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ABSTRACT
High dimensional error covariance matrices and their inverses are used to weight the contribution of
observation and background information in data assimilation procedures. As observation error covariance
matrices are often obtained by sampling methods, estimates are often degenerate or ill-conditioned, making it
impossible to invert an observation error covariance matrix without the use of techniques to reduce its
condition number. In this paper, we present new theory for two existing methods that can be used to
‘recondition’ any covariance matrix: ridge regression and the minimum eigenvalue method. We compare
these methods with multiplicative variance inflation, which cannot alter the condition number of a matrix,
but is often used to account for neglected correlation information. We investigate the impact of
reconditioning on variances and correlations of a general covariance matrix in both a theoretical and
practical setting. Improved theoretical understanding provides guidance to users regarding method selection,
and choice of target condition number. The new theory shows that, for the same target condition number,
both methods increase variances compared to the original matrix, with larger increases for ridge regression
than the minimum eigenvalue method. We prove that the ridge regression method strictly decreases the
absolute value of off-diagonal correlations. Theoretical comparison of the impact of reconditioning and
multiplicative variance inflation on the data assimilation objective function shows that variance inflation
alters information across all scales uniformly, whereas reconditioning has a larger effect on scales
corresponding to smaller eigenvalues. We then consider two examples: a general correlation function, and an
observation error covariance matrix arising from interchannel correlations. The minimum eigenvalue method
results in smaller overall changes to the correlation matrix than ridge regression but can increase off-diagonal
correlations. Data assimilation experiments reveal that reconditioning corrects spurious noise in the analysis
but underestimates the true signal compared to multiplicative variance inflation.

Keywords: condition number, covariance approximation, observation error covariance matrix, data
assimilation, reconditioning

1. Introduction

The estimation of covariance matrices for large dimen-
sional problems is of growing interest (Pourahmadi,
2013), particularly for the field of numerical weather pre-
diction (NWP) (Weston et al., 2014; Bormann et al.,
2016) where error covariance estimates are used as
weighting matrices in data assimilation problems (e.g.
Ghil, 1989; Daley, 1991; Ghil and Malanotte-Rizzoli,
1991). At operational NWP centres there are typically

Oð107Þ measurements every 6 h (Bannister, 2017),

meaning that observation error covariance matrices are
extremely high-dimensional. In nonlinear least-squares
problems arising in variational data assimilation, the
inverses of correlation matrices are used, meaning that
well-conditioned matrices are vital for practical applica-
tions (Bannister, 2017). This is true in both the unprecon-
ditioned and preconditioned variational data assimilation
problem using the control variable transform, as the
inverse of the observation error covariance matrix
appears in both formulations. The convergence of the
data assimilation problem can be poor if either the back-
ground or observation variance is small; however, the
condition number and eigenvalues of background and
observation error covariance matrices have also been
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shown to be important for convergence in both the
unpreconditioned and preconditioned case in Haben et al.
(2011a, 2011b), Haben (2011), Tabeart et al. (2018).
Furthermore, the conditioning and solution of the data
assimilation system can be affected by complex interac-
tions between the background and observation error
covariance matrices and the observation operator
(Johnson et al., 2005; Tabeart et al., 2018). The condition
number of a matrix, A, provides a measure of the sensi-
tivity of the solution x of the system Ax ¼ b to perturba-
tions in b: The need for well-conditioned background and
observation error covariance matrices motivates the use
of ‘reconditioning’ methods, which are used to reduce the
condition number of a given matrix.

In NWP applications, observation error covariance
matrices are often constructed from a limited number of
samples (Cordoba et al., 2016; Waller, Ballard, et al.,
2016; Waller, Simonin, et al., 2016). This can lead to
problems with sampling error, which manifest in sample
covariance matrices, or other covariance matrix estimates,
that are very ill-conditioned or can fail to satisfy required
properties of covariance matrices (such as symmetry and
positive semi-definiteness) (Ledoit and Wolf, 2004;
Higham et al., 2016). In some situations, it may be pos-
sible to determine which properties of the covariance
matrix are well estimated. One such instance is presented
in Skøien and Bl€oschl (2006), which considers how well
we can expect the mean, variance and correlation length-
scale of a sample correlation to represent the true correl-
ation matrix depending on different properties of the
measured domain (e.g. sample spacing, area measured by
each observation). However, this applies only to direct
estimation of correlations and will not apply to diagnostic
methods (e.g. Desroziers et al., 2005), where transformed
samples are used and covariance estimates may be poor.
We note that in this paper, we assume that the estimated
covariance matrices used in our experiments represent the
desired correlation information matrix well and that dif-
ferences are due to noise rather than neglected sources of
uncertainty. This may not be the case for practical situa-
tions, where reconditioning may need to be performed in
conjunction with other techniques to compensate for the
underestimation of some sources of error.

Depending on the application, a variety of methods
have been used to combat the problem of rank deficiency
of sample covariance matrices. In the case of spatially
correlated errors, it may be possible to fit a smooth cor-
relation function or operator to the sample covariance
matrix as was done in Simonin et al. (2019) and Guillet
et al. (2019), respectively. Another approach is to retain
only the first k leading eigenvectors of the estimated cor-
relation matrix and to add a diagonal matrix to ensure
the resulting covariance matrix has full rank (Stewart

et al., 2013; Michel, 2018). However, this has been shown
to introduce noise at large scales for spatial correlations
and may be expensive in terms of memory and computa-
tional efficiency (Michel, 2018). Although localisation can
be used to remove spurious correlations, and can also be
used to increase the rank of a degenerate correlation
matrix (Hamill et al., 2001), it struggles to reduce the
condition number of a matrix without destroying off-
diagonal correlation information (Smith et al., 2018). A
further way to increase the rank of a matrix is by consid-
ering a subset of columns of the original matrix that are
linearly independent. This corresponds to using a subset
of observations, which is contrary to a key motivation
for using correlated observation error statistics: the ability
to include a larger number of observations in the assimi-
lation system (Janji�c et al., 2018). Finally, the use of
transformed observations may result in independent
observation errors (Migliorini, 2012; Prates et al., 2016);
however, problems with conditioning will manifest in
other components of the data assimilation algorithm, typ-
ically the observation operator. Therefore, although other
techniques to tackle the problem of ill-conditioning exist,
they each have limitations. This suggests that for many
applications the use of reconditioning methods, which we
will show are inexpensive to implement and are not lim-
ited to spatial correlations, may be beneficial.

We note that small eigenvalues of the observation error
covariance matrix are not the only reason for slow con-
vergence: if observation error standard deviations are
small, the observation error covariance matrix may be
well-conditioned, but convergence of the minimisation
problem is likely to be poor (Haben, 2011; Tabeart et al.,
2018). In this case reconditioning may not improve con-
vergence and performance of the data assimila-
tion routine.

