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ABSTRACT
Uptake signal sequences are DNA motifs that promote DNA uptake by competent bacteria in the

family Pasteurellaceae and the genus Neisseria. The genomes of these bacteria contain many copies of
their canonical uptake sequence (often .100-fold overrepresentation), so the bias of the uptake
machinery causes cells to prefer DNA derived from close relatives over DNA from other sources.
However, the molecular and evolutionary forces responsible for the abundance of uptake sequences in
these genomes are not well understood, and their presence is not easily explained by any of the current
models of the evolution of competence. Here we describe use of a computer simulation model to
thoroughly evaluate the simplest explanation for uptake sequences, that they accumulate in genomes
by a form of molecular drive generated by biased DNA uptake and evolutionarily neutral (i.e.,
unselected) recombination. In parallel we used an unbiased search algorithm to characterize genomic
uptake sequences and DNA uptake assays to refine the Haemophilus influenzae uptake specificity. These
analyses showed that biased uptake and neutral recombination are sufficient to drive uptake sequences
to high densities, with the spacings, stabilities, and strong consensuses typical of uptake sequences in real
genomes. This result greatly simplifies testing of hypotheses about the benefits of DNA uptake, because it
explains how genomes could have passively accumulated sequences matching the bias of their uptake
machineries.

MANY bacteria are able to take up DNA fragments
from their environment, a genetically specified

trait called natural competence (Chen and Dubnau
2004; Johnsborg et al. 2007; Maughan et al. 2008).
Many other species have homologs of competence
genes, suggesting that although they are not competent
under laboratory conditions, they may be competent
under natural conditions (Claverys andMartin 2003;
Kovacs et al. 2009). Such a widespread trait must be
beneficial but the evolutionary function of DNA uptake
remains controversial. Cells can use the nucleotides
released by degradation of both incoming DNA and any
strands displaced by its recombination, thus reducing
demands on their nucleotide salvage and biosynthesis
pathways (Redfield 1993; Palchevskiy and Finkel
2009). Cells may also benefit if recombination of the
incoming DNA provides templates for DNA repair or
introduces beneficial mutations, but may suffer if re-

combination introduces damage or harmful mutations
(Redfield 1988; Michod et al. 2008).
Althoughmost bacteria that have been tested show no

obvious preferences for specific DNA sources or se-
quences, bacteria in the family Pasteurellaceae and the
genus Neisseria strongly prefer DNA fragments from
close relatives. Two factors are responsible: First, the
DNA uptake machineries of these bacteria are strongly
biased toward certain short DNA sequence motifs.
Second, the genomes of these bacteria contain hundreds
of occurrences of the preferred sequences. The Pasteur-
ellacean motif is called the uptake signal sequence
(USS); its Neisseria counterpart is called the DNA uptake
sequence (DUS). All Neisseria genomes contain the
same consensus DUS [core GCCGTCTGAA (Treangen
et al. 2008)], but divergence in the Pasteurellaceae has
produced two subclades, one of species sharing the
canonicalHaemophilus influenzae 9-bpUSS (Hin-USS core
AAGTGCGGT) and the other of species with a variant
USS that differs at three core positions (Apl-USS core:
ACAAGCGGT) and has a longer flanking consensus
(Redfield et al. 2006).Uptake sequencebiases are strong
but not absolute; for example, replacing the Hin-USS
with the Apl-USS reduces H. influenzae DNA uptake only
10-fold (Redfield et al. 2006) and DNA from Escherichia
coli is taken up in the absence of competingH. influenzae
DNA (Goodgal and Mitchell 1984).
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Most studies of the distribution and consensus of
uptake sequences in genomes have examined only
those occurrences that perfectly match the above core
DUS and USS sequences. Here we call these perfect
matches ‘‘core-consensus’’ (cc) uptake sequences. These
cc-uptake sequences occupy!1% of their genomes; they
are equally frequent in the plus and minus orientations
of the genome sequence but are underrepresented in
coding sequences, with the noncoding 14% and 20% of
their respective genomes containing 35% of cc-USSs and
65% of cc-DUSs (Smith et al. 1995). Although many of
these intergenic cc-DUSs and cc-USSs occur in inverted-
repeat pairs that function as terminators (Kingsford
et al. 2007), most uptake sequences are too far apart
or in genes or other locations where termination does
not occur. Within coding regions uptake sequences
occur more often in weakly conserved genes, in weakly
conserved parts of genes, and in reading frames that
encode common tripeptides (Findlay and Redfield
2009), all of which are consistent with selection acting
mainly to eliminate mutations that improve uptake
from genome regions constrained by coding or other
functions.

Analyses that focus on cc-uptake sequences effectively
treat uptake sequences as replicative elements (Smith
et al. 1995; Redfield et al. 2006; Ambur et al. 2007;
Treangen et al.2008).However,USS andDUSare known
to originate in situ by normal mutational processes,
mainly point mutations, and to spread between genomes
mainly by homologous recombination (Redfield et al.
2006; Treangen et al. 2008). As they are not replicating
elements, why are they up to 1000-fold more common in
their genomes than expected for unselected sequences
(e.g., H. influenzae, 1471 cc-USS vs. 8 expected by chance;
N. gonorrheae, 1892 cc-DUS vs. 2 expected by chance)?

The explanation for this abundance must lie with the
specificity of the DNA uptake system, because the strong
correspondence between the uptake bias and the
uptake sequences in the genome is far too improbable
to be a coincidence. However, uptake specificity is not
easily accommodated by either of the hypothesized
functions of DNA uptake. If bacteria take up DNA to
get benefits from homologous genetic recombination,
the combination of uptake bias and uptake sequences
might serve as a mate-choice adaptation that maximizes
these benefits by excluding foreign DNAs (Treangen
et al. 2008). Although this explanation is appealing, it
requires simultaneous evolution of bias in the uptake
machinery and of genomic sequences matching this
bias. Another problem is that the genomic sequences
can be ‘‘selected’’ only after the cell carrying them is
dead. On the other hand, if bacteria instead take up
DNA as a source of nutrients, all DNAs should be equally
useful, so uptake bias and uptake sequences would likely
reduce rather than increase this benefit. Although the
sequence bias could be explained as a consequence of
mechanistic constraints on DNA uptake, this would not

account for the high density of the preferred sequences
in the genome.

However, both hypotheses may be simplified by a
process called molecular drive, under which uptake
sequences would gradually accumulate over evolution-
ary time as a direct consequence of biased uptake and
recombination (Danner et al. 1980; Bakkali et al. 2004;
Bakkali 2007), without any need for natural selection.
This drive is proposed to work as follows: First, random
mutation continuously creates variation inDNA sequen-
ces that affects their probability of uptake, and random
cell death allows DNA fragments containing preferred
variants to be taken up by other cells. Second, repeated
recombination of such preferred DNA sequences with
their chromosomal homologs gradually increases their
abundance in the genomes of competent cells’ descend-
ants. Thus mutations that create matches to the bias of
the uptake machinery are horizontally transmitted to
other members of the same species more often than
other mutations. Because some recombination may be
inevitable even if DNA’s main benefit is nutritional,
molecular drive could account for uptake sequence
accumulation under both hypotheses, leaving only the
biased uptake process to be explained by natural selec-
tion for either genetic variation or nutrients.

Although drive is plausible, its ability to account for
the observed properties of genomic uptake sequences
has never been evaluated. To do this, we developed a
realistic computer simulation model that includes only
the processes thought to generate molecular drive.
Below we first use this model to identify the conditions
that determine whether uptake sequences will accumu-
late and then compare the properties of these simulated
uptake sequences to those of the uptake sequences in
theN. meningitidis andH. influenzae genomes. In parallel
we use unbiased motif searches to better characterize
genomic uptake sequences and DNA uptake assays to
refine the H. influenzae uptake specificity.

