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ABSTRACT 
Bacteria are  the only organisms known to actively take up DNA and  recombine  it  into  their genomes. 

While such  natural transformation systems  may provide many of the same  benefits that sexual reproduc- 
tion provides eukaryotes, there  are  important differences that critically alter  the consequences, especially 
when  recombination's  main  benefit is reducing  the mutation  load. Here, analytical and numerical 
methods  are used to study the selection of transformation  genes  in  populations undergoing deleterious 
mutation. Selection for transformability depends on the  shape of the fitness function against  mutation. 
If the fitness function is linear, then transformation would be selectively neutral were it not for the 
possibility that transforming cells may take up DNA that converts them  into  nontransformable cells. If 
the selection  includes strong positive (synergistic) epistasis, then transformation  can  be  advantageous 
in  spite of this risk. The effect of low quality DNA (from selectively killed cells) on selection is then 
studied analytically and  found to impose an  additional cost. The limited data available for real bacterial 
populations suggest that  the conditions necessary for  the evolution of transformation are unlikely to be 
met,  and  thus  that DNA uptake may have some function  other  than recombination of deleterious 
mutations. 

C ELLS of  many bacterial species can actively  take up 
DNA molecules from their environments (LO- 

RENZ and WACKERNAGEL 1994). Incoming homologous 
DNA frequently recombines with the cell's own genome 
and in so doing changes the cell's genotype. These 
natural transformation systems are commonly believed 
to be  adaptations for genetic exchange (for competing 
viewpoints see REDFIELD 1993 and MICHOD and WOJCIE- 

CHOWSKI 1994). Although we are starting to understand 
the temporal regulation of the ability to take up DNA 
(competence) (GROSSMAN 1995; MACFADYEN et al. 
1996), we remain  ignorant  about  the evolutionary con- 
sequences of DNA uptake and transformation for bac- 
teria. 

The obvious comparison with meiotic sex in eukary- 
otic organisms is problematic for two reasons. First, un- 
like sexual recombination, bacterial transformation is 
infrequent, fragmentary, and nonreciprocal: most  cells 
rarely  take up DNA, and when they do, they replace 
only short segments of their genomes (MORRISON and 
GUILD 1973; GOODGAL 1982). Second,  there is as yet 
no agreement  on  the  function of meiotic sex  itself. The 
leading  contenders  are elimination of deleterious muta- 
tions (KONDRASHOV 1994) and escape from rapidly 
evolving parasites and pathogens (HAMILTON et al. 
1990; HOWARD and LIVELY 1994), although  the impor- 
tance of either has  yet to be firmly established. 
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REDFIELD ( 1988 ) modeled  pure populations of trans- 
forming cells and  found  that ( 1 ) transformation could 
reduce  mutation load and ( 2 )  the  benefit was reduced 
or eliminated when the DNA came from cells  killed by 
selection against deleterious mutations. However, no 
work  has been  reported on the dynamics  of mixed p o p  
ulations of transformers and  nontransformers, where 
transformers risk transforming themselves into  non- 
transformers. 

In this paper we develop an analytical model of  trans- 
formation to investigate the assumption that  the benefit 
of transformation comes from its ability to recombine 
deleterious mutations. We use  this model to identify 
factors that limit the ability  of a transforming popula- 
tion to invade a  nontransforming  population. A finding 
that  the conditions required  for invasion are biologi- 
cally unrealistic would suggest that this benefit is unable 
to account for the evolutionary success  of natural trans- 
formation systems. 

THE MODEL 

To develop a  continuous time, overlapping genera- 
tion model of the evolution of transformation in mixed 
populations, we will first describe pure populations of 
nontransfoming  and transforming cells, then  a mixed 
population, and finally consider  the composition of the 
DNA pool. The analysis of this model is presented in 
the RESULTS. 
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FIGURE 1.-Schematic of a chemostat  population of  cells 

undergoing  transformation. Fresh  medium enters the chem- 
ostat at a constant rate (D) ,while spent  medium, cells and the 
extracellular DNA pool are washed out  through  an  overflow at 
the same rate. Cells grow (rate = pi where i is the  number 
of mutations in the genome) and  are  subject to mutation 
(rate = m) and transformation at a rate that is proportional 
to the  concentration of extracellular DNA (rate = r 9  Y , )  . The 
extracellular DNA pool is generated by cell lysis. 

Pure  populations of nontransformers  and 
transformers 

We begin developing our model with the simplest 
cases, pure populations of nontransforming and trans- 
forming cells  whose density is limited by dilution (as 
in  a  chemostat)  and whose growth rates are limited by 
selection against deleterious  mutations arising ran- 
domly at many  loci. DNA fragments in the  culture me- 
dium  are taken up only by transforming cells. The basic 
outline of this model is presented in Figure 1. 

A pure  population of nontransformers: Deriving the 
equilibrium  mutation  distribution  for  a  nontrans- 
forming  population provides the foundation  for subse- 
quent analyses. Let Ni be  the density of  cells  with i 
mutations in a  chemostat  population of nontrans- 
forming cells.  Assume 

dNi 
- = ( p i  - D - m ) N i  + mNi-I,  

dt ( 1 )  

where pi is the  net growth rate  (growth  minus  death; 
fitness) of a cell  with i mutations, I) is the dilution  rate 
(the fractional rate of replacement of the mixed culture 
by fresh medium)  and m is the  mutation  rate per ge- 
nome  per  unit time. 

When fitness is a  decreasing  function of i ( i .e . ,  pi 
> p i + l ) ,  a mutation-selection balance will be attained 
where d N i / d t  = 0. Here, d N O / d t  = ( P o  - D - m )  No 
= 0 and thus D = Po - m. Summing Equation 1 over 
all i yields 

m 

p i N , / N ,  = D = pO - m, ( 2 )  
i=o 

where N, = I(. At this equilibrium the  mean  net 
growth rate of the  population (its mean fitness) equals 
the  dilution  rate, and is lowered from the maximum 
growth rate ( po)  by the mutation  rate ( m )  . Also, 

Ni = N i - l m / s i ,  

where si = po - pi is the selection coefficient. By induc- 
tion 

m' N .  = - No i > 0, ( 3 )  
I nj=, sj 

and  the  entire mutational  distribution ( N i )  is  easily 
obtained. 