Two methods, in particular, referred to in this work as
the minimum eigenvalue method and ridge regression, are
commonly used at NWP centres. Both methods are used
by Weston (2011), where they are tested numerically.
Additionally, in Campbell et al. (2017), a comparison
between these methods is made experimentally and it is
shown that reconditioning improves convergence of a
dual four-dimensional variational assimilation system.
However, up to now there has been minimal theoretical
investigation into the effects of these methods on the
covariance matrices. In this paper, we develop theory
that shows how variances and correlations are altered by
the application of reconditioning methods to a covari-
ance matrix.

Typically reconditioning is applied to improve conver-
gence of a data assimilation system by reducing the con-
dition number of a matrix. However, the convergence of
a data assimilation system can also be improved using
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multiplicative variance inflation, a commonly used
method at NWP centres such as ECMWF (Liu and
Rabier, 2003; McNally et al., 2006; Bormann et al., 2015,
2016) to account for neglected error correlations or to
address deficiencies in the estimated error statistics by
increasing the uncertainty in observations. It is not a
method of reconditioning when a constant inflation fac-
tor is used, as it cannot change the condition number of
a covariance matrix. In practice, multiplicative variance
inflation is often combined with other techniques, such as
neglecting off-diagonal error correlations, which do alter
the conditioning of the observation error covari-
ance matrix.

Although it is not a reconditioning technique, in
Bormann et al. (2015) multiplicative variance inflation
was found to yield faster convergence of a data assimila-
tion procedure than either the ridge regression or min-
imum eigenvalue methods of reconditioning. This finding
is likely to be system-dependent; the original diagnosed
error covariance matrix in the ECMWF system has a
smaller condition number than the corresponding matrix
for the same instrument in the Met Office system
(Weston et al., 2014). Additionally, in the ECMWF sys-
tem, the use of reconditioning methods only results in
small improvements to convergence, and there is little dif-
ference in convergence speed for the two methods. This
contrasts with the findings of Weston (2011), Weston
et al. (2014), and Campbell et al. (2017) where differences
in convergence speed when using each method of recondi-
tioning were found to be large. Therefore, it is likely that
the importance of reducing the condition number of the
observation error covariance matrix compared to inflat-
ing variances will be sensitive to the data assimilation sys-
tem of interest. Aspects of the data assimilation system
that may be important in determining the level of this
sensitivity include: the choice of preconditioning and
minimisation scheme (Bormann et al., 2015), quality of
the covariance estimate, interaction between background
and estimated observation error covariance matrices
within the data assimilation system (Fowler et al., 2018;
Tabeart et al., 2018), the use of thinning and different
observation networks. We also note that Stewart et al.
(2009, 2013) and Stewart (2010) consider changes to the
information content and analysis accuracy corresponding
to different approximations to a correlated observation
error covariance matrix (including an inflated diagonal
matrix). Stewart et al. (2013) and Healy and White (2005)
also provide evidence in idealized cases to show that
inclusion of even approximate correlation structure gives
significant benefit over diagonal matrix approximations,
including when variance inflation is used.

In this work, we investigate the minimum eigenvalue
and ridge regression methods of reconditioning as well as

multiplicative variance inflation, and analyse their impact
on the covariance matrix. We compare both methods the-
oretically for the first time, by considering the impact of
reconditioning on the correlations and variances of the
covariance matrix. We also study how each method alters
the objective function when applied to the observation
error covariance matrix. Other methods of recondition-
ing, including thresholding (Bickel and Levina, 2008) and
localisation (Horn and Johnson, 1991; M�en�etrier et al.,
2015; Smith et al., 2018) have been discussed from a the-
oretical perspective in the literature but will not be
included in this work. In Section 2, we describe the meth-
ods more formally than in previous literature before
developing new related theory in detail in Section 3. We
show that the ridge regression method increases the var-
iances and decreases the correlations for a general covari-
ance matrix and the minimum eigenvalue method
increases variances. We prove that the increases to the
variance are bigger for the ridge regression method than
the minimum eigenvalue method for any covariance
matrix. We show that both methods of reconditioning
reduce the weight on observation information in the
objective function in a scale-dependent way, with the
largest reductions in weight corresponding to the smallest
eigenvalues of the original observation error covariance
matrix. In contrast, multiplicative variance inflation using
a constant inflation factor reduces the weight on observa-
tion information by a constant amount for all scales. In
Section 4, the methods are illustrated via numerical
experiments for two types of covariance structures. One
of these is a simple general correlation function, and one
is an interchannel covariance arising from a satellite-
based instrument with observations used in NWP. We
provide physical interpretation of how each method alters
the covariance matrix, and use this to provide guidance
on which method of reconditioning is most appropriate
for a given application. We present an illustration of how
all three methods alter the analysis of a data assimilation
problem, and relate this to the theoretical conclusions
concerning the objective function. We finally present our
conclusions in Section 5. The methods are very general
and, although their initial application was to observation
error covariances arising from NWP, the results presented
here apply to any sampled covariance matrix, such as
those arising in finance (Higham, 2002; Qi and Sun,
2010) and neuroscience (Schiff, 2011; Nakamura and
Potthast, 2015).

2. Covariance matrix modification methods

We begin by defining the condition number. The condi-
tion number provides a measure of how sensitive the
solution x of a linear equation Ax ¼ b is to perturbations

RECONDITIONING COVARIANCE MATRICES 3



in the data b: A ‘well-conditioned problem’ will result in
small perturbations to the solution with small changes to
b, whereas for an ‘ill-conditioned problem’, small pertur-
bations to b can result in large changes to the solution.
Noting that all covariance matrices are positive semi-def-
inite by definition, we distinguish between the two cases
of strictly positive definite covariance matrices and
covariance matrices with zero minimum eigenvalue.
Symmetric positive definite matrices admit a definition
for the condition number in terms of their maximum and
minimum eigenvalues. For the remainder of the work, we
define the eigenvalues of a symmetric positive semi-defin-

ite matrix S 2 R
d�d via:

k1ðSÞ � . . . � kdðSÞ � 0: (1)

Theorem 1. If S 2 R
d�d is a symmetric positive definite

matrix with eigenvalues defined as in (1) we can write the

condition number in the L2 norm as jðSÞ ¼ k1ðSÞ
kdðSÞ :

Proof. See Golub and Van Loan (1996, Sec. 2.7.2). w

For a singular covariance matrix, S, the convention is
to take jðSÞ ¼ 1 (Trefethen and Bau, 1997, Sec. 12). We
also note that real symmetric matrices admit orthogonal
eigenvectors which can be normalised to produce a set of
orthonormal eigenvectors.