MATERIALS AND METHODS

The model: Our goal was to find out whether uptake
sequences resembling those in real genomes would evolve
when a genome was influenced only by mutation, biased DNA
uptake, and neutral recombination. The model, illustrated
schematically in Figure 1, thus was designed to simulate
evolution of uptake sequences in a single bacterial lineage
that is subject to millions of generations of random mutation
plus homologous recombination with DNA fragments derived
from close relatives. Uptake bias is simulated by preferentially
choosing the fragments that best match an uptake sequence
motif. Although real uptake biases are likely to have arisen
gradually over millions of years, for simplicity the model
assumes that DNA uptake has a strong sequence bias that
remains constant.

Each simulation run begins with one ‘‘focal’’ genome whose
sequence is either provided as an input file or created as a
random DNA sequence of specified length and base compo-
sition. The focal genome is then subject to many thousands of
cycles of mutation and recombination. Because real biological
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mutation rates are very low (!10"8–10"9), each cycle is best
considered as representing many generations of bacterial
evolution (see discussion). In each cycle, transformation
occurs when segments of the focal genome are replaced by
homologous DNA fragments derived from related genomes.
To accomplish this, candidate fragments are chosen randomly
from each cycle’s focal genome, mutated to simulate di-
vergence, and examined with a sliding window for the best
match to an uptake sequence motif specified by a position
frequency matrix. Each fragment’s score determines its prob-
ability of replacing the corresponding segment of the (now
also mutated) focal genome. The user specifies the mutation
rate of the focal genome, the mean divergence of the
fragments, and the parameters affecting recombination—the
number and length of DNA fragments recombined in each
cycle, the matrix that defines the sequence preference of the
uptake system, and how the matrix is used to score the
fragments. All steps are simulated stochastically, so each run
gives independent results.

The scoring matrices used are provided in Table 1. The
matrix stringencies are provided to facilitate comparisons
between them. The stringency of each matrix position is
calculated as the ratio of the mean of its three low values to its
highest value and the total stringency of each matrix as the

product or sum of the individual stringencies. Matrices A–C
specify the same generic uptake sequence (US) but with
different stringencies, whereas DUS and USS matrices are
derived from motif searches of the N. meningitidis and H.
influenzae genomes. For each run of the simulation, thematrix
is used both to score individual fragments in each cycle (to
calculate recombination probabilities) and to score the focal
genome (so the user can track the accumulation of uptake
sequences as the run progresses). For fragment scoring, the
score at each window position is either the product (stringent
bias, ‘‘multiplicative’’ runs) or the sum (relaxed bias, ‘‘additive’’
runs) of the individualmatrix-specified nucleotide preferences,
and the fragment score is the single best score. For genome
scoring, the score at each window position is always the product
of the individual matrix-specified nucleotide preferences, and
the genome score is the sum of the scores at all window
positions, standardized by genome length. As the knownuptake
systems have strong biases, we present data primarily from runs
using multiplicative scoring. To facilitate comparisons of
evolved genomes from runs scored with matrix B or C, the
final genomes were rescored using matrix A.

Simulation runs were typically continued until the genome
score reached an equilibrium where integration of preferred
uptake sequences by recombination was balanced by loss of
these sequences through random mutation. The number of
cycles needed to reach equilibrium depended on the param-
eter values and ranged from 5000 to 1,000,000 cycles. To
unambiguously identify these equilibria, pairs of runs with
identical parameters were initiated with focal genomes of
either (a) a random sequence or (b) a random sequence
seeded at random positions with five generic 10-bp uptake
sequences per kilobase. The convergent endpoints of such
pairs of runs were treated as equilibria (see Figure 2). For very
time-consuming runs (e.g., those with very low mutation or
recombination rates), random-sequence and seeded runs
were continued until their mean scores of all cycles were
within twofold of each other, and then the average of the two
runs was taken as the equilibrium.

Although equilibrium scores (per kilobase of sequence) did
not depend on genome length (see results), the equilibrium
scores of simulations with very short genomes showed sub-
stantial random fluctuations around the mean score, which
reduced the value of their fast run times. At the other extreme,
runs with biologically typical genome lengths ($1 Mb) had
stable equilibrium properties but took weeks or months to
reach equilibrium. As a compromise most simulations used
genome lengths of 20 or 200 kb; these runs typically took
several hours to several weeks to reach equilibrium. Themodel
was implemented in Perl and run on Macintosh computers
and the MOA server at Dalhousie University; the code is
available from the authors.
Sequence analysis methods: The H. influenzae Rd (NC000907)

and N. meningitidis MC58 (NC003112) genome sequences
were obtained from the J. Craig Venter Institute (http://www.
jcvi.org/). The Linux version of the Gibbs motif sampler
(Thompson et al. 2003, 2005) was run on the Westgrid com-
puter facility (www.westgrid.ca); the Mac version was run on
Mac desktops and laptops. To include uptake sequences in the
reverse orientation, reverse-complement sequences were con-
catenated to the forward strand sequence before the combined
sequences were searched for a singlemotif. A segmentationmask
was used as a prior for H. influenzae genome searches, to specify
internal spacing corresponding to that of knownUSSs. Themask
specified a 10-bpmotif followed by two 6-bpmotifs separated by 1
and 6 bp, as follows: 1111111111x111111-xxxx-
111111, where ‘‘1’s’’ specify positions whose consensus is
to be included in themotif, and ‘‘-’’ and ‘‘x’’ specify positions that
are optional or not included, respectively. Some searches of gene

Figure 1.—Schematic drawing of the computer simulation
model of molecular drive. Blue cells contain the evolving focal
genome, and gray cells are its relatives whose deaths provide
DNA fragments for uptake.
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TABLE 1

Position-weight matrices used in simulations

Position A T C G Stringencya

Matrix A (total multiplicative stringency 10"100; total additive stringency 0.1)
1 10 0.1 0.1 0.1 0.01
2 10 0.1 0.1 0.1 0.01
3 10 0.1 0.1 0.1 0.01
4 0.1 0.1 0.1 10 0.01
5 0.1 10 0.1 0.1 0.01
6 0.1 0.1 0.1 10 0.01
7 0.1 0.1 10 0.1 0.01
8 0.1 0.1 0.1 10 0.01
9 0.1 0.1 0.1 10 0.01
10 0.1 10 0.1 0.1 0.01

Matrix B (total multiplicative stringency 10"10)
1 1 0.1 0.1 0.1 0.1
2 1 0.1 0.1 0.1 0.1
3 1 0.1 0.1 0.1 0.1
4 0.1 0.1 0.1 1 0.1
5 0.1 1 0.1 0.1 0.1
6 0.1 0.1 0.1 1 0.1
7 0.1 0.1 1 0.1 0.1
8 0.1 0.1 0.1 1 0.1
9 0.1 0.1 0.1 1 0.1
10 0.1 1 0.1 0.1 0.1

Matrix C (total multiplicative stringency 1.05 3 10"4)
1 0.25 0.1 0.1 0.1 0.4
2 0.25 0.1 0.1 0.1 0.4
3 0.25 0.1 0.1 0.1 0.4
4 0.1 0.1 0.1 0.25 0.4
5 0.1 0.25 0.1 0.1 0.4
6 0.1 0.1 0.1 0.25 0.4
7 0.1 0.1 0.25 0.1 0.4
8 0.1 0.1 0.1 0.25 0.4
9 0.1 0.1 0.1 0.25 0.4

10 0.1 0.25 0.1 0.1 0.4

DUS matrix (total multiplicative stringency 3.2 3 10"20)
1 0.831 0.054 0.054 0.060 0.068
2 0.031 0.742 0.047 0.181 0.116
3 0.066 0.007 0.000 0.927 0.026
4 0.000 0.061 0.939 0.000 0.022
5 0.015 0.044 0.941 0.000 0.021
6 0.007 0.000 0.000 0.993 0.002
7 0.005 0.882 0.113 0.001 0.045
8 0.000 0.027 0.973 0.000 0.009
9 0.006 0.869 0.098 0.027 0.050

10 0.034 0.006 0.004 0.956 0.015
11 0.935 0.005 0.060 0.000 0.023
12 0.945 0.021 0.016 0.019 0.020

USS matrix (total multiplicative stringency 5.2 3 10"22)
1 0.727 0.113 0.093 0.067 0.125
2 0.915 0.04 0.019 0.025 0.031
3 0.912 0.04 0.025 0.023 0.032
4 0.068 0.039 0.023 0.87 0.050
5 0.077 0.863 0.033 0.026 0.053
6 0.044 0.039 0.018 0.898 0.037
7 0.031 0.035 0.915 0.019 0.031
8 0.046 0.033 0.022 0.899 0.037
9 0.045 0.033 0.024 0.898 0.038

(continued )
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and intergenic sequences were also initialized using a prior file
containing the base frequencies previously identified by a whole-
genome search.