A pure  population of transformers: To describe a 
transforming  population  Equation 1 must be modified. 
Two additional  terms in 9 are  added  to describe how 
transformation  adds cells to, and removes cells from, 
each mutational class. 

d T,. 
" 

dt 
- (p i  - D - m )  T, + mT,-I 

m 

- 9Y,Tj + 9Y, C pjiT,. ( 4 )  
j = O  

9 is the  rate  constant  for transformation, Y, is the total 
concentration of DNA in the  environment (the DNA 
pool),  and pji  is the probability that  a  transformer with 
j mutations ( T,)  is converted, by the DNA it takes up 
and recombines into its genome,  into  a cell  with i muta- 
tions (calculation of pji is discussed below  in the section 
on mixed populations).  Thus, 9Y,T, is the  rate of  loss 
of  cells from this class by transformation and 9Y, Z;=o 
pjiT is the  rate of gain from the  other classes. Note that 
when transformation does  not  change  the  net  mutation 
number, cells removed by the first term in 9 of  Equa- 
tion 4 are restored by the second. 

A mixed  population of transformers  and 
nontransformers 

To investigate the ability  of transforming cells ( 7') to 
succeed in the presence of competing  nontransformers 
( N )  requires  considering  a mixed population. The dif- 
ference between transformers and nontransformers is 
assumed to be genetically determined by one or more 
competence  genes ( cI , Q, etc.) , with transformers car- 
rying c+ alleles and nontransformers carrying c- alleles. 
Consequently, the DNA pool of a mixed population will 
contain  both c+ and c- alleles, and transforming cells 
may sometimes take up  and recombine c- alleles, con- 
verting themselves into nontransforming cells. (We as- 
sume  that c+ and c- alleles are  not subject to  the  general 
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mutation process, and  are themselves selectively neu- 
tral.) 

Such a mixed population satisfies the following: 

dN, 
dt 
" - ( p L  - D )  Ni + mIV-I - mN,, (5)  

d T, 
- = ( p L  - D) Ti + mT,-l - mT, - QKT, 
dt 

x 

+ Q K  pliq - P k  Q K  p ~ z q ,  ( 6 )  
j = O  [k:1 1 ,:O 

S.! ( / A i  - D )  c k , i  + mCk,;-l 
dt 

32 

- mck.t + PkQK p i iq ,  ( 7 )  
j = O  

where Pk is the probability that  a  recombined  fragment 
carries k c- alleles and n is the  number of competence 
genes per  nontransformer (N,) genome.  Equation 5 
is identical to Equation 1, while Equation 6 differs 
from  Equation 4 only by an additional term in 
Pk ( [ x Pk] 9 K pjiq) , which describes the  net 
flux of Tcells into  the nontransforming Cclasses (Equa- 
tion 7 )  through  the  recombination of DNA fragments 
harboring  one  or  more c- alleles. This "cost of conver- 
sion" is simply the  net rate of transformation to T, 
(QK p 1 2 q )  multiplied by the probability that  a 
recombined  fragment carries one  or  more c- alleles 
(X;=, Pk) . We defer  a discussion of P k  until  later.  Note 
that  the transformers ( T, ) , the  nontransformers ( N ,  ) , 
and  the converts ( c k , j )  have the same fitnesses ( pz ) 
and mutation  rate ( m )  , and so the success or failure 
of the transformers in  competition arises from the abil- 
ity  of recombination  to  redistribute  mutations and from 
the cost engendered by the risk  of conversion. 

How mutation number is changed by  transformation 

The effect of transformation is  critically dependent 
on PI,; the probability a cell withjmutations is converted 
by transformation  into  a cell with i mutations. This sec- 
tion describes the  dependence of pji on both  the  num- 
ber of mutations  in  the DNA fragment  the cell takes 
up from the DNA pool, and  the  number of mutations 
in the chromosomal  segment this fragment replaces. 

Composition of the DNA pool: We defer consider- 
ation of the biological processes generating  the DNA 
pool and for now assume only that cells produce DNA 
fragments  at  a  rate 0 that is proportional to cell density 
and  independent of  cell genotype. This allows deriva- 
tion of the  equilibrium  distribution of mutations  among 
these DNA fragments. 

The density of fragments carrying j mutations 
changes  according to 

- ( D  + E + QT,)?, (8) 

where r is the size  of DNA fragments expressed as a 
proportion of the  genome.  Thus, (;) ri( 1 - T )  i- 1 is the 
binomial probability that  a donor cell  with i mutations 
produces  fragments with j mutations. The terms D ,  E 
and QT, = Q Ti describe loss of fragments by wash- 
out, by degradation, and by uptake by transforming 
cells. The DNA pool rapidly tends toward equilibrium 
values 

so long as d (  N, + T, + x:==, ck.2 ) / dt -+ 0. Summing 
yields the total concentration of DNA fragments in the 
pool, K = 6(  N, + T, + Ck.,) / ( D  + E + Q T )  where 

Effects of transformation: The probability, p j j ,  that 
a cell  with j mutations is transformed into a cell  with i 
mutations is 

Ck., = c h , ; .  

min ( 1, j) 

p,, = ( 8 )  rj-k( 1 - r)k - E- k 

Y,  
. (10) 

k=O 

Here,  the coefficient ( i )  r7 -k  ( 1 - r )  is the binomial 
probability that  a cell with j mutations takes up a DNA 
fragment differing by j - i mutations from the  genome 
segment it replaces, and K - k / K  is the density of such 
fragments. For example,  a cell harboring j mutations is 
converted  into  a cell  with zero mutations with probabil- 
ity d Y 0 /  Y,. This is  simply the  product of two probabili- 
ties: that  the  recombined DNA fragment  harbors no 
mutations ( Y 0 / K )  and that it replaces a  genomic frag- 
ment containing all the  mutations in the cell ( T ' )  . By 
extension,  the probability that  a cell harboring j muta- 
tions is converted  into  a cell  with one mutation is simply 
r1Y1/Y, + jrj-' ( 1 - r )  &/X ,  where the first term is 
simply the probability that  a  recombined DNA fragment 
harboring  one mutation replaces a  genomic  fragment 
containing all the  mutations in the cell, and the second 
term is the probability that  a  recombined DNA frag- 
ment  harboring  no  mutations replaces a  genomic frag- 
ment  containing all but  one of the  mutations in the 
genome. 