Let R 2 R
d�d be a positive semi-definite covariance

matrix with condition number jðRÞ ¼ j: We wish to
recondition R to obtain a covariance matrix with condi-
tion number jmax

1 � jmax<j, (2)

where the value of jmax is chosen by the user. We denote
the eigendecomposition of R by

R ¼ VRKVT
R (3)

where K 2 R
d�d is the diagonal matrix of eigenvalues of

R and VR 2 R
d�d is a corresponding matrix of orthonor-

mal eigenvectors.
In addition to considering how the covariance matrix

itself changes with reconditioning, it is also of interest to
consider how the related correlations and standard devia-
tions are altered. We decompose R as R ¼ RCR, where C
is a correlation matrix, and R is a non-singular diagonal
matrix of standard deviations. We calculate C and R via:

Rði, iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Rði, iÞ

p
, Cði, jÞ ¼ Rði, jÞffiffiffiffiffiffiffiffiffiffiffiffi

Rði, iÞp ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðj, jÞp : (4)

We now introduce the ridge regression method and the
minimum eigenvalue method, the two methods of recon-
ditioning that will be discussed in this work. We then
define multiplicative variance inflation. This last method

is not a method of reconditioning, but will be used for
comparison purposes with the ridge regression and min-
imum eigenvalues methods.

2.1. Ridge regression method

The ridge regression method (RR) adds a scalar multiple
of the identity to R to obtain the reconditioned matrix
RRR: The scalar d is set using the following method.

� Define d ¼ k1ðRÞ�kdðRÞjmax

jmax�1 :

� Set RRR ¼ Rþ dI

We note that this choice of d yields jðRRRÞ ¼ jmax:

In the literature (Hoerl and Kennard, 1970; Ledoit and
Wolf, 2004), ‘ridge regression’ is a method used to regular-
ise least squares problems. In this context, ridge regression
can be shown to be equivalent to Tikhonov regularisation
(Hansen, 1998). However, in this paper, we apply ridge
regression as a reconditioning method directly to a covari-
ance matrix. For observation error covariance matrices,
the reconditioned matrix is then inverted prior to its use as
a weighting matrix in the data assimilation objective func-
tion. As we are only applying the reconditioning to a single
component matrix in the variational formulation, the
implementation of the ridge regression method used in this
paper is not equivalent to Tikhonov regularisation applied
to the variational data assimilation problem (Budd et al.,
2011; Moodey et al., 2013). This is shown in Section 3.5
where we consider how applying ridge regression to the
observation error covariance matrix affects the variational
data assimilation objective function. The ridge regression
method is used at the Met Office (Weston et al., 2014).

2.2. Minimum eigenvalue method

The minimum eigenvalue method (ME) fixes a threshold,
T, below which all eigenvalues of the reconditioned
matrix, RME, are set equal to the threshold value. The
value of the threshold is set using the following method.
� Set k1ðRMEÞ ¼ k1ðRÞ
� Define T ¼ k1ðRÞ=jmax>kdðRÞ, where jmax is

defined in (2).
� Set the remaining eigenvalues of RME via

kkðRMEÞ ¼ f kkðRÞ if kkðRÞ>T
T if kkðRÞ � T

: (5)

� Construct the reconditioned matrix via RME ¼
VRKMEVT

R, where KMEði, iÞ ¼ kiðRMEÞ:
This yields jðRMEÞ ¼ jmax: The updated matrix of eigen-
values can be written as KME ¼ Kþ C, the sum of the
original matrix of eigenvalues and C, a low-rank diag-
onal matrix update with entries Cðk, kÞ ¼ maxfT�kk, 0g:
Using (3) the reconditioned RME can then be written as:
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RME ¼ VRðKþ CÞVT
R ¼ Rþ VRCVT

R: (6)

Under the condition that jmax>d�l þ 1, where l is the
index such that kl � T<kl�1, the minimum eigenvalue
method is equivalent to minimising the difference

R�RME 2 R
d�d with respect to the Ky-Fan 1-d norm (the

proof is provided in Appendix). The Ky-Fan p – k norm
(also referred to as the trace norm) is defined in Fan
(1959) and Horn and Johnson (1991), and is used in
Tanaka and Nakata (2014) to find the closest positive
definite matrix with condition number smaller than a
given constant. A variant of the minimum eigenvalue
method is applied to observation error covariance matri-
ces at the European Centre for Medium-Range Weather
Forecasts (ECMWF) (Bormann et al., 2016).

2.3. Multiplicative variance inflation

Multiplicative variance inflation (MVI) is a method that
increases the variances corresponding to a covariance
matrix. Its primary use is to account for neglected error cor-
relation information, particularly in the case where diagonal
covariance matrices are being used even though non-zero
correlations exist in practice. However, this method can
also be applied to non-diagonal covariance matrices.

Definition 1. Let a>0 be a given variance inflation factor
and

R ¼ RCR

be the estimated covariance matrix. Then multiplicative
variance inflation is defined by

RMVI ¼ aR: (7)

This is equivalent to multiplying the estimated covari-
ance matrix by a constant. The updated covariance
matrix is given by

RMVI ¼ ðaRÞCðaRÞ ¼ a2RCR ¼ a2R: (8)

The estimated covariance matrix is therefore multiplied
by the square of the inflation constant. We note that the
correlation matrix, C, is unchanged by application of
multiplicative variance inflation.

Multiplicative variance inflation is used at NWP centres
including ECMWF (Bormann et al., 2016) to counteract
deficiencies in estimated error statistics, such as underesti-
mated or neglected sources of error. Inflation factors are
tuned to achieve improved analysis or forecast perform-
ance, and are hence strongly dependent on the specific data
assimilation system of interest. Aspects of the system that
might influence the choice of inflation factor include obser-
vation type, known limitations of the covariance estimate,
and observation sampling or thinning.

Although variance inflation is not a method of recon-
ditioning, as it is not able to alter the condition number
of a covariance matrix, we include it in this paper for
comparison purposes. This means that variance inflation
can only be used in the case that the estimated matrix
can be inverted directly, i.e. is full rank. Multiplicative
variance inflation could also refer to the case where the
constant inflation factor is replaced with a diagonal
matrix of inflation factors. In this case, the condition
number of the altered covariance matrix would change.
An example of a study where multiple inflation factors
are used is given by Heilliette and Garand (2015), where
the meteorological variable to which an observation is
sensitive determines the choice of inflation factor.
However, this is not commonly used in practice, and will
not be considered in this paper.

3. Theoretical considerations

In this section, we develop new theory for each method.
We are particularly interested in the changes made to C
and R for each case. Increased understanding of the effect
of each method may allow users to adapt or extend these
methods, or determine which is the better choice for prac-
tical applications.

We now introduce an assumption that will be used in
the theory that follows.

Main Assumption: Let R 2 R
d�d be a symmetric positive

semi-definite matrix with k1ðRÞ>kdðRÞ:
We remark that any symmetric, positive semi-definite

matrix with k1 ¼ kd is a scalar multiple of the identity, and
cannot be reconditioned since it is already at its minimum
possible value of unity. Hence in what follows, we will con-
sider only matrices R that satisfy the Main Assumption.