Most whole-genome searches used as ‘‘expected’’ number of
occurrences 1.5 times the number of perfect matches to the
standard DUS or USS core sequence (10 or 9 bp, respectively).
The 1.5 value was arbitrarily chosen but should be conserva-
tive; some recent mutations will not yet have been subject to
drive, including those that improve or worsen uptake. Since
searches consistently returned substantially more than this
number, the occurrences were ranked by their assigned scores
and only the expected number were used to construct the
logos shown in Figure 6 and supporting information, Figure S1.
However, all of the identified occurrences were used for
covariation analysis with MatrixPlot (www.cbs.dtu.dk/services/
MatrixPlot) (Gorodkin et al. 1999), with the base composition
settings appropriate to the sequence being searched. The
random expectations for the spacing analyses in Figure 7 were
determined by analyzing the spacings of random positions in
10 genomes of the same sizes and uptake sequence densities
as the real N. meningitidis and H. influenzae genomes.

DNA uptake assays: DNA uptake was assayed in strain RR554,
aH. influenzae KW20 derivative carrying pHKrec (Barcak et al.
1989), with competent and noncompetentH. influenzae KW20
as controls. Competence genes in strain RR554 are constitu-
tively expressed due to overproduction of the positive regula-
tor Sxy from the plasmid (Williams et al. 1994). Cells were
cultured in brain–heart infusion supplemented with hemin
and NAD (sBHI) as described (Poje and Redfield 2003a).
RR554 and negative control KW20 cells were frozen on
reaching a density of 109 cfu/ml in sBHI. All cells were stored
as 1-ml aliquots frozen in 16%glycerol at"80". Competence of
each batch was confirmed by transforming thawed cells with
chromosomal DNA of the multiply antibiotic resistant MAP7
H. influenzae strain (Poje and Redfield 2003b) and testing for
novobiocin resistance.

Both strands of a 30-bp double-stranded DNA fragment
containing the most frequent base at each position of the
Smith et al. (1995) consensus were synthesized, annealed, and
cloned by blunt-end ligation into the SmaI site of plasmid
pGEM-7Zf(") (Promega, Madison, WI) to generate plasmid
pUSS-C. The same 30 bases in randomized order were
synthesized, annealed, and cloned to give the negative control
plasmid pUSS-R. Plasmids with mutant USS sequences were
then generated from pUSS-C by overlap extension site-

directed mutagenesis (Ho et al. 1989). Each mutagenized
PCR product, containing a USS variant plus 193 bp of flanking
plasmid sequence, was cloned into pCR2.1-TOPO (Invitrogen,
Carlsbad, CA). The inserts of pUSS-C and pUSS-R were
similarly amplified and subcloned, without mutagenesis. The
sequences of all inserts were verified by sequencing.

The 222-bp plasmid inserts were amplified by PCR, and
60 ng was internally labeled with [a-33P]dATP using the same
primers and the Klenow fragment of Escherichia coli DNA
polymerase I, in a reaction containing 62.5 mm d(CGT)TP,
8 mm forward and reverse primer, and 0.25 mm [a-33P]dATP.
Klenow (2 units) was added after a 3-min denaturation step at
94", and the reaction was incubated for 20 min at 37". To
ensure complete copying of the DNA the reaction was
continued for 30 min with additional dATP (60 mm). The
DNA was purified using Sigma (St. Louis) PCR clean-up
columns and eluted into 50 ml 10 mm Tris–HCl (pH 8.0) to a
final concentration of 5–10 ng/ml and a specific activity of
2–6 3 104 cpm/ng.

In each uptake assay, 1-ml aliquots of frozen cells were
thawed, pelleted by centrifugation at 16,0003 g for 2 min at
room temperature, and then resuspended by vortexing in
an equal volume of the competence-inductionmediumMIV
(Poje and Redfield 2003b). Aliquots of 0.5 ml were then
added to 10–20 ng of labeled DNA in 2-ml tubes prewarmed
to 37", and the contents briefly mixed by vortexing. Cells
and DNA were incubated for 15 min at 37" and then washed
three times by centrifugation as above, with each superna-
tant retained. The final cell pellet was resuspended in 100 ml
MIV, and the radioactivity (cpm) of each supernatant and
the pellet was measured. The fraction taken up was cal-
culated as the ratio of pellet activity to total activity (pellet
plus all supernatants). Uptake of each USS variant was
measured at least three times for competent KW20 and
strain RR554.

RESULTS

Effects of model parameters: To identify the funda-
mental factors affecting uptake sequence accumulation
the model was first run with a generic matrix that
specified a strong uptake bias. This matrix (matrix A)
specifies a 10-bp uptake sequence motif with each

TABLE 1

(Continued)

Position A T C G Stringencya

10 0.063 0.827 0.056 0.054 0.070
12 0.623 0.098 0.052 0.226 0.200
13 0.6 0.213 0.06 0.127 0.222
14 0.493 0.441 0.029 0.037 0.345
15 0.384 0.546 0.036 0.034 0.278
16 0.234 0.634 0.098 0.033 0.192
17 0.18 0.656 0.109 0.055 0.175
24 0.433 0.134 0.072 0.36 0.435
25 0.306 0.512 0.117 0.065 0.323
26 0.277 0.666 0.032 0.025 0.167
27 0.146 0.766 0.049 0.04 0.102
28 0.122 0.689 0.13 0.059 0.152
29 0.232 0.547 0.122 0.1 0.278

a Stringencies for individual matrix positions are calculated as the maximum value for that position divided by
the mean of the three other values.
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position’s preferred base making a 100-fold higher
contribution to the fragment’s uptake score than the
other three bases. Beginning with this strong bias
enabled us to investigate the other factors affecting
uptake sequence accumulation before examining the
effect of changing the bias. With this stringent matrix,
genome score was a good measure of the density of
perfectly matched uptake sequences. Although the
sequence this matrix specifies is a 10-bp version of the
cc-USS, it was always used with genome base composi-
tion set at 50% so this analysis applies equally to any 10-
bp uptake sequence.

Effect of mutation rate: We began with a systematic
analysis of 200-kb genomes evolving with mutation rates
between 2 3 10"4 and 5 3 10"6/bp per cycle. Although
the number of model cycles (and thus the computer
time) needed to reach equilibrium depended strongly
on the mutation rate, the genome score at the equilib-
rium did not. Figure 2 shows that all runs had equilib-
rium scores of !1.4 3 1010/kb (!1.4 uptake sequences
per kilobase). Finding that the equilibrium score was
independent of mutation rate allowed otherwise-slow
simulations of large genomes to be speeded up by using
high mutation rates, thus obtaining more stable esti-
mates of equilibrium genome properties without exces-
sive run times.

