$

implying $|\det(u,v)| \leq \frac{1}{2}(|u_1| + |u_2| + |v_1| + |v_2| + 1) \leq \frac{1}{2}(2a + 2b + 1) \leq 4a$ if $u, v \in \mathbb{Z}^2 - \{0\}.$

Similarly, if $Q(u)$ and $Q(v)$ are not separated, then for all $(x,y) \in Q(u) \times$ $Q(v)$ (with $u, v \in \mathbb{Z}^2 - \{0\}$ again)

$$
|\det(x, y)| \le 8a.
$$

We start estimating $\sum \sum |\det(u,v)|$ via

$$
\sum_{u \in C^+ \cap \mathbf{P}} \sum_{v \in C^+ \cap \mathbf{P}} |\det(u, v)|
$$
\n
$$
= \sum_{u \in C^+ \cap \mathbf{Z}^2} \sum_{v \in C^+ \cap \mathbf{Z}^2} |\det(u, v)| \sum_{s|u_1, s|u_2} \mu(s) \sum_{t|v_1, t|v_2} \mu(t)
$$
\n
$$
= \sum_{s=1}^{\infty} \sum_{t=1}^{\infty} \mu(s) \mu(t) \sum_{u \in C^+ \cap \mathbf{Z}^2} \sum_{v \in C^+ \cap \mathbf{Z}^2} |\det(u, v)|
$$
\n
$$
= \sum_{s=1}^{b} \sum_{t=1}^{b} s\mu(s) t\mu(t) \sum_{u \in \frac{1}{s}C^+ \cap \mathbf{Z}^2} \sum_{v \in \frac{1}{t}C^+ \cap \mathbf{Z}^2} |\det(u, v)|
$$
\n
$$
= \sum_{s=1}^{\infty} (1) - \sum_{s=1}^{\infty} (2) + \sum_{s=1}^{\infty} (3)
$$

where

$$
\sum(1) = \sum_{s} \sum_{t} s\mu(s)t\mu(t) \sum_{u \in \frac{1}{s}C^+\cap \mathbf{Z}^2} \sum_{v \in \frac{1}{t}C^+\cap \mathbf{Z}^2} \int_{Q(u)} \int_{Q(v)} |\det(x, y)| dx dy,
$$

 $\sum(2)$ is the same as $\sum(1)$ but for non-separated $Q(u),Q(v)$, and

$$
\sum(3) = \sum_{s} \sum_{t} s\mu(s)t\mu(t) \sum_{u \in \frac{1}{s}C^+\cap \mathbf{Z}^2} \sum_{v \in \frac{1}{t}C^+\cap \mathbf{Z}^2} |\det(u,v)| dx dy,
$$

again for non-separated $Q(u), Q(v)$. For fixed s and t, the number, $N(s,t)$, of non-separated pairs $Q(u)$, $Q(v)$ with $u \in \frac{1}{s}C^+ \cap \mathbb{Z}^2$ and $v \in \frac{1}{t}C^+ \cap \mathbb{Z}^2$ can be estimated generously via [Claim 3](#page-4-0):

$$
N(s,t) \le \left(\text{Area} \frac{1}{s}C^+ + \frac{10a}{s}\right) \left(\text{Area} \frac{1}{t}C^+ + \frac{10a}{t}\right)
$$

$$
\ll (\text{Area} C^+)^2 \frac{1}{s^2 t^2}.
$$

In $\sum(3)$, $|\det(u,v)| \ll \frac{a}{s} + \frac{a}{t}$, and in $\sum(2)$ the integrand $|\det(x,y)| \ll \frac{a}{s} + \frac{a}{t}$ as well. Consequently

$$
\left|\sum(2)\right|, \left|\sum(3)\right| \ll \sum_{s=1}^{b} \sum_{t=1}^{b} st \left(\text{Area } C^+\right)^2 \frac{1}{s^2 t^2} \left(\frac{1}{s} + \frac{1}{t}\right) a
$$

$$
\ll (\text{Area } C^+)^3 \frac{\log b}{b}.
$$

Now we turn to $\sum(1)$. Define $R(s) = \bigcup_{u \text{ boundary}} (Q(u) \setminus \frac{1}{s}C^+)$ and $T(s)$ $\bigcup_{u \text{ outside}} (Q(u) \cap \frac{1}{s}C^+)$. We have to integrate over

$$
\left[\frac{1}{s}C^+ \cup R(s) \setminus T(s)\right] \times \left[\frac{1}{t}C^+ \cup R(t) \setminus T(t)\right].
$$