3.1. Ridge regression method

We begin by discussing the theory of RR. In particular,
we prove that applying this method for any positive sca-
lar, d, results in a decreased condition number for any
choice of R:

Theorem 2. Under the conditions of the Main Assumption,
adding any positive increment to the diagonal elements of
R decreases its condition number.

Proof. We recall that RRR ¼ Rþ dI: The condition num-
ber of RRR is given by

jðRRRÞ ¼ k1ðRRRÞ
kdðRRRÞ ¼

k1ðRÞ þ d
kdðRÞ þ d

: (9)

It is straightforward to show that for any
d>0,jðRRRÞ<jðRÞ, completing the proof. w
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We now consider how application of RR affects the
correlation matrix C and the diagonal matrix of standard
deviations R:

Theorem 3. Under the conditions of the Main Assumption,
the ridge regression method updates the standard deviation
matrix RRR, and correlation matrix CRR of RME via

RRR ¼ ðR2 þ dIdÞ1=2, CRR ¼ R�1
RRRR

�1
RR þ dR�2

RR: (10)

Proof. Using (4), Rði, iÞ ¼ ðRði, iÞÞ1=2: Substituting this
into the expression for RRR yields:

RRRði, iÞ ¼ ðRRRði, iÞÞ1=2 ¼ ðRði, iÞ þ dÞ1=2

¼ ðRði, iÞ2 þ dÞ1=2: (11)

Considering the components of CRR and the decompos-
ition of RRR given by (4):

RRRCRRRRR ¼ Rþ dId , CRR ¼ R�1
RRRR

�1
RR þ dR�2

RR (12)

as required. w

Theorem 3 shows how we can apply RR to our system
by updating C and R rather than R: We observe, from (10),
that applying RR leads to a constant increase to variances
for all variables. However, the inflation to standard devia-
tions is additive, rather than the multiplicative inflation
that occurs for multiplicative variance inflation. We now
show that RR also reduces all non-diagonal entries of the
correlation matrix.

Corollary 1. Under the conditions of the Main Assumption,
for i 6¼ j, jCRRði, jÞj<jCði, jÞj:

Proof. Writing the update equation for C, given by (10), in
terms of the variance and correlations of R yields:

CRR ¼ R�1
RRRCRR

�1
RR þ dR�2

RR: (13)

We consider CRRði, jÞ for i 6¼ j: As RRR and R are diag-
onal matrices, we obtain

CRRði, jÞ ¼ R�1
RRði, iÞRði, iÞCði, jÞRðj, jÞR�1

RRðj, jÞ: (14)

From the update equation (10), RRRði, iÞ>Rði, iÞ for any

choice of i. This means that R�1
RRði, iÞRði, iÞ<1 for any choice

of i. Using this in (14) yields that for all values of i, j with i 6¼
j, jCRRði, jÞj<jCði, jÞj as required.

For i¼ j, it follows from (13) that CRRði, iÞ ¼ 1 for all
values of i. w

3.2. Minimum eigenvalue method

We now discuss the theory of ME as introduced in
Section 2.2. Using the alternative decomposition of RME

given by (6) enables us to update directly the standard
deviations for this method.

Theorem 4. Under the conditions of the Main Assumption,
the minimum eigenvalue method updates the standard devi-
ations, RME, of R via

RMEði, iÞ ¼
�
Rði, iÞ þ

Xd
k¼1

VRði, kÞ2Cðk, kÞ
�1=2

: (15)

This can be bounded by

Rði, iÞ � RMEði, iÞ �
�
Rði, iÞ2 þ T � kdðRÞ

�1=2
: (16)

Proof.

RMEði, iÞ ¼
�
Rði, iÞ þ ðVRCVT

RÞði, iÞ
�1=2

(17)

¼
�
Rði, iÞ þ

Xd
k¼1

VRði, kÞ2Cðk, kÞ
�1=2

(18)

Noting that Cðk, kÞ � 0 for all values of k, we bound the
second term in this expression by

0 �
Xd
k¼1

VRði, kÞ2Cðk, kÞ � max
k

fCðk, kÞg
Xd
k¼1

VRði, kÞ2 (19)

�
�
T � kdðRÞ

�Xd
k¼1

VRði, kÞ2 � T � kdðRÞ: (20)

This inequality follows from the orthonormality of VR,
and by the fact that T>kdðRÞ by definition. w

Due to the way the spectrum of R is altered by ME, it
is not evident how correlation entries are altered in gen-
eral for this method of reconditioning.

3.3. Multiplicative variance inflation

We now discuss theory of MVI that was introduced in
Section 2.3. We prove that MVI is not a method of
reconditioning, as it does not change the condition num-
ber of a covariance matrix.

Theorem 5. Multiplicative variance inflation with a con-
stant inflation parameter cannot change the condition num-
ber or rank of a matrix.

Proof. Let a2>0 be our multiplicative inflation constant
such that RMVI ¼ a2R: The eigenvalues of RMVI are given
by a2k1,a2k2, . . . , a2kd :

If R is rank-deficient, then kminðRMVIÞ ¼ a2kd ¼ 0 and
hence RMVI is also rank deficient. If R is full rank then
we can compute the condition number of RMI as the ratio
of its eigenvalues, which yields

j RMVIð Þ ¼ a2k1
a2kd

¼ j Rð Þ: (21)
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Hence, the condition number and rank of R are
unchanged by multiplicative inflation. w

3.4. Comparing ridge regression and minimum
eigenvalue methods

Both RR and ME change R by altering its eigenvalues. In
order to compare the two methods, we can consider their
effect on the standard deviations. We recall from Sections
3.1 and 3.2 that RR increases standard deviations by a con-
stant and the changes to standard deviations by ME can be
bounded above and below by a constant.

Corollary 2. Under the conditions of the Main Assumption,
for a fixed value of jmax<j,RMEði, iÞ<RRRði, iÞ for all val-
ues of i.

Proof. From Theorems 3 and 4, the updated standard
deviation values are given by

RRR ¼ ðR2 þ dIdÞ1=2 and

RMEði, iÞ �
�
Rði, iÞ2 þ T � kdðRÞ

�1=2
:

(22)

From the definitions of d and T, we obtain that

d ¼ k1ðRÞ�kdðRÞjmax

jmax � 1
>
k1ðRÞ�kdðRÞjmax

jmax
¼ T�kdðRÞ:

(23)

We conclude that the increment to the standard deviations
for RR is always larger than the increment for ME. w

3.5. Comparison of methods of reconditioning and
multiplicative variance inflation on the variational
data assimilation objective function

We demonstrate how RR, ME and MVI alter the objective
function of the variational data assimilation problem when
applied to the observation error covariance matrix. We
consider the 3D-Var objective function here for simplicity
of notation, although the analysis extends naturally to the
4D-Var case. We begin by defining the 3D-Var objective
function of the variational data assimilation problem.