Effect of recombination parameters: The amount of
recombination each genome received in each simula-
tion cycle depended on both the number of fragments
that recombined with the genome and the lengths of
these fragments. Because little is known about the

recombination rates of real genomes, we examined
the effects of as wide a range of parameter values as
possible. Figure 3A shows the equilibrium genome
scores of a series of runs where the number of fragments
recombined was varied while fragment length was held
constant at 100 bp; between 0.0005 and 15 genome
equivalents were recombined per cycle. Equilibrium
score increased smoothly over a wide range, with an
!10-fold decrease in score for each 100-fold decrease in
recombination; i.e., uptake sequence accumulation is
only moderately sensitive to recombination rate. The
gradual leveling off seen for runs with very high levels of
recombination (right side of Figure 3A) is expected
because, when a position undergoes multiple recombi-
nation events in a single cycle of the model, only the last
recombination event determines the sequence used for
the next cycle. Figure 3B shows this ‘‘effective’’ re-
combination as a function of total recombination. At
the other end of the recombination scale (left side of
Figure 3A), when only a very small fraction of the
genome was replaced in each cycle (one 100-bp frag-
ment in a 200-kb genome), the equilibrium score was
still!100-fold higher than the typical scores of random-
sequence genomes (!3.8 3 106/kb). This suggests that
even very small amounts of recombination can have a
significant impact on genome evolution if DNA uptake
is biased. Because high-recombination fractions in-
creased run time more than effective recombination,
most simulations presented below recombined 0.5
genome equivalents in each cycle.

Fragment length: The default fragment size of 100 bp
was initially chosen to maximize simulation speed, but
Figure 3C shows that the length of the recombining
fragments had a large effect on uptake sequence
accumulation. In runs where fragment sizes were varied
but the total amount of recombination was held
constant at 0.5 genome equivalent (by covarying the
numbers of recombining fragments), the equilibrium
genome score decreased 30-fold in response to a 40-fold
increase in fragment size. This is an expected conse-
quence of choosing fragments by the score of their
single best uptake sequence, because when the recom-
bining fragments are longer, more of the fragment is
hitchhiking along with the selected US. The effect of
fragment length on the spacing of uptake sequences is
considered in a later section.

Fragment divergence: Most simulations used fragments
that had been mutated at rates 100-fold higher than the
genomic mutation rate, to simulate their sharing a
common ancestor with the focal genome an average
of 50 cycles ago. This divergence is not expected to limit
the efficiency of recombination; with genomicmutation
rates of 10"4 or 10"5 such fragments would differ from
the focal genome at no more than 1% of positions.
Reducing the fragment divergence to 10-fold (5 cycles)
reduced the equilibrium genome score by only about
half, and eliminating it entirely reduced it only slightly

Figure 2.—Effect of mutation rate on uptake sequence ac-
cumulation. All runs had 200-kb genomes and used matrix A
to choose 1000 3 100-bp fragments (100-fold divergent) for
recombination in each cycle. Solid lines, runs initiated with
random-sequence genomes (mean score 2.8 3 107); shaded
lines, runs initiated with random-sequence genomes seeded
with five USs per kilobase. Mutation rates are indicated above
each upper line. Inset, expansion of the boxed area of the
main graph.
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more. This effect was independent of the amount of
recombination over a 100-fold range.

Preference strength: We tested the effect of scoring
fragments with a less stringent matrix, matrix B (Table
1). In this matrix, each position’s preferred base is
favored over the three other bases by only 10-fold
(rather than by 100-fold as in matrix A). After the final
genome scores from thematrix B runs were recalculated
using matrix A (to allow comparison between final
genome scores), use of the weaker matrix was seen to
have caused only a 33% reduction in the final score per
kilobase (1.0 3 1010 vs. 1.5 3 1010, both averages of two
replicate 200-kb runs). Runs with the even-weaker
matrix C (2.5-fold base preference) gave much lower
equilibrium scores (after rescoring with matrix A), only
slightly higher than those of random sequences.

Additive and threshold scoring of fragments: In the
simulations described above, the matrices were used
multiplicatively to score fragments for recombination;
that is, at each sliding-window position the scores for

each of the 10 base positions were multiplied to give the
score for that 10-bp sequence. However, the use of
multiplication was quite arbitrary, as nothing is known
about how the individual uptake sequence nucleotides
interact in real bacteria to determine the probability
that a fragment will be taken up. To examine alter-
natives we first ran similar simulations using additive
scoring of fragments, where the scores for each of the 10
bases in the sliding window were instead added to give
the score for that 10-bp sequence. (Note that the
resulting genomes were still scored multiplicatively, so
the outcomes can be directly compared to previous
results.) In these runs uptake sequences did not
accumulate even with matrix A (shaded line in Figure
4). We then tested a threshold scoring system, where the
only fragments taken up were those that contained
sequences matching at least a specified number of bases
in the 10-bp US. The runs with a threshold of 10
required that each fragment contain a single perfectly
matched uptake sequence. The solid lines in Figure 4
show that runs with thresholds of #6 gave no uptake
sequence accumulation, but that higher thresholds
were increasingly effective.
Properties of evolved genomes at equilibrium:

Proportions of perfect and mismatched sequences: One
notable attribute of the core-consensus uptake sequen-
ces previously examined in real genomes is the paucity
of occurrences with one or two positions that do not
match the consensus; for example, there are almost
twice as many perfectly matched cc-USS sequences as
singly mismatched ones, even though random muta-
tions are 27 times more likely to convert the former to
the latter than vice versa (Smith et al. 1995, 1999).
Similar proportions were seen in the genomes evolved
under matrix A (details in Table S1). The runs shown in
Figure 2 gave equilibrium genomes that had, on
average, 1.37 perfectly matched uptake sequences per
kilobase, 0.14 singly mismatched ones, and 1.50 doubly
mismatched ones (see Table S1). Genomes evolved with
matrix B had only slightly more perfect consensus
uptake sequences than singly mismatched ones, and
those evolved with matrix C had only about one-quarter
asmany. Thus strong uptake biases could readily explain
the proportions observed in real genomes.
Stability of uptake sequences positions: When real ge-

nome sequences of related species are aligned, many of
their uptake sequences are found in homologous
positions (Bakkali et al. 2004; Treangen et al. 2008).
This could be because individual uptake sequences are
stabilized over hundreds of millions of years by func-
tional constraints that limit mutational degeneration of
existing uptake sequences and fixation of new ones, or it
could be because their mode of evolutionmakes uptake
sequences intrinsically stable. We examined the stability
of the simulated uptake sequences in a variety of
equilibrium genomes. With 100-bp fragments and a
mutation rate of 10"5, 81% of the perfect uptake

Figure 3.—Recombination effects. All runs had mutation
rates of 1 3 10"4 and used matrix A to choose fragments
(100-fold divergent) for recombination in each cycle. (A) Ef-
fect of amount of recombination on uptake sequence accu-
mulation. Fragments were 100 bp, and genome size and
number of recombining fragments were jointly varied to give
the desired genome equivalents. (B) Effective recombination
as a function of genome equivalents recombined. (C) Equilib-
rium genome score as a function of the size of the recombin-
ing fragments. The total amount of recombination was held
constant at 50% by adjustments to the number of fragments
recombined in each cycle.
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sequences present after 40,000 cycles of evolution were
still present after 60,000 additional cycles. The other
uptake sequences had been lost and replaced by ones at
new positions. Stability was slightly lower for runs using
longer fragments: 75%with 200-bp fragments, 60%with
500-bp fragments, and 59% with 1000-bp fragments,
presumably because of increased recombination of
unselected flanking sequences, and was slightly higher
when the positions of perfect and singly mismatched
uptake sequences were combined. When the mutation
rate was raised to 10"4, uptake sequences weremuch less
stable, with only 8% of sites present at 40,000 cycles still
present at 100,000 cycles. Because real mutation rates
are much lower than those used here, these results
suggest that simple molecular drive may be sufficient to
explain the long-term stability of uptake sequences.