The main term comes from integrating over $\frac{1}{s}C^+ \times \frac{1}{t}C^+$. We are going to estimate the remaining 8 integrals.

It is readily seen that for $x, y \in C^+ | \det(x, y)| \leq A$ rea C^+ . We need a slight strengthening of this (whose simple proof is omitted).

Claim 4. *When* $x \in R(s) \cup T(s)$ *and* $y \in R(t) \cup T(t)$ *and* $s, t ≤ b$ *, then*

$$
|\det(x, y)| \ll \frac{\text{Area } C^+}{st}.
$$

Using Claim 4

$$
\int_{\frac{1}{s}C^+} \int_{R(t)} |\det(x, y)| dx dy \ll \frac{\text{Area } C^+}{st} \int_{\frac{1}{s}C^+} dx \int_{R(t)} dy
$$

$$
\ll \frac{\text{Area } C^+}{st} \frac{1}{s^2} \text{Area } C^+ \frac{a}{t} \ll \frac{(\text{Area } C^+)^3}{b} \frac{1}{s^3 t^2}.
$$

So the sum of these terms multiplied by st is

$$
\ll \sum_{s=1}^{b} \sum_{t=1}^{b} st \frac{(\text{Area } C^+)^3}{b} \frac{1}{s^3 t^2} \ll (\text{Area } C^+)^3 \frac{\log b}{b}.
$$

The same applies to the integral over $\frac{1}{s}C^+ \times T(t)$ and when t and s are interchanged. Similarly

$$
\int_{T(s)} \int_{T(t)} |\det(x, y)| dx dy \ll \frac{\text{Area } C^+}{st} \frac{a}{s} \frac{a}{t} \ll \frac{(\text{Area } C^+)^3}{b^2} \frac{1}{s^2} \frac{1}{t^2},
$$

and the same works for the remaining three integrals. Thus we have

$$
\left| \sum_{u \in C^+ \cap \mathbf{P}} \sum_{v \in C^+ \cap \mathbf{P}} |\det(u, v)| - \sum_{s=1}^b \sum_{t=1}^b s\mu(s) t\mu(t) \int_{\frac{1}{s}C^+} \int_{\frac{1}{t}C^+} |\det(x, y)| dx dy \right|
$$

$$
\ll (\text{Area } C^+)^3 \left(\frac{\log b}{b} + \frac{\log^2 b}{b^2} \right) \ll (\text{Area } C^+)^3 \frac{\log b}{b}.
$$

Here

$$
\sum_{s=1}^{b} \sum_{t=1}^{b} s\mu(s)t\mu(t) \int_{\frac{1}{s}C^{+}} \int_{\frac{1}{t}C^{+}} |\det(x,y)| dx dy
$$

=
$$
\sum_{s=1}^{b} \sum_{t=1}^{b} \frac{\mu(s)}{s^{2}} \frac{\mu(t)}{t^{2}} \int_{C^{+}} \int_{C^{+}} |\det(x,y)| dx dy
$$

=
$$
\left(\frac{6}{\pi^{2}} - \sum_{s=b+1}^{\infty} \frac{\mu(s)}{s^{2}}\right) \left(\frac{6}{\pi^{2}} - \sum_{t=b+1}^{\infty} \frac{\mu(t)}{t^{2}}\right) \int_{C^{+}} \int_{C^{+}} |\det(x,y)| dx dy.
$$

By [Claim 4](#page-7-0) $\int_{C^+} \int_{C^+} |\det(x,y)| dx dy \ll (\text{Area } C^+)^3$. Thus

$$
\left| \sum_{s=1}^{b} \sum_{t=1}^{b} s\mu(s) t\mu(t) \int_{\frac{1}{s}C^{+}} \int_{\frac{1}{t}C^{+}} |\det(x, y)| dx dy - \left(\frac{6}{\pi^{2}}\right)^{2} \int_{C^{+}} \int_{C^{+}} |\det(x, y)| dx dy \right| \ll (\text{Area } C^{+})^{3} \frac{1}{b}
$$

finishing the proof of [Lemma 2](#page-5-0).