Definition 2. The objective function of the variational
data assimilation problem is given by

JðxÞ ¼ 1
2
ðx�xbÞTB�1ðx�xbÞ þ 1

2
ðy�h x½ �ÞTR�1ðy�h x½ �Þ

:¼ Jb þ Jo
(24)

where xb 2 R
n is the background or prior, y 2 R

d is the

vector of observations, h : Rn ! Rd is the observation
operator mapping from control vector space to

observation space, B 2 R
n�n is the background error

covariance matrix, and R 2 R
d�d is the observation error

covariance matrix. Let Jo denote the observation term in
the objective function and Jb denote the background term
in the objective function.

In order to compare the effect of using each method,
they are applied to the observation error covariance
matrix in the variational objective function (24). We note
that analogous results hold if all methods are applied to
the background error covariance matrix in the objective
function. We begin by presenting the three updated
objective functions, and then discuss the similarities and
differences for each method together at the end of
Section 3.5. We first consider how applying RR to the
observation error covariance matrix alters the variational
objective function (24).

Theorem 6. By applying RR to the observation error
covariance matrix we alter the objective function (24) as
follows:

JRRðxÞ ¼ JðxÞ � ðy�h x½ �ÞTVRKdVT
Rðy� h x½ �Þ (25)

where Kd is a diagonal matrix with entries given

by ðKdÞii ¼ d
kiðkiþdÞ :

Proof. We denote the eigendecomposition of R as in (3).
Applying RR to the observation error covariance matrix,
R, we obtain

RRR ¼ VRðKþ dIpÞVT
R: (26)

We then calculate the inverse of RRR and express this in

terms of R�1 and an update term:

R�1
RR ¼ VRðKþ dIpÞ�1VT

R (27)

¼ VRDiagð 1
ki
� d
kiðki þ dÞÞV

T
R (28)

¼ R�1�VRDiagð d
kiðki þ dÞÞV

T
R (29)

Substituting (29) into (24), and defining Kd as in the the-
orem statement we can write the objective function using
the reconditioned observation error covariance matrix
as (25). w

The effect of RR on the objective function differs from
the typical application of Tikhonov regularisation to the
variational objective function (Budd et al., 2011; Moodey
et al., 2013). In particular, we subtract a term from the ori-
ginal objective function rather than adding one, and the
term depends on the eigenvectors of R as well as the inno-
vations (differences between observations and the back-
ground field in observation space). Writing the updated
objective function as in (25) shows that the size of the ori-
ginal objective function (24) is decreased when RR is used.
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Specifically, as we discuss later, the contribution of small-
scale information to the observation term, Jo, is reduced by
the application of RR.

We now consider how applying ME to the observation
error covariance matrix alters the objective function (24).

Theorem 7. By applying ME to the observation error
covariance matrix we alter the objective function (24) as
follows:

JMEðxÞ ¼ JðxÞ � ðy�h x½ �ÞTVR ~CVT
Rðy� h x½ �Þ, (30)

where

~Cði, iÞ ¼
0 ifki � T
T�ki
Tki

ifki<T :

8<
: (31)

Proof. We begin by applying ME and decomposing RME

as in (6):

RME ¼ VRðKþ CÞVT
R: (32)

Therefore, calculating the inverse of the reconditioned
matrix yields

RME ¼ VRðKþ CÞ�1VT
R (33)

As this is full rank, we can calculate the inverse of the
diagonal matrix Kþ C

ðCþ KÞ�1ði, iÞ ¼
1
ki

if ki � T

1
ki þ ðT � kiÞ if ki<T

8>><
>>: (34)

¼ K�1�
0 if ki � T
T�ki
Tki

if ki<T :

(
(35)

Defining ~C as in the theorem statement, and we can

write R�1
ME as

R�1
ME ¼ R�1 � VR ~CVT

R: (36)

Substituting this into the definition of the objective
function (24) we obtain the result given in the theorem
statement. w

As ~C is non-zero only for eigenvalues smaller than the
threshold T, the final term of the updated objective func-
tion (30) reduces the weight on eigenvectors correspond-

ing to those small eigenvalues. As all the entries of ~C are
non-negative, the size of the observation term in the ori-
ginal objective function (24) is decreased when ME
is used.

Finally, we consider the impact on the objective func-
tion of using MVI. We note that this can only be applied
in the case that the estimated error covariance matrix is

invertible as, by the result of Theorem 5, variance infla-
tion cannot change the rank of a matrix.
Theorem 8. In the case that R is invertible, the application
of MVI to the observation error covariance matrix alters
the objective function (24) as follows

JMVIðxÞ ¼ Jb þ 1
a2

Jo (37)

Proof. By Definition 1, RMVI ¼ a2R for inflation param-
eter a. The inverse of RMVI is given by

R�1
MVI ¼

1
a2

R�1: (38)

Substituting this into (24) yields the updated objective
function given by (37). w

For both reconditioning methods, the largest relative
changes to the spectrum of R occur for its smallest eigen-
values. In the case of positive spatial correlations, small
eigenvalues are typically sensitive to smaller scales. For
spatial correlations, weights on scales of the observations
associated with Johnson et al. (2005) showed how, when
changing the relative weights of the background and
observation terms by inflating the ratio of observation
and background variances, it is the complex interactions
between the error covariance matrices and the observa-
tion operator that affects which scales are present in the
analysis. This suggests that in the preconditioned setting,
MVI will also alter the sensitivity of the analysis to differ-
ent scales.

We also see that for RR and ME smaller choices of
jmax yield larger reductions to the weight applied to small
scale observation information. For RR, a smaller target
condition number results in a larger value of d, and hence
larger diagonal entries of Kd. For ME, a smaller target
condition number yields a larger threshold, T, and hence

larger diagonal entries of ~C. This means that the more
reconditioning that is applied, the less weight the observa-
tions will have in the analysis. This reduction in observa-
tion weighting is different for the two methods; RR
reduces the weight on all observations, although the rela-
tive effect is larger for scales corresponding to the small-
est eigenvalues, whereas ME only reduces weight for
scales corresponding to eigenvalues smaller than the
threshold T. In ME, the weights on scales for eigenvalues
larger than T are unchanged.

Applying MVI with a constant inflation factor also
reduces the contribution of observation information to
the analysis. In contrast to both methods of recondition-
ing, the reduction in weight is constant for all scales and
does not depend on the eigenvectors of R. This means
that there is no change to the sensitivity to different
scales using this method. The analysis will simply pull
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closer to the background data with the same relative
weighting between different observations as occurred for
analyses using the original estimated observation error
covariance matrix.

We have considered the impact of RR, ME and MVI
on the unpreconditioned 3D-Var objective function. For
the preconditioned case, Johnson et al. [2005] showed
how, when changing the relative weights of the back-
ground and observation terms by inflating the ratio of
observation and background variances, it is the complex
interactions between the error covariance matrices and
the observation operator that affects which scales are pre-
sent in the analysis. This suggests that in the precondi-
tioned setting MVI will also alter the sensitivity of the
analysis to different scales.