The probability that  a  recombined  fragment carries 
k c- alleles is given by Pk, which depends  not only upon 
the  frequencies of Nt and C,.,, but also upon  the distri- 
bution of transformation loci across the  genome  and 
the size  of DNA fragments ( r )  that  are  recombined. 
One might assume that  the loci controlling transforma- 
tion are randomly distributed in the  genome, whence 
the probability that  a  recombined DNA fragment car- 
ries at least one c- allele is X:=, P k  = [I - (1 - T ) ~ ] .  
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But  this is inappropriate because these loci, few and 
certainly fixed in number  and genomic position, consti- 
tute  but  one sample drawn from some (admittedly ab- 
stract) distribution. A  unique sample does not consti- 
tute a distribution, so that :=, P k  may differ wildly from 
naive expectation. Furthermore, different converts may 
have different constellations of k c- alleles so that, in 
reality, the term Ck,, describes a  heterogeneous mixture 
of converts, each of which generates DNA fragments 
with 0, 1 , 2  etc. c- alleles at different probabilities. While 
tractable for defined cases, the mass  of algebra gener- 
ated by accounting  for all such possibilities is prodi- 
gious. 

Fortunately, the most  biologically interesting case is 
where r ,  the size  of the DNA fragments, is sufficiently 
small that  the probability that  a DNA fragment carries 
two or more c- alleles is negligible. The  competence 
loci are now unlinked, so that each convert carries ex- 
actly one c- allele drawn from a sample of n c- alleles 
in the nontransformers. The probability that  a  fragment 
of  DNA carries a c- allele is simply 

where K = N, + T, + Cl., is the  constant density  of  cells 
in the mixed population. The expressions for pji and 
p l ,  when inserted  into Equations 6 and 7, complete our 
mixed-population model. 

RESULTS 

The  linear  fitness  function 

Equation 3, the  general expression for the equilib- 
rium distribution of mutations in the  nontransformers, 
is largely responsible for the complexity of Equations 6 
and 7. However, a simple analytical solution of these 
equations is possible when fitness is a  linear  function 
of the number of mutations, i.e., when pL2 = 1 - i s .  This 
solution provides a  benchmark against which the effects 
of other fitness functions can be compared. 

A pure  population  of  nontransformers: With a  linear 
fitness function,  the equilibrium density of cells  with i 
mutations in an isolated population of nontransformers 
is (from Equation 3 )  

and the mutational distribution at equilibrium is  Pois- 
son with mean m / s .  The equilibrium distribution of 
mutations among DNA fragments in the  environment 
is also  Poisson, but with mean rm/ s (compounding  the 
binomial distributions of Equation 8 with the above 
Poisson distribution generates a Poisson distribution, 
see FELLER 1958). 

A pure  population  of  transformers: Suppose that, as 
with a  pure  population of nontransformers at equilib- 

rium,  the mutational distributions of the transformers 
and  their DNA fragments are Poisson,  with means 
m /  s and rm/ s respectively. 
With 

( p L  - D )  N, + mNj-, - mNt = 0 

true for an equilibrium population of nontransformers, 
so 

( p ,  - D )  T, + mTi-l - mT, = 0 

is true  for this population of transformers. Further- 
more, recombination has no effect on the mutational 
distribution of the transformers: the distribution in 
fragments from the DNA pool is identically Poisson to 
that of the genomic fragments they replace and thus 
net effect of transformation on T, is 

cc 

‘€J Y, PI,? - QY,T, = 0 
j=O 

(see APPENDIX A )  . The model of a  pure population of 
transformers reduces to 

dT, 
” - 0. 

dt  

We conclude that  should ever a  pure  population of 
transformers attain a Poisson distribution, mean m/  s, 
then  that distribution will be retained indefinitely be- 
cause the growth rates are zero and  independent of T, 
and Y,. 

The question arises  as to what happens if this distribu- 
tion is perturbed, will it return to Poisson, or will it 
diverge to some other unknown distribution?  In fact, it 
will return to the same Poisson distribution: that is, the 
Poisson distribution is Lyapunov  asymptotically stable. 
To illustrate this, we conduct  a local  stability  analysis 
by linearizing the model in the  neighborhood of the 
Poisson equilibrium. Let 

T, = Tj,rq + S T ,  = T,[ ( m / s )  ’e-m”] / i! + STi 

U, = Y , . ~ ~  + 6 ~ ,  = YJ ( r m / s )  t e -mL”]  / i !  + S U , ,  

so that STj and S Y ,  represent small  deviations from the 
Poisson equilibrium. These relations are substituted 
into  the model described by Equations 4 and 8. Terms 
describing the Poisson equilibrium cancel and the 
equations are linearized by deleting  the cross products 
because STjSU, + 0. We  now are left with a series of 
equations in &T, / dt and ds Y,  / dt that  are  linear in 
terms of ST, and Sk;, 

[ dhY,/di]  = A[ ‘ 

dsT, / dt  

Here, A is a matrix of constant coefficients drawn from 
Equations 4 and 8. Despite the fact that A is highly 
structured, we have  yet to find an analytical solution. 
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However, numerical simulations using a wide range of 
values for  mutation rates, selection coefficients, frag- 
ment sizes, rates of transformation, DNA production 
and degradation,  demonstrate  that  the maximum ei- 
genvalue A,,,,,, = 0. This eigenvalue is associated with a 
positive eigenvector describing the equilibrium Poisson 
distributions of mutations in cells and in DNA frag- 
ments. Hence, this model of a  pure  population of trans- 
formers is uniformly stable and characterized by an as- 
ymptotically stable equilibrium distribution that is  Pois- 
son, mean m/ s, when fitness is a  linear  function of the 
number of mutations ( pj  = 1 - is). 