5. Symmetrization

Theorem 2. Assume $K \in \mathcal{C}$, and $B \in \mathcal{C}$ is a disk with Area $K = \text{Area } B$. *Then*

$$
\int_{K} \int_{K} |\det(x, y)| dx dy \ge \int_{B} \int_{B} |\det(x, y)| dx dy.
$$

Equality holds iff K *is an ellipsoid.*

This theorem is known as Busemann's random simplex inequality [[4](#page-14-0)]. The proof goes by standard symmetrization (see e.g. [\[4](#page-14-0)] or [\[11](#page-14-0)]), so we only give a sketch. Let K^* be the symmetral of K with respect to a line l passing through O. We may assume, without loss of generality, that l is the x axis. To prove the theorem, it suffices to show the following:

Ш

Claim 5.

$$
\int_K \int_K |\det(x, y)| dx dy \ge \int_{K^*} \int_{K^*} |\det(x, y)| dx dy.
$$

Proof. Write $x = (x_1, x_2)$ and $y = (y_1, y_2)$. Fix $x_1 \in \mathbb{R}$ and define $I(x_1) =$ ${x_2 \in \mathbf{R}: (x_1, x_2) \in K}$ which is clearly an interval, $I(x_1) = [A, B]$, say. Then ${x_2 \in \mathbf{R}: (x_1, x_2) \in K^*}$ = [-(B - A)/2, (B - A)/2] is an interval again which we denote by $I^*(x_1)$. Similarly, for fixed $y_1, \{y_2 : (y_1, y_2) \in K\} = I(y_1)$ is an interval. Now the part of the integral $\int_K \int_K |\det(x,y)| dx dy$ with x_1 and y_1 fixed and the same part of $\int_{K^*} \int_{K^*} |\det(x,y)| dx dy$ can be compared easily. First, $det(x,y)=x_1y_2-x_2y_1$, and

$$
\int_{I(x_1)} \int_{I(y_1)} |x_1y_2 - x_2y_1| \, dx_2 \, dy_2 \le \int_{I^*(x_1)} \int_{I^*(y_1)} |x_1y_2 - x_2y_1| \, dx_2 \, dy_2.
$$

This is true since the integrand is the absolute value of a linear function on the rectangle $(x_2,y_2) \in I(x_1) \times I(y_1)$ which is clearly the smallest when the linear function is 0 at the center of the rectangle. This is the case exactly for the symmetral. п

If B is a disk centered at the origin, then

$$
\int_B \int_B |\det(x, y)| dx dy = \frac{8}{9\pi^2} (\text{Area } B)^3.
$$

Thus [Lemmas 1](#page-4-0) [and 2](#page-5-0), and [Theorem 2](#page-8-0) give

Corollary 1. *If* $C \in \mathcal{C}$ *with* $|C \cap \mathbf{P}| = n$ *, then*

$$
A(C) \ge \left(\frac{1}{54} - D\frac{\log b}{b}\right) n^3
$$

where D *is a universal constant.*

Remark 3. It turns out that one can take $D = 5000$ here when working with explicit constants instead of \ll .

6. The value of $\lim_{n \to \infty} A(n)/n^3$

Set

$$
f(z_1, ..., z_b) =
$$

= $\frac{2}{3} \sum_{i=1}^b \left(2 \frac{\phi^2(i)}{i} + \frac{\phi(i)}{i^2} \left(\sum_{j=1}^{i-1} j\phi(j) \right) \right) z_i^3 + 2 \sum_{i=1}^b \phi(i) z_i \left(\sum_{j=1}^{i-1} \frac{\phi(j)}{j} z_j^2 \right).$

We say that z_1, \ldots, z_b is special if the z_i are decreasing, $z_b \geq 0$ and they are convex, i.e., they satisfy $2z_i \geq z_{i-1} + z_{i+1}$ for $i = 2, \ldots, b-1$. Define the following minimization problem:

minimize
$$
f(z_1,..., z_b)
$$
 subject to $4 \sum_{i=1}^{b} \frac{\phi(i)}{i} z_i = 1, z_1,..., z_b$ is special.