Spacing of uptake sequences: Karlin et al. (1996)
reported that perfect USS cores are more evenly spaced
around their genomes than would be expected if they
were randomly positioned, so we examined the center-
to-center separations of the uptake sequences gener-
ated in our simulated genomes to find if drive alone
generated nonrandom spacing. The histograms in
Figure 5 show the equilibrium separations between
uptake sequences evolved when the lengths of the
recombining fragments were 50, 100, 200, or 500 bp.
All showed an almost complete absence of separations
smaller than the size of the recombining fragments and
a corresponding excess of moderate separations. This
result is nicely consistent with the similarity between the
mean length of Neisseria recombination tracts and the

mean spacing of DUSs (Treangen et al. 2008) and
demonstrates that relatively even spacing need not
reflect selection either for a chromosomal function or
for more effective generation of variation.

Simulating uptake sequence evolution driven by
DUS and USS matrices: The above analyses show that
uptake sequences can be driven to high densities in
simulated genomes by a simple model of biased uptake
plus neutral recombination and that they have proper-
ties typical of uptake sequences in real genomes.
However, these analyses all used matrices specifying a
simple generic motif, with all 10 positions having the
same degree of preference. But uptake sequences in
real genomes suggest that real uptake biases are more
complex. Measurements of variant uptake sequences
have found that the uptake machinery is more sensitive
to variation at some positions than at others (Ambur
et al. 2007), and analyses of perfect and singly mis-
matched cc-DUSs and cc-USSs in real genomes have
found different consensus strengths at different posi-
tions (Redfield et al. 2006; Ambur et al. 2007).

Motif-based DUS and USS data sets: Since previous
analyses of genome sequences looked only at perfect
and singly mismatched cc-DUS and cc-USS, they are
likely to have overlooked some uptake-related variation
in the genomes they analyzed. To develop DUS andUSS

Figure 4.—Effect of alternative modes of scoring on up-
take sequence accumulation. All runs began with 200-kb ge-
nomes randomly seeded with five USs per kilobase, with
1000 3 100-bp fragments (100-fold divergent) recombining
in each cycle. The mutation rate was 1 3 10"4. Shaded line:
Fragments were scored additively using matrix A. Solid lines:
Fragments were scored by requiring a minimum number of
matches to the 10 bp of the US, with the threshold (number
of matches required for uptake) indicated to the right of each
line.

Figure 5.—Dependence of uptake sequence spacing on
size of recombining fragments. All runs began with 200-kb
random-sequence genomes and a mutation rate of 1 3
10"4. Fragments were scored with matrix A. The sizes of the
recombining fragments (100-fold divergent) are indicated
on the graphs; the total length of DNA recombined in each
cycle was 1.5 genome equivalents. The rightmost bar in the
bottom panel represents all of the US pairs with spacing
.3.0 kb.
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matrices and data sets that better capture the full
variation, the N. meningitidis and H. influenzae genomes
were analyzed with the Gibbsmotif sampler (Thompson
et al. 2003). This program uses a Bayesian sampling
method to examine sequences for patterns, requiring as
input only the length of the expected motif and an
initiating expected number of occurrences of whatever
motif might be discovered. Each analysis produces both
an aligned list of the occurrences of the motif that was
found and a matrix describing the variation at each
position in the alignment.

Gibbs motif sampler searches of the forward and
reverse strands of the N. meningitidis and H. influenzae
genomes found motifs strongly resembling the DUS
andUSS consensuses previously identified from aligned
cc-DUSs and cc-USSs. Consistent with the evidence for a
strong consensus, most of the occurrences found by
these searches had already been identified in searches
for perfect and singly mismatched cc-DUSs and cc-
USSs. For each genome we retained a set of sequences
corresponding to 1.5 times the number of cc-DUSs or
cc-USSs (sets of 2902 and 2206, respectively). Position-
weight matrices of these sequences gave logos very
similar to the perfect-consensus ones previously re-
ported (Redfield et al. 2006; Ambur et al. 2007) (Figure
6); changing the number of sequences retained changed
the strength of the consensus but not its sequence. For
completeness we also carried out Gibbs motif sam-
pler analyses of all the other available Neisseria and
Pasteurellaceae genomes; logos of these are provided in
Figure S2.

We also evaluated uptake sequences in functional
subsets of the N. meningitidis andH. influenzae genomes.
If uptake sequences play roles in DNA replication or
scaffolding (Karlin et al. 1996), they might be expected
to have different motifs in the genome strands rep-
licated in leading and lagging directions, akin to the
well-characterized strand-specific differences in base
composition (Maliszewska-Tkaczyk et al. 2000). How-
ever, the motifs produced by Gibbs searches of leading
and lagging strands were indistinguishable (data not
shown), suggesting that any functional constraints on
uptake sequences are independent of replication di-
rection. The possible effect of direction of transcription
was similarly investigated by separate Gibbs searches
of coding sequences and their reverse complements
(Francino andOchman 2001). Onlyminor differences
were seen between the two motifs (data not shown).

The Gibbs analyses produced position weight matri-
ces for the DUS and USS motifs they found (see Table
1). These matrices had stringencies intermediate be-
tween those of the generic matrices A and B, and we
used them to address the following questions: First,
would simulations that used these genome-derived
matrices maintain the numbers of uptake sequences
already present in the concatenated intergenic sequen-
ces of the real N. meningitidis and H. influenzae genomes

(378 and 215 kb, respectively)? Second, would simula-
tion of molecular drive using these genome-derived
matrices cause the corresponding uptake sequence to
accumulate in random sequences?
Maintenance of DUS and USS in real intergenic sequences:

Simulated evolution of the concatenated N. meningitidis
intergenic sequences with the DUS matrix maintained
high DUS densities. After 55,000 cycles the scores and
DUS densities were stable and about two-thirds as high
as in the real sequences [scores, 0.20/kb vs. 0.31 (note
that the DUS and USS scores cannot be compared to
those for the generic US matrix A, as the numbers of
positions are different); densities, 224 12-mer DUSs vs.
331] (Table S1). All but 19 of the DUSs present after
55,000 cycles were at new positions, confirming that the
simulation did not simply preserve existing DUSs. As a
negative control, simple decay of DUSs was simulated
using a ‘‘null’’ matrix where every base was weighted
equally. Over 5000 cycles the score decayed from 1.773
102 to 3.17 3 10"3, a score typical of random sequences
of the same length and base composition, confirming
that the high score at 55,000 cycles was due to the DUS
matrix.
The complexity of the USS matrix derived from the

H. influenzae genome caused simulations using it to run
so slowly that the final equilibrium was not attained.
After 5000 cycles, the evolved intergenic sequence
‘‘genome’’ had a slightly lower score (0.95 3 10"8 vs.
1.23 10"8/kb) and only about one-quarter the number
of cc-USSs as the original intergenic sequences (51 vs.
211) (Table S1). However, all of these USSs were at new
positions, again indicating active drive rather than
persistence. Furthermore, comparison with the control
simulation showed that this is very strong drive for USSs,
as just 500 cycles using the null matrix produced a
sequence with a score typical of a random sequence and
containing no perfect cc-USSs and only 7 singly mis-
matched ones.
DUS and USS accumulation in random sequences: Both

DUS and USS matrices also caused uptake sequences to
accumulate to high levels in random-sequence ge-
nomes. Simulated evolution under the DUS matrix
increased the genome score to 0.27/kb, comparable
to that of the real intergenic sequences, with 0.875
perfectly matched 10-bp DUS cores and 0.15 singly
mismatched cores per kilobase. Because the complexity
of the USS matrix caused accumulation of USSs in a
random sequence to be extremely slow, the simulation
program wasmodified to allow the stringency of the bias
to be reduced within a cycle if too few fragments had
initially recombined. This reduced bias allowed less-
well-matched sequences to promote recombination,
and their accumulation in turn decreased the need for
bias reduction in subsequent cycles. The output from
this run was then fed into a run with normal (not self-
reducing) bias. The result was an evolved genome with a
score about twice as high as that of the real intergenic
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sequence (1.2 3 10"6/kb) and with 0.56 perfectly
matched and 0.115 singly mismatched 9-bp USS cores
per kilobase.