These results are entirely in accord with those of 
REDFIELD ( 1988) who simulated pure populations of 
transformers and their DNA pools using a dynamic dis- 
crete  generation time version  of this model. Pure popu- 
lations of transformers or nontransformers, initially de- 
void  of mutations, each approach  the same equilibrium 
mean fitness, a  mean fitness that  depends  on  the muta- 
tion rate,  but  not  the selection coefficient, fragment 
sizes, and rates of transformation. 

A mixed population of transformers  and  nontrans- 
formers: Again, suppose that  the populations of trans- 
formers,  nontransformers and converts are distributed 
as Poisson, with means m/ s. Using the same approach 
as described in the above section, the mixed model 
(Equations 5-7) can be  reduced  to  the following: 

dN; - =  
dt 0, 

The transformers are now seen to be at  a selective disad- 
vantage, due entirely to the presence of c- alleles in 
the DNA supply. The disadvantage is independent of 
both  the  mutation  rate,  the selection coefficient, and 
the  dilution rate. By contrast, the intensity of selection 
is dependent on the values  of P k  (the probability that 
recombined fragments carry k c- alleles) and these are 
subject to  change as converts accumulate in the popula- 
tion. Nevertheless, the Poisson distributions are re- 
tained as the transformers are  purged from the mixed 
population, because the growth rates, - [ x:=l P k ]  SK 
and p k q  K ( Tl/ ck,l), are  independent of i. 

Again, local stability  analyses achieved by linearizing 
the model reveal that  the largest eigenvalues for the 
nontransformers,  the transformers, the converts and 
the DNA pool are each associated with  Poisson distribu- 
tions. Hence,  the Poisson distributions represent  a sta- 
ble solution. This is hardly surprising because conver- 
sion events merely shuffle cells from one class to an- 

other  and thus do not affect the distributions of 
deleterious mutations in those cells and the DNA pool. 

When r, the size  of the DNA fragments, is sufficiently 
small, the  competence loci are  unlinked. Each convert 
now carries exactly one c- allele drawn from a sample 
of n c- alleles  in the nontransformers. The probability 
that  a  fragment of  DNA carries a c- allele is  now  given 
by Equation 11. With time, the mutational distributions 
converge on Poisson, and equations 12-14 become 

dN 
dt 
" - 0, 

d T  n N +  Cl 
" - - r  Q K T  
dt K 

dCl nN + Cl 
- = r  

dt K 
9 K T  

nN + Cl 
= r  " Q'Yl(K- N -  C l ) .  (17) 

K 

Integrating and taking the log,[ T/  ( N  + Cl ) ] yields 

x (1 - e'QYY1l(nN,O+K-NYIO)/K 

where T,, and C,.,, , and NQ and Tb are  the densities at 
time tl and to ,  respectively. The complexity of this func- 
tion indicates that  the intensity of selection changes 
with time. At t = 0, and taking C1,,, = 0, the selection 
coefficient is simply S = -rn9Y, (note that S refers to 
selection between the populations, whereas s refers to 
the fitness function). As time proceeds, the selection 
coefficient converges on S = - r 9  Y ,  ( nNlo + K - Nto ) / 

transformers. However, the selection is not inherently 
frequency dependent,  and in the special  case where 
there is only one c locus controlling transformation, n 
= 1 and Equation 18 collapses to 

K =  - r 9  U, ( n N,, + Cl.w) / K as the converts replace the 

where rQK is a conventional selection coefficient. 
Equations 18 and 19 show that  the selection is depen- 

dent only on the risk  of being transformed by a c- allele, 
that this may  vary if n > 1, and that it is independent of 
the  strength of selection (s) against the deleterious 
mutations in the  linear fitness function ( p i  = 1 - is). 

We conclude  that  a  linear fitness function yields an 
equilibrium distribution of deleterious mutations that 
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is Poisson, mean m/ s, and that  remains  unchanged by 
recombination and conversion. Hence,  recombination 
has no possible benefit, so that even a slight risk  of 
conversion suffices to eliminate all c+ alleles. To investi- 
gate conditions where c+ alleles could be favored, we 
now consider  nonlinear fitness functions. 

Nonlinear  fitness  functions 

The simple analytic solution above is not easily  ex- 
tended to the  general case where fitness is an arbitrary 
decreasing function of the  number of mutations per 
genome (e.g. ,  pi = 1 - ( is) a f 1 ) . The problem 
arises because an arbitrary fitness function  generates 
nonlinear sets of differential equations  that have no 
obvious solution. 

Nevertheless, a solution can be  obtained to the most 
biologically interesting case, invasion of an equilibrium 
population of nontransformers by a  rare  population of 
transformers. Under these circumstances the  mutation 
distribution of the  nontransformers remains similar to 
that of an isolated population, NI'". Moreover, the DNA 
pool is dominated by  DNA arising from the  nontrans- 
formers. Consequently, the coefficients in  Equation 6 
behave as constants (since p j j  and P k  are now  solely 
determined by N:") ,  reducing  a highly nonlinear sys- 
tem of simultaneous differential equations to a tractable 
linear  form. 

Selection when  transformers  are  rare: The mixed 
model described by Equations 5-7 becomes 

dN, 
" 

dt  
- 0, 

d Ti 2. 

" - ( p j  - D) T, + mTipI - mT; + XPYt p,,T, 
dt /=o  

during invasion of an equilibrium  population of non- 
transformers by a  rare  population of transformers. The 
converts, Ck,i ,  are  ignored because they are so rare  that 
they do  not affect the DNA pool  in any significant way. 

Even this linearized model  presents no obvious ana- 
lytic solution. With CY f l the  mutational distributions 
of the transformers, the  nontransformers, and  the DNA 
pool are  no  longer Poisson. Consequently, a simple 
solution, such as that derived for  the  linear fitness func- 
tion with a = 1, remains obscure. Nevertheless, matrix 
analysis can be used to characterize the selection coef- 
ficient acting on  the transformers once they have 
reached  an  equilibrium  distribution. 