The minimum, which clearly exists, will be denoted by $M(b)$.

Theorem 3. $\lim_{h \to 0} A(n)/n^3 = \min_{b \leq 10^{10}} M(b)$.

Before the proof we give the following construction. Assume $b > 1$, and x_1,\ldots,x_b is special with $x_1>0$. Define

$$
K = \text{conv}\{(\pm x_i, \pm i) \in \mathbf{R}^2 : i = 1, ..., b\}.
$$

K is a convex set which is symmetric with respect to both axes. Define the 2 by 2 diagonal matrix H_n , with diagonal elements λ_n and 1, that satisfies $|\mathbf{P} \cap H_n K| = n$. (There might be a little ambiguity in this definition since several, but at most 4b, elements may appear on the boundary of H_nK . Resolve it by considering some of these points as belonging, while some others as not belonging, to H_nK .) Setting $K_n = H_nK$ we see that $|\mathbf{P} \cap K_n| = n$.

Define $I(e, f; i) = \{(x, i) \in \mathbb{Z}^2 : e \leq x < f\}$. It is clear that the density of **P** on the line $y=i$ is $\phi(i)/i$, and there are exactly $\phi(i)$ primitive points on an interval of the form $I(s_i,(s+1)i;i)$. Write $I(i,s)$ for this interval. Now

$$
\left| n - 4 \sum_{i=1}^{b} \frac{\phi(i)}{i} \lambda_n x_i \right| \le 4 \sum_{1}^{b} i \le 4b^2,
$$

since, for each $i>0$, the error term comes from the two subintervals $I_{left}(i)$ and $I_{right}(i)$ of $I(-\lambda_n x_i, \lambda_n x_i; i)$ that remain after deleting all $I(i,s)$ contained in it. A similar argument gives the following claim.

Claim 6.

$$
A(K_n) = \lambda_n^3 f(x_1, \dots, x_b) + O(\lambda_n^2),
$$

where the implied constant depends only on b*.*

Proof. We only give a sketch. The basic observation is that $\sum |\det(u,v)|$ over $(u, v) \in (I(i, s) \cap \mathbf{P}) \times (I(j, t) \cap \mathbf{P})$ is the same as $\phi(i)\phi(j)/(ij)$ times the same sum over $(u, v) \in I(i, s) \times I(j, t)$, provided det (u, v) does not change sign on the box $I(i,s) \times I(j,t)$. The error terms come from two sources: First, from boxes where sign change occurs, but there are few of those, and there $|\det(u,v)| \leq ij$. Secondly, when $u \in I_{left}(i)$ or $I_{right}(i)$, and similarly for v. But these intervals are short, with $|\det(u,v)|$ at most $4b\lambda_n$ (cf. [Claim 4\)](#page-7-0). The statement follows by summing $\phi(i)\phi(j)|\det(u,v)|/(ij)$ over all $(u,v) \in$ $(K_n \cap \mathbb{Z}^2) \times (K_n \cap \mathbb{Z}^2).$ п

So this construction satisfies $|\mathbf{P}\cap K_n|=n$ and

$$
\lim \frac{A(K_n)}{n^3} = f(x_1, \dots, x_b) \left(4 \sum_{i=1}^b \frac{\phi(i)}{i} x_i \right)^{-3}.
$$

Proof of [Theorem 1.](#page-0-0) Let C_n be the solution of the extremal problem $\text{Min}(n)$ from [Section 2.](#page-1-0) Let n_j be a sequence along which $\text{Min}(n_j)$ tends to $M = \liminf \text{Min}(n)$. If $b(C_n) \to \infty$ along a subsequence of n_j , then, according to [Corollary 1](#page-9-0)

$$
\lim \frac{A(C_n)}{n^3} = \frac{1}{54}
$$

along the sequence n_i . But then this is true along the sequence n as well since, for the disk B_n containing n primitive points, $\lim_{n \to \infty} A(B_n)/n^3 = 1/54$.