Spacing of DUS and USS in real and simulated genomes:
As described above, uptake sequences in simulated
genomes were rarely closer than the lengths of the
recombining fragments. This caused the overall spacing
to be relatively even, as has been reported for real cc-
USSs in the H. influenzae genome (Karlin et al. 1996)
(Treangen et al.’s 2008 analysis of DUS spacing did not
address its randomness).Weused the genomic DUS and
USS sets produced by the Gibbs motif sampler to
reinvestigate the spacing of uptake sequences in real
genomes, comparing their spacing distributions to
random distributions with the same means. Figure 7,
A and B, confirms that both DUS and USS have many
uptake sequences in closely spaced pairs (centers within
30 bp; note that these are the centers of the full 12-bp
DUS and 30-bpUSSmotifs, not of the cores). All but one
of the 169 close-USS pairs and 97%of the 646 close-DUS
pairs are in inverted repeat orientations, and many of
these have been previously identified as potential tran-
scription terminators (Kingsford et al. 2007). However,

when these close pairs are each treated as a single
occurrence, the distributions of uptake sequence posi-
tions are very similar to randomdistributions (black lines
in Figure 7, A and B). Thus, although the locations of
uptake sequence have clearly been influenced by both
coding constraints and their frequent roles as transcrip-
tion terminators, there is no evidence of selection for a
chromosomal function requiring relatively even spacing.

Several factors could account for the difference
between the lack of close neighbors in simulated
genomes (Figure 5) and the excess of them in real
genomes (Figure 7). The former effect will be blurred in
real genomes, which will have undergone recombina-
tion with fragments of varying lengths. On the other
hand, a major factor in real-genome spacing is the
contribution of closely spaced and oppositely oriented
uptake sequences to transcription termination. Selec-
tion against uptake sequences in coding regions may
also play a role.

Laboratory measurements of DNA uptake specific-
ity: One remaining discrepancy between real and
simulated uptake sequences is that the fine structure
of the real USS motif does not agree well with what little

Figure 6.—Sequence logos of uptake
sequence motifs derived from unbiased
genome searches. The corresponding
matrices are in Table 1. (A) N. meningi-
tidis MC58. Top panel, 2902 aligned se-
quences; bottom panel, 1935 perfect
matches to the cc-DUS (GCCGTCTGAA).
(B) H. influenzae Rd KW20. Top panel,
2206 aligned sequences; bottom panel,
1471 perfect matches to the cc-USS
(AAGTGCGGT).
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is known of the actual H. influenzae uptake specificity.
Bakkali (2007) reported uptake of USS-containing
DNA fragments with singly mismatched cores. Although
uptake was dramatically reduced by some changes at
positions with strong genome consensus, it was un-
changed by others (Bakkali 2007). A comparable
analysis ofN. meningitidis uptake specificity has not been
done, but the limited information available (Ambur
et al. 2007) is also discrepant with the genomic motif, in
that the 10-bp core appears to be less important for
uptake than the AT bases that precede it (see Figure 7 in
that article). We investigated three possible explana-
tions for these discrepancies.

First, the confidence limits on the published H.
influenzae DNA uptake data were very broad, so we
repeated the uptake experiments using a slightly differ-
ent system. The new results confirm both the previous
results and the discrepancy; the combined uptake data
are presented in Figure 8.

Second, we considered whether the position biases
specified by the matrix might have disproportionate

effects on the sequences that accumulate in the focal
genome. To find out whether bases at uptake sequence
positions only weakly favored by the matrix might nev-
ertheless accumulate to a strong consensus the uptake
sequences in simulated genomes that had evolved with
the DUS andUSSmatrices were identified with the Gibbs
motif sampler. The resulting logos were very similar to
those of the DUS and USS data sets used to generate the
matrices (data not shown), confirming that the uptake
sequences that accumulate in a simulated genome
accurately reflect the bias of the matrix used. Thus, if
molecular drive due to biased uptake was the only
evolutionary force, uptake sequences in the genome
should reflect the biases of the uptake machinery.
The third explanation we considered was that uptake

might depend not only on the individual base pairs in
the motif, but also on specific interactions between
these bases. Such interactions might contribute to
sequence recognition or facilitate DNA deformation
needed to initiate uptake and would cause different
positions within the uptake sequence to coevolve. To

Figure 7.—Center-to-center separations of up-
take sequences in real genomes. The uptake se-
quences were those identified by Gibbs
searches. (A) A total of 2902 N. meningitidis
DUSs; (B) 2206 H. influenzae USSs. The black
line in each graph shows a random distribution
of the same number of uptake sequences over
the same length of DNA. The dark bar on the left
in each graph is the number of separations
within 100 bp when inverted-repeat pairs within
30 bp are treated as single occurrences.
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test this we looked for evidence of covarying positions
in the sets of USS and DUS sequences identified by the
Gibbs searches, using MatrixPlot (Gorodkin et al.
1999). This covariation analysis used both whole-
genome data sets and intergenic sequence data sets
(because most closely spaced USS pairs had confound-
ing overlaps, they were first removed from the H.
influenzae intergenic data set). The analysis found no
strong correlations in the uptake sequence cores and
only very weak covariation between adjacent positions at
the centers of the flanking AT-rich motifs (Figure S2),
suggesting that the contributions of individual base
pairs to uptake are largely independent. The lack of
covariation also confirms that genomes do not contain
subsets of USS or DUS motifs with differing sequences.
The above three analyses thus leave unresolved the
discrepancy between the measuredH. influenzae uptake
bias and its genomic USS motif.

DISCUSSION

We used computer simulations to test whether mo-
lecular drive can cause the DNA sequences preferred by
a cell’s DNA uptake machinery to gradually accumulate
in its genome, testing wide ranges of values for themajor
parameters to compensate for the lack of empirical data.
The results showed that molecular drive is very robust;
accumulation of preferred sequences was independent
of mutation rate and only moderately dependent on
how the bias was applied, on the amount of recombina-
tion, and on the length, number, and extent of di-
vergence of the recombining fragments. This result
greatly simplifies our understanding of the evolution of
uptake specificity in competent bacteria.

Four major questions remain. First, how did the
ancestral state of nonspecific DNA uptake evolve into
the strong uptake specificity seen in the Pasteurellaceae
and Neisseria species? Second, have increases in uptake
bias been driven by selection for more efficient uptake
or for prescreening DNA fragments to exclude foreign
sequences? Third, why would some bacteria have evolved

uptake specificity (strong uptake bias for an abundant
genomic motif) while most others have not? Fourth, has
selection for genetic benefits of transformation affected
the properties of uptake sequences?

To address the first question, consider the likely steps
in the evolution of uptake specificity, starting with a
naturally competent ancestral species. Although these
bacteria would not have discriminated between DNAs
from different sources, the ubiquity of sequence pref-
erences in all well-characterized DNA-binding proteins
predicts that their DNA uptake machinery might have
already had a modest sequence bias. Such biases are
especially likely for the uptake proteins that directly
contact DNA, because specific contacts between nucleo-
tides and amino acid residues will provide the tight
binding needed to pull strongly on DNA (Maier et al.
2004a,b; Stingl et al. 2010). Here we assume that any
such ancestral biases were too slight to cause significant
accumulation of the preferred sequences in the genome.