The DNA pool is determined by the equilibrium dis- 
tribution of the  nontransformers (NE'") so that Equa- 
tion 21 can be rewritten as 

[dT,/dtI = A [ T , l ,  

where A is a matrix of constant coefficients. We can 
apply a Lyapunov  stability  analysis  of matrix A to deter- 
mine  whether  a stable equilibrium distribution of T, 
exists.  With (1 - X;=, P k )  > 0, all negative terms in 
Equation 21 are coefficients of T, . Hence, A is irreduc- 
ible and positive except on  the main  diagonal. Let A = 
B + XI, where B is an irreducible positive matrix. An 
irreducible positive matrix has exactly one nonnegative 
eigenvalue associated with a positive eigenvector (see 
GANTMACHER 1959). Consequently, A has at most one 
eigenvalue A,,,,, 2 0 and this is associated with the equi- 
librium distribution of T, .  

The maximum eigenvalue of A is the selection coef- 
ficient of the transformers. Thus, if S = X,,,;,, > 0 the 
invasion will be successful, and if S = X,,,,, < 0 the 
transformers will be purged. So long as the transformers 
remain very rare, all other eigenvalues are negative and 
the  mutational  distribution of T, is Lyapunov asymptoti- 
cally stable. In  other words,  given sufficient time and 
that T, remains  rare,  the Tj will asymptotically approach 
an  equilibrium  distribution  at which point X,,,,, provides 
an estimate of S ,  the selection coefficient of the trans- 
formers. 

Simulating selection: In this section we investigate 
how the sign of S = X,,,,, depends  on  the fitness func- 
tion,  fragment size, rate of transformation, and  the mu- 
tation rate. First we set the stage by looking  at  the iso- 
lated  populations of nontransformers ( N y )  that our 
transforming cells might invade. Figure 2 shows a series 
of  fitness functions of the form y, = 1 - ( i s )  a, and  the 
corresponding equilibrium distributions of mutations. 
For a = 1 (solid line), the fitness function is linear 
and  the mutation  distribution is Poisson  with mean K 

= m/s (here K = 30).  With  positive  epistasis ( a  > 
1 ) , selection becomes relatively more  intense as the 
number of mutations  per cell increases. The mutational 
distribution shifts to the left, and K is reduced. With 
negative  epistasis ( CY < 1 ) , selection becomes relatively 
less intense as the  number of mutations  per cell in- 
creases. The mutational  distribution shifts to the  right, 
and K rises. The shift in K provides a  measure of the 
effect of epistasis, and thus of the  potential cost or ad- 
vantage of recombination. 

Next we use Equation 20 to evaluate the selection 
coefficient ( S  = A,,,,) acting  on transformers invading 
these equilibrium populations of nontransformers. The 
top  panel in Figure 3 illustrates the effect of  epistasis 
on  the selection coefficient for  transformation, using 
the fitness functions shown in Figure 2. Consistent with 
expectations from models of meiotic sex, transforma- 
tion can be advantageous ( S > 0)  only  with  positive 
epistasis, while  with  negative  epistasis it is  always disad- 
vantageous ( S  < 0 ) .  Yet even  with  positive  epistasis, 
the advantage is decreased and even eliminated when 
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FIGURE 2.-Examples  of the effect of epistasis on  the fitness 
function ( p z  = 1 - (is)=, top)  on  the equilibrium  distribu- 
tion of mutations among cells of an isolated population of 
nontransformers (N:"", bottom); m = 0.003 ( D m  1991), 
s, = sa = In  the absence of epistasis ( a  = 1, -) the 
fitness function is linear ( p ,  = 1 - is, ) , generating a Poisson 
distribution with mean m/ s, = 30. With positive epistasis ( a 
= 1.25, ---) additional mutations  cause  a disproportional de- 
crease  in fitness and  the  mean  number of mutations per cell is 
reduced. With negative epistasis ( (Y = 0.75, - - - ) additional 
mutations have progressively less deleterious effects on fitness 
and  the  mean  number of mutations per cell is increased. 

DNA fragments are large, because the risk  of losing 
a c+ allele overrides the weak  selective advantage of 
recombining  deleterious  mutations. Note that as the 
number of  loci controlling transformation ( n )  in- 
creases, so does  the risk  of losing a c+ allele through 
recombination ( X  p k )  . 

The effect of intensifymg the selection against delete- 
rious mutations is to reduce  the  mean  number of muta- 
tions per cell, as illustrated by the lower panel in Figure 
3, where selection is increased from 0.0001 to  0.001. In 
the  absence of  epistasis this has reduced K ,  the average 
number of mutations  per  nontransforming cell, from 
30 to 3. Now, the  transformers  are only favored when 
epistasis is  very strongly positive ( a  = 4 ) .  This is be- 
cause the  mutation  distribution  remains approximately 
Poisson for  moderate  changes in epistasis when K is 
small. Hence positive  epistasis is necessary but  not suf- 
ficient  for  transformation  to be advantageous, and  the 
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FIGURE 3.-The effect of recombined  fragment sizes and 
selection  intensities ( s )  on  the selection coefficient for trans- 
formation (S) . With m/ sa = 0.003/ = 30 and a  modest 
degree of epistasis ( a  = 1.25, ---) , transformation is selectively 
advantageous (top  panel) so long as recombined  fragment 
sizes are  not too  large.  When selection is intensified  (lower 
panel; m/s" = 0.003/10-' = 3 ) ,  strong epistasis ( a  = 4, 
- - - )  is required if transformation is to be  advanta  eous. 
In both cases transformation is infrequent (@x = 10- ) and 
the  number of transformation loci n = 1. 

F 

stronger  the selection against deleterious  mutations, 
the weaker the selection for transformability. 