4. Numerical experiments

In this section, we consider how reconditioning via RR
and ME and application of MVI affects covariance
matrices arising from two different choices of estimated
covariance matrices. Both types of covariance matrix are
motivated by NWP, although similar structures occur for
other applications.

4.1. Numerical framework

The first covariance matrix is constructed using a second-
order auto-regressive (SOAR) correlation function
(Yaglom, 1987) with lengthscale 0.2 on a unit circle. This
correlation function is used in NWP systems (Thiebaux,
1976; Stewart et al., 2013; Waller, Dance, et al., 2016;
Fowler et al., 2018; Tabeart et al., 2018) where its long
tails approximate the estimated horizontal spatial correl-
ation structure well. In order to construct a SOAR error
correlation matrix, S, on the finite domain, we follow the
method described in Haben (2011) and Tabeart et al.
(2018). We consider a one-parameter periodic system on
the real line, defined on an equally spaced grid with
N¼ 200 grid points. We restrict observations to be made
only at regularly spaced grid points. This yields a circu-
lant matrix where the matrix is fully defined by its first

row. To ensure the corresponding covariance matrix is
also circulant, we fix the standard deviation value for all

variables to be r ¼ ffiffiffi
5

p
:

One benefit of using this numerical framework is that
it allows us to calculate a simple expression for the
update to the standard deviations for ME. We recall that
RR updates the variances by a constant, d. We now show
that in the case where R is circulant, ME also updates
the variances of R by a constant.

Circulant matrices admit eigenvectors which can be
computed directly via a discrete Fourier transform (Gray,

2006) (via R ¼ VKV†, where † denotes conjugate trans-
pose). This allows the explicit calculation of the ME
standard deviation update given by (15) as

RMEði, iÞ ¼ Rði, iÞ þ 1
d

Xd
k¼1

Cðk, kÞ
 !1=2

: (39)

This follows from (15) because the circulant structure of

the SOAR matrix yields
Pd

k¼1 Vði, kÞ2 ¼ 1=d:
We therefore expect both reconditioning methods to

increase the SOAR standard deviations by a constant
amount. As the original standard deviations were con-
stant, this means that reconditioning will result in con-
stant standard deviations for all variables. These shall be
denoted rRR for RR and rME for ME. Constant changes
to standard deviations also mean that an equivalent MVI
factor that corresponds to the change can be calculated.
This will be denoted by a.

Our second covariance matrix comprises interchannel
error correlations for a satellite-based instrument. For
this, we make use of the Infrared Atmospheric Sounding
Instrument (IASI) which is used at many NWP centres
within data assimilation systems. A covariance matrix for
IASI was diagnosed in 2011 at the Met Office, following
the procedure described in Weston (2011) and Weston
et al. (2014) (shown in Online Resource 1). The diagnosed
matrix was extremely ill-conditioned and required the
application of the ridge regression method in order that
the correlated covariance matrix could be used in the
operational system. We note that we follow the recondi-
tioning procedure of Weston et al. (2014), where the
reconditioning method is only applied to the subset of
137 channels that that are used in the Met Office 4D-Var
system. These channels are listed in Stewart et al. (2008,
Appendix). As the original standard deviation values are
not constant across different channels, reconditioning will
not change them by a constant amount, as is the case for
Experiment 1. We note that the 137� 137 matrix consid-
ered in this paper corresponds to the covariance matrix
for one ‘observation’ at a single time and spatial location.
The observation error covariance matrix for all observa-
tions from this instrument within a single assimilation

Table 1 Change in standard deviation for the SOAR covariance
matrix for both methods of reconditioning.

jmax r rRR a corr. RR rME a corr. ME

1000 2.23606 2.26471 1.013 2.25439 1.008
500 2.23606 2.29340 1.026 2.27599 1.018
100 2.23606 2.51306 1.124 2.45737 1.099

Columns 4 and 6 show a, the multiplicative inflation factor
corresponding to the values for rRR and rME , respectively.
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cycle is a block diagonal matrix, with one block for every
observation, each consisting of a submatrix of the
137� 137 matrix.

In the experiments presented in Section 4.2, we apply
the minimum eigenvalue and the ridge regression methods
to both the SOAR and IASI covariance matrices. The
condition number before reconditioning of the SOAR
correlation matrix is 81,121.71 and for the IASI matrix,
we obtain a condition number of 2005.98. We consider
values of jmax in the range 100�1000 for both tests. We
note that the equivalence of the minimum eigenvalue
method with the minimiser of the Ky-Fan 1�d norm is
satisfied for the SOAR experiment for jmax � 168 and
the IASI experiment for jmax � 98:

4.2. Results

4.2.1. Changes to the covariance matrix.

Example 1: Horizontal correlations using a SOAR correl-
ation matrix

Due to the specific circulant structure of the SOAR
matrix and constant value of standard deviations for all
variables (10) and (39) indicate that we expect increases
to standard deviations for both methods of recondition-
ing to be constant. This was found to be the case numer-
ically. In Table 1, the computed change in standard
deviation for different values of jmax is given as an abso-
lute value and as a, the multiplicative inflation constant
that yields the same change to the standard deviation as
each reconditioning method. We note that in agreement
with the result of Corollary 2 the variance increase is
larger for the RR than the ME for all choices of jmax.
Reducing the value of jmax increases the change to stand-
ard deviations for both methods of reconditioning. The
increase to standard deviations will result in the observa-
tions being down-weighted in the analysis. As this occurs
uniformly across all variables for both methods, we
expect the analysis to pull closer to the background.

Nevertheless, we expect this to be a rather small effect.
For this example, even for a small choice of jmax the val-
ues of the equivalent multiplicative inflation constant, a,
is small, with the largest value of a ¼ 1:124 occurring for
RR for jmax ¼ 100:

As the SOAR matrix is circulant, we can consider the
impact of reconditioning on its correlations by focusing
on one matrix row. In Fig. 1, the correlations and per-
centage change for the 100th row of the SOAR matrix
are shown for both methods for jmax ¼ 100: These values
are calculated directly from the reconditioned matrix. We
note that by definition of a correlation matrix, Cði, iÞ ¼ 1
8 i for all choices of reconditioning. This is the reason for
the spike in correlation visible in the centre of Fig. 1a
and on the right of Fig. 1b. As multiplicative variance
inflation does not change the correlation matrix, the
black line corresponding to the correlations of the ori-
ginal SOAR matrix also represents the correlations in the
case of multiplicative inflation. We also remark that
although ME is not equivalent to the minimiser of the
Ky-Fan 1�d norm for jmax ¼ 100, the qualitative behav-
iour in terms of correlations and standard deviations is
the same for all values in the range 100�1000: It is
important to note that ME is still a well-defined method
of reconditioning even if it is not equivalent to the min-
imiser of the Ky-Fan 1�d norm.