The first step toward uptake specificity would be a
mutational change in a cell surface protein that mod-
estly increased both its sequence bias and its DNA-
binding affinity. This protein might have already been a
component of the DNA uptake machinery, but it could
also have had no previous role in uptake and only by
chance acquired the ability to bind DNA. The increased
bias need not have decreased uptake andmay even have
increased it, either because the higher affinity increased
the effective DNA concentration at the cell surface or
because it was accompanied by an improvement in the
efficiency of the uptake machinery.

The now-preferred sequences would begin to accu-
mulate in the genome if two conditions weremet: (i) the
bacteria lived in biofilms or other environments where a
significant amount of the available DNA came from
close relatives (conspecifics) and (ii) some of the DNA
brought into the cells underwent homologous recom-
bination with the chromosome. These conditions are
likely to be widely met, as all bacteria that grow on
surfaces or in poorly mixed environments encounter
abundant DNA from close relatives, and all have the
DNA repair and replication machinery responsible for

Figure 8.—DNA uptake assays.
Mean uptake of thirteen 222-bp DNA
fragments relative to uptake of the
full-length perfect-consensus USS se-
quence is shown. Each fragment con-
tains a USS sequence that differs
from the consensus USS at one posi-
tion (blue bars) or at a pair of positions
(bracketed, red bars). The nucleotide
that replaced the consensus base is
shown for each position changed. Bars
illustrate confidence values for each re-
sult. The logo above is for the 2206 ge-
nomic USSs identified by the Gibbs
search of the H. influenzae genome.
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recombination. They are also necessary if competence is
to have any other genetic consequences.

The accumulation of preferred sequences in this
ancestral genome would then increase the benefits or
reduce the cost of the initial uptake bias, because these
sequences would now be more common in the available
DNA. Genetic benefits of DNA uptake would be higher
because more of the DNA taken up would be able to
recombine. Nutrient effects could also be enhanced,
both because of more efficient uptake and because the
base composition of the incoming DNA would more
often match that of the cell’s own genome. Although
nucleotides are needed primarily for synthesis of RNA,
deoxynucleotides are most efficiently used for DNA,
and matching of base composition would avoid the
need for interconversion of deoxynucleotide bases by
complex salvagepathways.Once the preferred sequences
became more common in the available DNA, additional
mutations that further strengthened the bias would
become beneficial, and this increased bias would in turn
cause further accumulation of preferred sequences.
Although our simulations did not incorporate this grad-
ual increase in bias strength, they showed that uptake
sequences could also evolve under the more severe
condition of a sudden imposition of a strong bias.

This scenario must also consider the extent to which
accumulated uptake sequences would interfere with
genome functions, especially coding. Our analysis of
uptake sequences in the proteomes of H. influenzae,
Actinobacillus pleuropneumoniae, and N. meningitidis
(Findlay and Redfield 2009) found that these are
accommodated in two ways. First, nonsilent mutations
created uptake sequences at positions where the
specific amino acid substitutions are well tolerated;
this roughly doubled the frequencies of those tripep-
tides specified by each species’ uptake sequence in
different reading frames. Second, silent codon changes
created uptake sequences at positions where these
tripeptides were already present; the cost of using less-
favored codons may be relatively small because uptake
sequences are rare in highly conserved genes. However,
the cost of eliminating mutations that create uptake
sequences at other coding positions will still oppose the
benefits of biased uptake.

Gradually, over many millions of generations, the
feedback between uptake bias and molecular drive
could produce the strong uptake specificity seen in
themodern Pasteurellaceae andNeisseria. If substantial
genetic benefits arise from genetic variation and/or
recombinational repair (Davidsen et al. 2004; Michod
et al. 2008; Treangen et al. 2008), increasing uptake bias
might continue to be selected by its ability to prescreen
DNA, preventing uptake of potentially harmful foreign
genes. Uptake sequences would then also accumulate by
‘‘hitchhiking,’’ being recombined along with the linked
beneficial alleles whose uptake they have facilitated, as
has been simulated in a hybrid model incorporating

features of both molecular drive and beneficial re-
combination (Chu et al. 2006). If DNA provides mainly
nutritional benefits, the strong uptake biases typical of
the Pasteurellaceae and Neisseria might evolve only if
conspecificDNAwas usually available or if foreignDNAs
contained sequences that fit the uptake bias well
enough that they could be taken up when conspecific
DNA was unavailable. Most importantly for evolutionary
models, although the benefits of uptake specificity
would depend on the accumulation of genomic uptake
sequences, only the genes responsible for the sequence
bias need be under selection.
How long might this accumulation take? The com-

puter simulations give only a very rough guide to real
evolutionary timescales, both because real generation
times and recombination rates are not known and
because the uptake sequences in bacterial genomes
may not have reached equilibrium between drive and
mutation. If cells in mucosal environments undergo
about one division per day, each model cycle would
represent 103–104 days (!10 years), and the equilibria
shown in Figure 2 would take!23 106 years to achieve.
However, shorter generation times could reduce this
estimate by !10-fold and lower uptake or recombina-
tion rates could increase it substantially. Timescales of
many millions of years are consistent with the persis-
tence of USS at homologous sites in Pasteurellacean
genomes (Bakkali et al. 2004), and Pasteurellacean
uptake sequences predate the divergence of this family’s
two major clades (Redfield et al. 2006) hundreds of
millions of years ago. The costs and benefits of sequence-
biased uptake are unlikely to have remained constant
over such long periods, being affected not only by the
slow accumulation of the preferred sequences in the
genome but also by more rapid changes in both external
factors (sources and amounts of DNA in the environ-
ment) and internal factors [changes in uptake specificity,
frequency of recombination, potential for genetic bene-
fits (Redfield et al. 2006; Maughan and Redfield
2009)]. Thus the levels of uptake bias and uptake
sequence abundance seen in modern bacteria need not
represent either true stable equilibria or stages on the
way to such equilibria, but may instead integrate the
effects of varying selection over long evolutionary peri-
ods. Phylogenetic studies of homologous uptake sequen-
ces could shed light on the history of uptake sequences,
but we also badly need data about DNA uptake and
recombination by bacteria in their natural environments.
To dissect the components that contribute to the

accumulation of uptake sequences by molecular drive,
the simulationmodel could be modified in several ways:

i. The gradual increase of uptake bias discussed above
could be simulated by beginning with a very weak
bias and tracking the proportion of fragments
scored that went on to recombine, raising the bias
when this proportion passes a specified threshold.
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ii. The length of the simulated recombining fragments
was found to set the minimum spacing between
genomic uptake sequences. Although this result is
nicely consistent with the similarity between the
mean length of Neisseria recombination tracts and
the mean spacing of DUSs (Treangen et al. 2008),
comparisons to real genomes would be improved by
having themodel use a range of fragment sizes within
each cycle.

iii. Transforming DNA is known to undergo partial
sequence degradation in the cytoplasm, which could
allow closer spacing of uptake sequences because of
shorter recombination tracts but could also reduce
their accumulation because some are lost to degra-
dation after promoting uptake. Simulations could
clarify these potentially opposing effects.

iv. Most of the available uptake data are consistent with
the model’s assumption that the single best uptake
sequence determines each fragment’s probability of
uptake (Ambur et al. 2007), but a model that inte-
grates the effects of multiple uptake sequences on a
fragment might also be tested.

v. Although most uptake sequences in bacterial ge-
nomes appear to be accommodated with little cost
to fitness, the locations of uptake sequences in real
genomes are clearly sensitive to coding and other
functional constraints (Kingsford et al. 2007;
Treangen et al. 2008; Findlay and Redfield
2009). Selection for coding could be simulated by
designating 1-kb blocks of sequence to have reduced
probabilities of recombination.