Figure 4 illustrates the effect of changes in the  net 
rate of transformation SY,, under the strongest condi- 
tions from the  top  panel of Figure 3 ( m /  s1 = 30, (Y 

= 1.25 ) . Low rates of transformation ( \I, Y,  = 
generate weak  positive selection for transformers over 
a broad  range of fragment sizes. High rates of transfor- 
mation ( q ~ ,  = IO-')  generate  stronger positive  selec- 
tion but over a  much narrower range of fragment sizes. 

To summarize, the  model suggests that  the evolution 
of transformation requires positive  epistasis ( a  > 0 )  , 
and that  conditions are most favorable when the  mean 
number of deleterious  mutations  per  genome ( K )  is 
large, when fragment sizes ( r )  are small, when the  num- 
ber of  loci controlling transformation ( n )  is small, and 
when rates of transformation ( S  Y , )  are  moderate (if 
SK is large,  then r must be tiny, and if SY, is small, 
then selection may be too weak to override the effects 
of  genetic drift). 
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FIGURE 4.-The effect of transformation rates on the  selec- 
tion  coefficient for transformation ( S )  with m/s" = 0.003/ 
10 -4 = 30, a = 1.25 and n = 1. Increasing the rate of transfor- 
mation ( a  Y,) causes  selection  intensities to increase at the 
expense of the  range in recombined  fragment sizes. Con- 
versely,  decreasing the rate of transformation causes selection 
intensities  to decrease as the  range  in  recombined  fragment 
sizes broadens. 

A simple  approximation: There is a simple approxi- 
mation (APPENDIX B )  describing a necessary condition 
for  the evolution of transformation. When fragment 
sizes are small ( r + 0 ) , 

S = r Q Y ,  - - ~ - n  k 1 
Here m/ s1 = m/ sa is the value the Poisson mean  num- 
ber of mutations  per  genome would  have if the fitness 
function were linear with pi = 1 - isl, K is the actual 
mean number of mutations  per  nontransformer ge- 
nome with the fitness function pi = l - ( is) a ,  and n 
is the  number of unlinked loci controlling transforma- 
tion. 

The rate of recombination ( rQ K )  influences the in- 
tensity  of selection,  but the direction is determined by 
terms in the brackets: for transformation to be selec- 
tively advantageous, 

- > > + K .  
m 

S I  
( 2 3 )  

This simple expression shows that selection in favor of 
the transformers may exist only when the Poisson mean 
exceeds the sum of the actual mean  and  the  number 
of unlinked loci controlling  transformation. Note that 
transformation is certain to  be disadvantageous if either 
n or K exceeds m/ sl. 

The  dependence  on K reflects the role of the epistatic 
interactions implicit in the fitness function. The in- 
equality is not satisfied in the  absence of epistasis ( a  = 
1 and K = m /  s1 ) , nor is it satisfied in the presence of 
negative epistasis ( a  < 1 and K > m /  sl). Only the 
presence of  positive  epistasis (cy > 1 and K < m/ SI) 
potentially allows the evolution of transformation. The 

dependence  on m/sl  reflects the  need  for sufficient 
mutations to accumulate, and the  dependence  on n 
reflects the additional risk imposed by the  chance of 
conversion at each locus required  for transformation. 

When the DNA pool contains excess mutations: To 
this point we have assumed that  the  rate of DNA pro- 
duction (8)  is proportional to cell density. One simple 
biological interpretation is that all  cell deaths are ran- 
dom, with selection ( i . e . ,  the fitness function) affecting 
only the rate of cell division.  While  many cell deaths 
are  undoubtedly nonselective, many others may be 
caused by mutation. Consequently, it may be more valid 
to assume that the rate of cell  division remains  constant 
and mutations affect death rates. This does not affect 
the fitness function,  nor  the  equilibrium distribution 
of mutations in the  nontransformers,  but it will change 
the composition of the DNA pool and thus  the conse- 
quences of transformation. Specifically,  selective deaths 
will cause the DNA pool to contain  a disproportionately 
large number of mutations, thereby decreasing its  po- 
tential usefulness. 

Let the  death rate be the selection coefficient, ( is) a .  

The differential equation describing the  rate of change 
of genomes, G, , of dead cells in  the DNA pool is 

dGj -=d'(is)"Nt'"- ( D + E + Q T , ) G ,  
dt 

where d ' ,  in analogy to 8 for living cells, is the  rate  at 
which genomes from selective deaths ( ( is) " N P )  enter 
the DNA pool. The equilibrium  distribution of muta- 
tions among  genomes from dead cells is calculated as 

8 I ( is) "N"? 8 mW;T1 G. = - - 
' D + E + Q T ,  D + E + Q T , '  

because ( is) = m x T l  (from Equation 3 ) .  The 
mean  number of mutations  per  genome of dead cells 
is calculated by 

= K +  1. 

Thus,  the  genomes of dead cells in  the DNA pool con- 
tain, on average, one  more mutation  than those of the 
living  cells, K .  This immediately suggests that  the ap- 
proximation in Equation 22 be modified to 

S= rQY,(?)[?- K - n -  1 , (24)  
SI 1 

where the  ratio 8 ' m /  8 normalizes the  net rates of DNA 
production of the two hypotheses ( a  formal proof is 
given in APPENDIX C )  . 

For transformation to be selectively advantageous 

- > n + ~ + l .  
m 

SI 
( 2 5 )  
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Transformers  are selectively favored only when the Pois- 
son mean exceeds the sum of the  actual  mean and  the 
number of alleles controlling  transformation plus one. 
Hence,  the  net effect of transforming with DNA arising 
from selective deaths is to raise the threshold by one 
mutation. 

DISCUSSION 

The above model was developed to identify factors 
constraining the evolution of genes causing bacterial 
transformation. The effect of transformation is to redis- 
tribute  mutations among cells, and in so doing, influ- 
ence  the  mutation  load.  In this respect, our model re- 
sembles those often  applied to meiotic sexual repro- 
duction,  and it reveals the same dependence  on  the 
fitness function and mutation  rate ( CHARLESWORTH 
1990; KONDRASHOV 1994).  Our mode1  also  reveals that 
any potential  benefit is also opposed by  two novel  costs 
that arise from the nonreciprocity of transformation: 
DNA derived from  nontransforming cells carries non- 
transforming alleles ( c - )  at  the loci controlling trans- 
formability, and DNA derived from selectively killed 
cells carries excess deleterious mutations. If the role of 
transformation is to reduce  mutational  load,  then  both 
the fitness function and  the transformation-specific 
costs constrain its evolution. 