Figure 1a shows that for both methods, application of
reconditioning reduces the value of off-diagonal correla-
tions for all variables, with the largest absolute reduction
occurring for variables closest to the observed variable.
Although there is a large change to the off-diagonal cor-
relations, we notice that the correlation lengthscale, which
determines the rate of decay of the correlation function,
is only reduced by a small amount. This shows that both
methods of reconditioning dampen correlation values but
do not significantly alter the overall pattern of correlation
information. Figure 1b shows the percentage change to
the original correlation values after reconditioning is

Fig. 1. Changes to correlations between the original SOAR matrix and the reconditioned matrices for jmax ¼ 100: (a) shows

Cð100, :Þ ¼ CMVIð100, :Þ (black solid), CRRð100, :Þ (red dashed), CMEð100, :Þ (blue dot-dashed) (b) shows 100� Cð100, :Þ�CRRð100, :Þ
Cð100, :Þ (red

dashed) and 100� Cð100, :Þ�CME ð100, :Þ
Cð100, :Þ (blue dot-dashed). As the SOAR matrix is symmetric, we only plot the first 100 entries for (b).
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applied. For RR, although the difference between the ori-
ginal correlation value and the reconditioned correlation
depends on the index i, the relative change is constant
across all off-diagonal correlations. As MVI does not
alter the correlation matrix, it would correspond to a
horizontal line through 0 for Fig. 1b.

When we directly plot the correlation values for the
original and reconditioned matrices in Fig. 1a, the change
to correlations for ME appears very similar to changes
for RR. However, when we consider the percentage
change to correlation in Fig. 1b, we see oscillation in the
percentage differences of the ME correlations, showing
that the relative effect on some spatially distant variables
can be larger than for some spatially close variables. The
spatial impact on individual variables differs significantly
for this method. We also note that ME increases some
correlation values. These are not visible in Fig. 1 due to
entries in the original correlation matrix that are close to
zero. Although the differences between C and CME far
from the diagonal are small, small correlation values in
the tails of the original SOAR matrix mean that when
considering the percentage difference we obtain large val-
ues, as seen in Fig. 1b. This suggests that RR is a more
appropriate method to use in this context, as the recondi-
tioned matrix represents the initial correlation function
better than ME, where spurious oscillations are intro-
duced. These oscillations occur as ME changes the
weighting of eigenvectors of the covariance matrix. As
the eigenvectors of circulant matrices can be expressed in
terms of discrete Fourier modes, ME has the effect of
amplifying the eigenvalues corresponding to the highest
frequency eigenvectors. This results in the introduction of
spurious oscillations in correlation space.

Both methods reduce the correlation lengthscale of the
error covariance matrix. In Tabeart et al. (2018), it was
shown that reducing the lengthscale of the observation
error covariance matrix decreases the condition number
of the Hessian of the 3D-Var objective function and
results in improved convergence of the minimisation
problem. Hence, the application of reconditioning

methods to the observation error covariance matrix is
likely to improve convergence of the overall data assimi-
lation problem. Fowler et al. (2018) studied the effect on
the analysis of complex interactions between the back-
ground error correlation lengthscale, the observation
error correlation lengthscale and the observation operator
in idealised cases. Their findings for a fixed background
error covariance, and direct observations, indicate that
the effect of reducing the observation error correlation
lengthscale (as in the reconditioned cases) is to increase
the analysis sensitivity to the observations at larger scales.
In other words, more weight is placed on the large-scale
observation information content and less weight on the
small scale observation information content. This corre-
sponds with the findings of Section 3.5, where we proved
that both methods of reconditioning reduce the weight on
small scale observation information in the variational
objective function. However, the lengthscale imposed by
a more complex observation operator could modify
these findings.

Example 2: Interchannel correlations using an IASI
covariance matrix

We now consider the impact of reconditioning on the
IASI covariance matrix. We note that there is significant
structure in the diagnosed correlations (see online
resource 1), with blocks of highly correlated channels in
the lower right-hand region of the matrix. We now con-
sider how RR, ME and MVI change the variances and
correlations of the IASI matrix.

Figure 2 shows the standard deviations R,RRR and
RME: These are calculated from the reconditioned matri-
ces, but the values coincide with the theoretical results of
Theorems 3 and 4. Standard deviation values for the ori-
ginal diagnosed case have been shown to be close to esti-
mated noise characteristics of the instrument for each of
the different channels (Stewart et al., 2014). We note that
the largest increase to standard deviations occurs for
channel 106 only and corresponds to a multiplicative
inflation factor for this channel of 2.02 for RR and 1.81
for ME. Channel 106 is sensitive to water vapour and is
the channel in the original diagnosed covariance matrix
with the smallest standard deviation. The choice of
jmax ¼ 100 is of a similar size to the value of the parame-
ters used at NWP centres (Weston, 2011; Weston et al.,
2014; Bormann et al., 2016). This means that in practice,
the contribution of observation information from chan-
nels where instrument noise is low is being substan-
tially reduced.

Channels are ordered by increasing wavenumber, and
are grouped by type. We expect different wavenumbers to
have different physical properties, and therefore different
covariance structures. In particular, larger standard

Fig. 2. Standard deviations for the IASI covariance matrix R
(black solid), RRR (red dashed), RME (blue dot-dashed) for
jmax ¼ 100:
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deviations are expected for higher wavenumbers due to
additional sources of error (Weston et al., 2014), which is
observed on the right-hand side of Fig. 2. For RR, larger
increases to standard deviations are seen for channels
with smaller standard deviations for the original diag-
nosed matrix than those with large standard deviations.
This also occurs to some extent for ME, although we
observe that the update term in (15) is not constant in
this case. This means that the reduction in weight in the
analysis will not be uniform across different channels for
ME. The result of Corollary 2 is satisfied; the increase to
the variances is larger for RR than ME. This is particu-
larly evident for channels where the variance from the
original diagnosed covariance matrix is small. As MVI
increases standard deviations by a constant factor, the
largest changes for this method would occur for channels
with large standard deviations in the original diagnosed
matrix. This is in contrast to RR, where the largest
changes occur for the channels in the original diagnosed
matrix with the smallest standard deviation.

Figure 3 shows the difference between the diagnosed
correlation matrix, C, and the reconditioned correlation
matrices CRR and CME: As some correlations in the ori-
ginal IASI matrix are negative, we plot the entries of
ðC�CRRÞ 	 signðCÞ and ðC�CMEÞ 	 signðCÞ in Fig. 3(a,b)
respectively. Here 	 denotes the Hadamard product,
which multiplies matrices of the same dimension element-
wise. This allows us to determine whether the magnitude
of the correlation value is reduced by the reconditioning
method; a positive value indicates that the reconditioning
method reduces the magnitude of the correlation, whereas
a negative value indicates an increase in the correlation
magnitude. For RR, all differences are positive, which
agrees with the result of Theorem 3. As MVI does not
change the correlation matrix, an equivalent figure for
this method is not given. We also note that there is a rec-
ognisable pattern in Fig. 3a, with the largest reductions
occurring for the channels in the original diagnosed

correlation matrix which were highly correlated. This
indicates that this method of reconditioning does not
affect all channels equally.