Major improvement to understanding of uptake se-
quence evolution will come not from improved models
or more sequence analyses but from detailed molecular
characterization of actual uptake biases in a wide range
of competent species. The best available uptake data are
for H. influenzae ; they suggest substantial discrepancies
between the genomic motif and measured position-
specific uptake biases (see Figure 8). Such discrepancies
are unlikely to be caused by selection for genetic benefits
of recombination andmay disappear when better uptake
data become available. Alternatively, discrepancies may
reflect intrinsic biases of postuptake events such as DNA
processing, recombination, andmismatch repair, or selec-
tion for such cellular functions as transcription termina-
tion and protein coding.

The genes and proteins responsible for uptake
specificities have not been identified. Their identities
should shed light on how selection has acted; finding
that bias is due to a prescreening protein extrinsic to the
uptake machinery would suggest selection to exclude
foreign DNA, whereas finding a mechanism-intrinsic
protein would be more consistent with selection for an
efficient mechanism. These two cases also make con-
trasting predictions about the effects of mutations that
reduce uptake specificity on the amount of DNA taken

up—reducing the bias of a prescreening protein should
increase overall uptake, whereas reducing the bias of the
mechanism should decrease it.

Why is uptake specificity known only for two bacterial
groups? In some other competent bacteria, the con-
ditions necessary for drivemay not bemet. For example,
highly active cytoplasmic nucleases may limit recombi-
nation, or fragments from conspecifics may be only a
small part of the local DNA pool (this likely applies to
planktonic species). At the other extreme, prescreening
DNA for uptake sequences would not increase genetic
benefits if the DNA in the cells’ microenvironment
came only from conspecifics, as may be the case in some
biofilm environments. DNA uptake may also have
weaker mechanistic constraints in gram-positive bacte-
ria, which transport single-stranded DNA only across a
single membrane. Nevertheless, uptake biases may be
more widespread than appreciated, as no attempts have
been made to detect modest effects, and the possible
role of DNA uptake biases in genome dinucleotide
signatures has not been explored (Campbell et al. 1999;
van Passel et al. 2006).

To find out whether selection for genetic benefits of
transformation has affected the properties of uptake
sequences (by hitchhiking or other processes), a new
model will be needed, one that incorporates both drive
and the selective effects of making new combinations of
alleles. Such a model would be substantially more
complex than ours, as selection can be simulated only
in a population-based model capable of tracking mul-
tiple alleles of multiple loci. The model could be run
with and without the kinds of recombination benefits
previously identified by evolution-of-sex theory (Otto
and Gerstein 2006), and the outcomes could then be
compared to each other and to the properties of uptake
sequences in real genomes.
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FIGURE S1.�—Sequence logos of uptake sequence motifs derived from unbiased genome searches.  The numbers in brackets 

are the numbers of aligned sequences used for each logo.  These were chosen from the larger number of sequences identified by a 

Gibbs Motif Sampler search of each genome, by first ranking the sequences by Gibbs score and then retaining a number equal to 

1.5 times the number of cc-USS or cc-DUS present in the corresponding genome. 
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Accession numbers:  N. gonorrhoeae: NC002946; A. pleuropneumoniae: NC009053; H. ducreyi: NC002940; M. succiniproducens: 

NC006300; P. multocida: NC002663; A. actinomycetemcomitans: NC013416; H. somnus: NC008309; A. succinogenes: NC009655.  The 

draft sequence of N. lactamica was obtained from www.sanger.ac.uk/Projects/N_lactamica/ .  The draft sequence of M. haemolitica 

was obtained from Sarah Highlander. 
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FIGURE S2.�—Matrixplot analysis of correlations between residues at different uptake sequence positions.  A. N. meningitidis 
DUSs; B. random N. meningitidis segments; C. H. influenzae USSs; D. 2200 random H. influenzae segments.  The colour scale shown 

in part A also applies to parts B, C, and D. 
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TABLE S1

Fig. 2 data

Run pair -genome Total perfect Total oneoff perf/kb 1off/kb Score Score/kb

XA6&XB6 0.0002 289 27 1.45 0.14 2.96E+12 1.46E+10

XC6&XD6 0.0001 272 24 1.36 0.12 2.77E+12 1.42E+10

XE6&XF6 0.00005 265 21 1.33 0.11 2.67E+12 1.32E+10

XG6&XH6 0.00002 274 34 1.37 0.17 2.78E+12 1.39E+10

XI6&XJ6 0.00001 260 25 1.30 0.13 2.64E+12 1.32E+10

XK6&XL6 0.000005 280 32 1.40 0.16 3.08E+12 1.54E+10

Fig. 3A data

Run pair frac recomb Total perfect Total oneoff perfect/kb 1off/kb Score Score/kb

ZK&ZU 0.0005 13 10 0.07 0.05 0.0005 2.51E+08

ZJ&ZT 0.0015 6 5 0.03 0.03 0.0015 5.11E+08

ZI&ZS 0.005 3 0 0.02 0.00 0.005 9.60E+08

ZH&ZR 0.015 7 3 0.04 0.02 0.015 1.70E+09

ZG&ZQ 0.05 11 4 0.06 0.02 0.05 3.37E+09

ZF&ZP 0.15 25 12 0.13 0.06 0.15 6.60E+09

ZE&ZO 0.5 59 6 0.30 0.03 0.5 1.51E+10

ZD&ZN 1.5 96 11 0.48 0.06 1.5 2.45E+10

ZC&ZM 5 143 5 0.72 0.03 5 3.86E+10

ZB&ZL 15 152 4 0.76 0.02 15 4.23E+10

Fig. 3C data

Run frag size Total perfect Total oneoff perfect/kb 1off/kb Score Score/kb

CB3 50 818 34 4.09 0.17 8.27E+12 4.14E+10

CC3 100 478 27 2.39 0.14 4.81E+12 2.41E+10

CD1-3 200 287 24 1.44 0.12 2.91E+12 1.46E+10

CE1-8 500 144 11 0.72 0.06 1.43E+12 7.15E+09

TL4 1000 56 8 0.28 0.04 5.40E+11 2.70E+09

TW3 2000 53 12 0.27 0.06 3.10E+11 1.55E+09

Fig. 4 data

Run Threshold Total perfect Total oneoff Total twooff perfect/kb 1off/kb 2off/kb Score Score/kb

PA7 0 1 4 77 0.01 0.02 0.39 7.34E+08 3.67E+06

PD7 2 0 2 82 0.00 0.01 0.41 8.47E+08 4.24E+06

PF7 4 0 3 82 0.00 0.02 0.41 1.34E+09 6.70E+06

PH7 6 0 9 88 0.00 0.05 0.44 1.33E+09 6.65E+06

PI7 7 1 23 216 0.01 0.12 1.08 3.09E+09 1.55E+07

PJ7 8 4 82 1062 0.02 0.41 5.31 3.24E+10 1.62E+08

PL7 9 16 717 54 0.08 3.59 0.27 3.19E+11 1.60E+09

PN7 10 523 9 79 2.62 0.05 0.40 5.24E+12 2.62E+10

DUS/USS data

Run Input seq. Genome Matrix Total cc-US Total oneoff perfect/kb 1off/kb Score Score/kb

VI Nme intergen 380 kb   Nme2902 224 41 0.59 0.11 7.68E+01 2.02E-01

VC Hin intergen 220 kb Hin2206 51 24 0.23 0.11 2.09E-06 9.50E-09

RW5&RW6 Random 200kb 200 kb   Nme2902 159 27 0.88 0.15 5.50E+01 2.70E-01

RV1-10 Random 200kb 200 kb Hin2206 112 23 0.56 0.12 4.54E-06 2.27E-08

TABLE S1 

Uptake sequences in evolved genomes 

 
 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 