As with models of meiotic sex, transformation in our 
model is beneficial only when positive epistatic interac- 
tions between deleterious  mutations exist ( i.e., a > 1 ) , 
The advantage is greater when the  mutation  rate  per 
genome is high relative to the selective  cost  of a single 
mutation (that is, when m/  s1 is large) , mainly because 
accumulated  mutations are  the raw material on which 
recombination acts. The potential  benefit of this recom- 
bination is diminished by the risk  of converting the 
alleles specifying transformability; maintaining  each c' 
allele requires  a  corresponding increase in the  strength 
of epistasis.  Finally, transformation using DNA from se- 
lectively killed cells requires the effect of  epistasis to be 
stronger still (by  one additional mutation), because 
the excess mutations in the DNA pool  prevent recombi- 
nation  from fully reducing  the  mutation  load. 

DNA  is surely available for cells to take up. Many 
environmental and genetic factors cause cell lysis, in- 
cluding  phage  infection, colicins, antibacterial com- 
pounds  produced by other organisms, and mutations 
affecting osmoregulation or  the cell envelope. Thus 
some DNA  will be available from random cell deaths, 
and some from selectively killed cells. If bacteria grow 
in colonies or dense  populations, and if extracellular 
nuclease activity  is  low, conspecific DNA might even be 
abundant. Transformable bacteria can efficiently take 
up small DNA fragments  from very dilute solutions 
( e.g., BAROUKI and SMITH 1986), so even dilute or semi- 
degraded DNA could  be used. 

Only a few genes are  needed to confer transformabil- 
ity. The enzymes that carry out  the physical recombina- 
tion of  DNA are  present  in all bacteria, because they 
are  needed  for DNA metabolism and repair (WALKER 
1985; WALKER et al. 1985). Thus, any mutation  that 
causes DNA fragments to be brought  into  a cell may 
lead  to  transformational  recombination. In principle  a 
single mutation,  perhaps  changing  the substrate speci- 
ficity  of a  permease,  might be sufficient. The view that 
only a few genetic  changes are  needed to confer trans- 
formability is supported by the sporadic  distribution of 
natural  transformation systems among distantly related 
bacterial groups ( LORENZ and WACKERNACEL 1994). 

That a  transformation system be mechanistically and 
genetically accessible is insufficient for its evolution, it 
must also be favored by selection. A hypothetical popu- 
lation not subject to deleterious  mutation has a fitness 
of 1, whereas a  population of nontransformers subject 
to deleterious  mutation has a fitness of 1 - m (Equation 
2 ) .  Thus, the maximum conceivable gain in fitness 
from  transformation is m. If nrQY, > m, then  the risk 
of conversion exceeds the benefit of transformation. 
Under these circumstances transformation can not 
evolve. 

Experimentally measured  mutation rates for  a variety 
of microorganisms have been  compiled by DRAKE 
(1991 ) . Despite differences in genome size, the rates 
per  genome all cluster around 0.003 per  generation. 
Transformation  experiments using genomic DNA and 
selecting for single alleles at  unique loci  mimic the in- 
troduction of a single c- allele ( n = 1 ) per  generation. 
In laboratory experiments  transforming bacteria pro- 
vided with sufficient DNA usually replace - 1 % of their 
genomes, ( BARCXK et al. 1991; HOCH 1991 ) . Hence if 
DNA  is not very scarce, r9Yt  = 0.01 > 0.003 = m. Note 
that  the inequality becomes even greater with n > 1 
( rn*Y, > r Q K )  and with a fair proportion of  all muta- 
tions being selectively neutral:  the  experiments of KI- 
BOTA and LYNCH (1996) suggest a lower bound of 
-0.0002 for  the  genomic  mutation  rate to deleterious 
alleles in Eschm'chia coli. If these experimental values 
reflect those in natural  populations,  then transforma- 
tion could never have  evolved to reduce  the  mutation 
load. 

Transformation rates are probably lower in  natural 
populations  than  in laboratory experiments, where 
DNA  is abundant  and  the cells are typically  grown to 
maximum competence. Mutation rates in natural  popu- 
lations may also be higher. The possibility  of m > nr9  Yt 
is therefore very real.  Under these circumstances Equa- 
tion 20, which  uses DNA from selectively killed cells, 
provides a reasonable condition  for transformation to 
be advantageous: with two loci controlling transforma- 
tion, we need m / s l  - K > 3. A key requirement is that 
positive  epistasis  exists ( Le., a > 1 ) , otherwise m/ s1 - K 

< 0. Metabolic control theory suggests that  combining 
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mutations  in  different genes within the same metabolic 
pathway  will, in general,  generate negative epistatic ef- 
fects ( a < 1; REDFIELD 1988).  The only experiment 
assessing fitness as a  function of two metabolic fluxes 
provides no evidence that  mutant genes in  different 
pathways need  generate epistatic effects ( a  = 0;  DYK- 
HUIZEN and DEAN 1994). SZATHMARY ( 1993), analyzing 
a  model of flux under stabilizing selection (DEAN et al. 
1988; CLARKE 1991 ) , concluded that positive  epistasis 
( a  > 1 )  can be generated.  Thus,  experimental and 
theoretical results are, in the final analysis, equivocal 
with regard to the existence of positive epistatic effects. 

Our model suggests that even when highly favorable 
conditions  are assumed, the benefit derived from trans- 
formation  reducing  the  mutational load is  very slight 
(see Figure 3 ) .  For example, with rn = 0.03 (high muta- 
tion rate) , a = 3 (very strong positive epistasis) , s1 = 
lo-" (weak selection), QK = 0.01 (moderate trans- 
formability because DNA  will be degraded by exo- 
nucleases in natural environments),  and  that DNA 
comes from randomly rather  than selectively  killed 
cells, the selective advantage only reaches a maximum 
of S = 0.01 when r = 0.065. Yet a selective advantage 
of 0.01 is unlikely to overcome the physiological  costs 
of the DNA uptake machinery. For example, selection 
against a constitutively expressed lactose operon (which 
encodes  a  permease) during growth on glucose incurs 
a cost of 0.05 ( NOVICK and WEINER 1957). 