Assume now that $b(C_n)$ is bounded along n_i . Then we can choose a subsequence of n_i along which $b(C_n) = b$ for some fixed $b > 1$. To save writing, we denote this subsequence by n_i as well.

Let C_n^* denote the symmetral of C_n with respect to the y axis. The discrete analogue of the proof of [Theorem 2](#page-8-0) shows (we omit the straightforward details) that, along the sequence n_i ,

$$
\lim \frac{A(C_n)}{n^3} = \lim \frac{A(C_n^*)}{n^3}.
$$

For $n=n_i$ and $i=0,1,\ldots,b$ define $x_i(n)\geq 0$ by

$$
[-x_i(n), x_i(n)] = C_n^* \cap \{(x, i) : x \in \mathbf{R}\}.
$$

Then with our previous notation $x_0(n) = a(C_n^*) = a(C_n)$, and $a(C_n) \to a(C_n)$ ∞ (along n_j) since Area $C_n \leq 4a(C_n)b$. Choose now a subsequence of n_j along which $x_i(n)/a(C_n)$ is convergent, with limit x_i , for $i=1,\ldots,b$. As the sequence x_1, \ldots, x_b is special and $x_1 > 0$, the above construction works and gives the sequence K_n . It is obvious that, along the last subsequence of n_j , $\lim_{n} A(K_n)/n^3 = \lim_{n} A(C_n^*)/n^3 = M$. Then

$$
\lim_{n \to \infty} \frac{A(K_n)}{n^3} = M
$$

as well.

П

Proof of [Theorem 3](#page-10-0). Given a special x_1, \ldots, x_b with $4\sum_{1}^{b}$ $\frac{\phi(i)}{i}x_i = 1$, we constructed a sequence of bodies K_n with $|K_n \cap \mathbf{P}| = n$ and $\lim_{n \to \infty} A(K_n)/n^3 =$ $f(x_1,...,x_b)$. So the value of the limit in [Theorem 1](#page-0-0) is less than 1/54 if we find a single special sequence on which f is smaller than $1/54$. Here is such a sequence with $b = 15$:

$$
\begin{array}{llll} x_1=0.03352589244, & x_2=0.03335447314, & x_3=0.03300806459, \\ x_4=0.03251038169, & x_5=0.03186074614, & x_6=0.03104245531, \\ x_7=0.03004944126, & x_8=0.02886386937, & x_9=0.02745127878, \\ x_{10}=0.02577867736, & x_{11}=0.02380388582, & x_{12}=0.02143223895, \\ x_{13}=0.01851220227, & x_{14}=0.01470243266, & x_{15}=0.008861427136, \end{array}
$$

giving

$$
f(x_1,\ldots,x_{15})=0.0185067386955\ldots
$$

which is smaller than $1/54 = 0.0185185185...$ by about 10^{-5} .

To see the bound $b \leq 10^{10}$, we use [Corollary 1:](#page-9-0) if $b > 10^{10}$, and $C \in \mathcal{C}$ with $|C \cap \mathbf{P}| = n$, then

$$
\frac{A(C)}{n^3} \ge \frac{1}{54} - 5000 \frac{\log 10^{10}}{10^{10}} > 0.018507.
$$

Remark 4. The 10^{10} bound can be improved to about 10^7 by proving a stability version of [Theorem 2](#page-8-0): informally stated, this would say that if the left hand side of the inequality in Theorem 2 is smaller than $1+\varepsilon$ times its right hand side, then K can be sandwiched between two ellipsoids E and $(1+c\sqrt{\varepsilon})E$.