Any analysis  of bacterial transformation is severely 
limited by the lack of adequate estimates of natural 
mutation rates, and of the selective consequences of 
these mutations. Nevertheless, it seems likely that trans- 
formation has evolved for reasons other  than  reducing 
mutational load. 
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Exchange by transformation: To show that  the  net 
rate of exchange by transformation with 7; is zero when 
the  populations assume Poisson distributions (mean 
m/ s) , note  that 

.x z 

Q Y ~  $127; - Q K T ~  = Q K  (PI~T, - p,Tj) + 

j = O  ,=o 

Hence, it is sufficient to show that 
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Starting with Equation 6 and substituting = 
Tl[ ( m / s )  j / j !  3 e-"" and K - k  = Y , [  ( r m / s )  i p k /  ( i  - 
k )  ! ] e-""' ' yields 

Hence,  the  net  rate of exchange by transformation 
with T, is zero when the  populations assume Poisson 
distributions (mean m/ s) . 

APPENDIX B 

An approximation: With p, = rJYo/Y,  and noting 
that po - D - m = 0 because the  nontransformers 
dominate  and  are distributed as  if in isolation, rewrite 
Equation 20 with To as 

If the distribution of is at  equilibrium then  the above 
immediately yields 

where Yo is calculated using Equation 9 with 4 = NY 
(using Equation 3 )  . 

For r --t 0, the  competence loci behave as if unlinked. 
Thus,  the probability that  a DNA fragment carries a c- 
allele becomes P k  = nr. Also, the  mutational distri- 
bution of the transformers will remain similar to that 
of an equilibrium  population of nontransformers in 
isolation. The selection coefficient for  the transformers 
is then  approximated by 

Expanding the terms on  the right  hand side yields 

Noting that ( roNo/ No - I; , /Yo) = 0 and substituting 
for N, using Equation 3 yields 

+ ( & - g  y2)+ ...I, 
which  consists  of an infinite sum of terms that decrease 
in  a (roughly) geometric manner. 

With r +  0 terms in r2 or greater powers will be very 
small and can be ignored.  Furthermore  the  frequency 
of such small DNA fragments  containing two or  more 
mutations will be insignificant so that terms in Y2 or 
greater can also be ignored.  Thus, with r-+ 0 the above 
reduces to 

(Equation 2 2 ) ,  because Yo = Y,, Yl / Yo = m, where K 

is the actual mean number of mutations  per  genome 
for  the arbitrary fitness function. m / s l  = m/s"  is the 
value the Poisson mean  number of mutations per ge- 
nome would  have if the fitness function were linear with 
pt = 1 - i s l ,  and n is the  number of alleles controlling 
transformation. 

APPENDIX C 

DNA from selective  deaths: The density of  DNA with 
j mutations arising as a  consequence of  selective death 
( Y ;  ) is given by Equation 9 with 0 substituted by 0'  ( is) " 
so that  the  rate of DNA production is proportional to 
the selection coefficient: 

8' ( i s )  "(4) rl( 1 - r) *-'Nf'" 
D +  E +  Q T ,  

Y ;  = 

From Equation 3, NY = mNy?, / ( is) " and 

Y J  = m 
8' (J) ri( 1 - r) "'NY?'1 

D +  E +  QT,  

= O'm 
rJ x:=j (I) (1 - r) i-lNYl 

D +  E +  QT, 

(1  - r) rjXT=J (J) (1 - r) '-'NY (1 - r) - 
D +  E +  QTl +-?I. 8 

where 7 is calculated using Equation 7. This equation 
can be reduced: 
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OrX:=l (I) r1-l ( 1  - r )  '-jxY1 e ' m  
- ( 1  - r )  (j) r i - l (  1 - r ) i - ~ ~ y  S' = -nrQ - yt y '  = B'm [ 0 

' 8  D +  E +  QTt  8 'm r 
+ Q - - ( l - r ) Y o  " ~ - -  

0 [ ( Y  ( 1  - r )  K, y1 ) 
+ ( 1  - T ) ?  = -  1 *: 

+ (G - ( 1  - r)Yo Yo 
rY1 - 3) + . . . ]  

X [  

erEy=j"=j_l ( i" l )  F l ( 1  - r )  ; - ( j - ' )  N + ( 1  - r ) y ,  
D + E + Q T ,  1 

Y j  = - [rY,- ,  + ( 1  - 451. 8 ' m  
0 

With 

m 0 ' m  
YI  = c Y j  = - [ T u ,  + ( 1  - r ) K ]  = - Y,, 

B'm 

j = O  e e 
the selection coefficient, S', is approximated by 

S' = -nrXPy: + QY; ,  - - - [(Y :i) 
+(X" y ; )  + . . .] , 

s a ( 2 s ) a  y; ,  

which upon  substituting  Equation 19 becomes 

B'm 8 ' m  = -nrQ- K +  XP- ( 1  - r )  
0 B 

x Yo[('--- r 
sa ( 1 - r )  ( 1  ( l +  - r ) Y o  r ) y ' )  

r2 m2 

+(" s a ( 2 s ) a  ( l  ( 1  + - r ) Y z )  ?")Yo + . . .] . 
When the  leading  term  in  the  sequence is dominant, 

B'm O'm 
S ' = - n r Q - y t + Q - ( l - r )  

0 e 
x u o  ---- (" sa ( 1  - 7 " )  ( 1 - ? - ) Y o  ( l +  r ) y l ) .  

r 

The approximation  reduces to 

S'= rQY,(?)[?- n -  1 - K , (24 )  
$1 1 

when r is  small and Yo = Y, ,  Y l / Y o  = ~ i c  and m/ sa = 

m/ SI. 