7. Remarks on computation

It seems hard to solve the minimization problems explicitly. We used the following heuristics. Let x_1, \ldots, x_b be a solution to the problem. What can we expect about x_1, \ldots, x_b ? According to [Theorem 2](#page-8-0), it is reasonable to assume that $(x_1,1),\ldots,(x_b,b)$ are almost on the boundary of an ellipsoid. So let E_t be an ellipsoid whose half-axes are of length 1 and t with $b \le t \le b+1$, and define

$$
w(i,t) = \sqrt{1 - \left(\frac{i}{t}\right)^2} \quad (0 \le i \le t).
$$

Set $W = 4\sum_{i=1}^{b}$ $\frac{\phi(i)}{i}w(i,t)$ and $z_i = w(i,t)/W$ for $i = 1,...,b$. Then these z_1, \ldots, z_b form a good approximation for the solution of the minimization problem. In fact, this method gives, with $t = 15.56$ (then $b = 15$) the points z_1, \ldots, z_{15} , that already satisfy $f(z_1, \ldots, z_{15}) < 1/54$. The even better solution x_1, \ldots, x_{15} giving $f(x_1, \ldots, x_{15}) = 0.0185067...$ was found near the previous z_1, \ldots, z_{15} by solving the set of equations that constitute the necessary conditions for the extremum.

Using this heuristics we have checked the value of f near the ellipsoid E_t for $b = 1, \ldots, 100$ carefully (Figure 1) and for $b = 101, \ldots, 1000$ roughly (Figure 2). The computation suggests that the true limit of $A(n)/n^3$ is very close to the above value $0.0185067...$ If this is the case then the minimizer P_n is very close, but not equal to, the ellipsoid with equation $x^2/A^2 + y^2/B^2 = 1$ where $A = 0.003573n^2$ and $B = 1.656n$. But even if the minimum is different,

the shape of the minimizer P_n is oblong: it is c_1n wide c_2n^2 long in its lattice width direction.

References

- [1] G. E. Andrews: A lower bound for the volumes of strictly convex bodies with many boundary points, Trans. AMS **106** (1963), 270–279.
- [2] V. I. Arnol'd: Statistics of integral convex polytopes, Funk. Anal. Pril. **14** (1980), 1–3 (in Russian). English translation: Funct. Anal. Appl. **14** (1980), 79–84.
- [3] I. BARÁNY and J. PACH: On the number of convex lattice polygons, Comb. Prob. Comp. **1** (1992), 295–302.
- [4] H. Busemann: Volume in terms of concurrent cross-sections, Pacific J. Math. **3** (1953), 1–12.
- [5] G. H. HARDY and E. M. WRIGHT: An introduction to the theory of numbers, Clarendon Press, Oxford (1979).
- [6] R. KANNAN and L. LOVÁSZ: Covering minima and lattice-point-free convex bodies, Annals of Math. **128** (1988), 577–602.
- [7] S. B. Konyagin and K. A. Sevastyanov: Estimation of the number of vertices of a convex integral polyhedron in terms of its volume, Funk. Anal. Pril. **18** (1984), 13–15 (in Russian). English translation: Funct. Anal. Appl. **18** (1984), 11–13.
- [8] S. RABINOWITZ: $O(n^3)$ bounds for the area of a convex lattice *n*-gon. Geombinatorics **2** (1993), 85–88.
- [9] A. RÉNYI and R. SULANKE: Über die konvexe Hülle von n zufällig gewählten Punkten, Z. Wahrsch. Verw. Geb. **2** (1963), 75–84.
- [10] W. Schmidt: Integral points on surfaces and curves, Monatshefte Math. **99** (1985), 45–82.
- [11] R. Schneider: Convex bodies: the Brunn-Minkowski theory, Encyclopedia Math. Appl. vol 44, Cambridge University Press, Cambridge, 1993.

Imre Bárány

Rényi Institute of Mathematics Hungarian Academy of Sciences H-1364 Budapest, Pf. 127 Hungary barany@renyi.hu and Department of Mathematics University College London Gower Street London, WC1E 6BT UK

Norihide Tokushige

College of Education Ryukyu University Nishihara Okinawa, 903-0213 Japan hide@edu.u-ryukyu.ac.jp