For ME, we notice that there are a number of entries
where the absolute correlations are increased after recon-
ditioning. There appears to be some pattern to these
entries, with a large number occurring in the upper left-
hand block of the matrix for channels with the smallest
wavenumber (Weston et al., 2014). However, away from
the diagonal for channels 0–40, where changes by RR are
very small, the many entries where absolute correlations
are increased by ME are much more scattered. This more
noisy change to the correlations could be due to the fact
that 96 eigenvalues are set to be equal to a threshold
value by the minimum eigenvalue method in order to
attain jmax ¼ 100: One method to reduce noise was sug-
gested in Smith et al. (2018), which showed that applying
localization methods (typically used to reduce spurious
long-distance correlations that arise when using ensemble
covariance matrices via the Schur product) after the
reconditioning step can act to remove noise while retain-
ing covariance structure.

For positive entries, the structure of CME appears simi-
lar to that of RR. There are some exceptions, however,
such as the block of channels 121–126 where changes in
correlation due to ME are small, but correlations are
changed by quite a large amount for RR. The largest ele-
mentwise difference between RR and the original diag-
nosed correlation matrix is 0.138, whereas the largest
elementwise difference between ME and the original diag-
nosed correlation matrix is 0.0036. The differences
between correlations for ME and RR are shown in
Fig. 3c.

For both methods, although the absolute value of all
correlations is reduced, correlations for channels 1–70 are
eliminated. This has the effect of emphasising the correla-
tions for channels that are sensitive to water vapour.
Weston et al. (2014) and Bormann et al. (2016) argue

Fig. 3. Difference in correlations for IASI (a) ðC�CRRÞ 	 signðCÞ, (b) ðC�CMEÞ 	 signðCÞ, and (c) ðCME�CRRÞ 	 signðCÞ, where 	
denotes the Hadamard product. Red indicates that the absolute correlation is decreased by reconditioning and blue indicates the
absolute correlation is increased. The colourscale is the same for (a) and (b) but different for (c). Condition numbers of the
corresponding covariance matrices are given by jðRÞ ¼ 2005:98, jðRRRÞ ¼ 100 and jðRMEÞ ¼ 100:
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that much of the benefit of introducing correlated obser-
vation error for this instrument can be related to the
inclusion of correlated error information for water
vapour sensitive channels. Therefore, although the
changes to the original diagnosed correlation matrix are
large it is likely that a lot of the benefit of using corre-
lated observation error matrices is retained.

We also note that it is more difficult to choose the best
reconditioning method in this setting, due to the complex
structure of the original diagnosed correlation matrix. In
particular, improved understanding of how each method
alters correlations and standard deviations is not enough
to determine which method will perform best in an
assimilation system. One motivation of reconditioning is
to improve convergence of variational data assimilation
algorithms. Therefore, one aspect of the system that can
be used to select the most appropriate method of recondi-
tioning is the speed of convergence. As ME results in
repeated eigenvalues, we would expect faster convergence
of conjugate gradient methods applied to the problem

Rx ¼ b for x, b 2 R
d for ME than RR. However,

Campbell et al. (2017), Weston (2011), Weston et al.
(2014) and Bormann et al. (2015) find that RR results in
faster convergence than ME for operational variational
implementations. This is likely due to interaction between
the reconditioned observation error covariance matrix
and the observation operator, as the eigenvalues of

HTR�1H are shown to be important for the conditioning
of the variational data assimilation problem in Tabeart
et al. (2018).

Another aspect of interest is the influence of recondi-
tioning on the analysis and forecast performance. We
note that this is likely to be highly system and metric-
dependent. For example, Campbell et al. (2017) studied
the impact of reconditioning on predictions of meteoro-
logical variables (temperature, geopotential height, pre-
cipitable water) over lead times from 0 to 5 days. In the
U.S. Naval Research Laboratory system, ME performed
slightly better at short lead times, whereas RR had
improvements at longer lead times (Campbell et al.,
2017). Differences in forecast performance were mixed,
whereas convergence was much faster for RR. This meant
that the preferred choice was RR. However, in the
ECMWF system, Bormann et al. (2015) studied the
standard deviation of first-guess departures against inde-
pendent observations. Using this metric of analysis skill,
ME was found to out-perform RR. The effect of RR on
the analysis of the Met Office 1D-Var system is studied
in Tabeart et al. (2019), where changes to retrieved varia-
bles sensitive to water vapour (humidity, variables sensi-
tive to cloud) are found to be larger than for other
meteorological variables such as temperature.

4.2.2. Changes to the analysis of a data assimilation
problem. In Section 3.5, we considered how the vari-
ational objective function is altered by RR, ME and
MVI. We found that the two methods of reconditioning
reduced the weight on scales corresponding to small
eigenvalues by a larger amount than MVI, which changes
the weight on all scales uniformly. In this section, we con-
sider how the analysis of an idealised data assimilation
problem is altered by each of the three methods. We also
consider how changing jmax alters the analysis of
the problem.

In order to compare the three methods, we study how
the solution x of a conjugate gradient method applied to
the linear system Sx ¼ b changes for RR, ME and MVI,

where S ¼ B�1 þHTR�1H is the linearised Hessian asso-
ciated with the 3D-Var objective function (24). To do this
we define a ‘true’ solution, xtrue, construct the corre-
sponding data b and assess how well we are able to
recover xtrue when applying RR, ME and MVI to S:
Haben (2011) showed that this is equivalent to solving
the 3D-Var objective function in the case of a linear
observation operator. We define a background error

covariance matrix, B 2 R
200�200, which is a SOAR correl-

ation matrix on the unit circle with correlation length-
scale 0.2 and a constant variance of 1. Our observation
operator is given by the identity, meaning that every state
variable is observed directly.

We construct a ‘true’ observation error covariance
Rtrue, given by a 200-dimensional SOAR matrix on the
unit circle with standard deviation 1 and lengthscale 0.7.
We then sample the Gaussian distribution with zero
mean and covariance given by Rtrue 250 times and use
these samples to calculate an estimated sample covariance
matrix via the MATLAB function cov. This estimated
sample covariance matrix Rest has condition number

jðRestÞ ¼ 3:95� 108: The largest estimated standard devi-
ation is 1.07 and the smallest is 0.90, compared to the
true constant standard deviation of 1. RR, ME and MVI
are then applied to Rest with jmax ¼ 100: When applying
MVI, we use two choices of a which correspond to

changes to the standard deviations ðRRRð1, 1ÞÞ1=2,aRR ¼
1:41, and ðRMEð1, 1ÞÞ1=2, aME ¼ 1:39: The modified error

covariance matrices will be denoted RinflRR ¼ a2RRRest

and RinflME ¼ a2MERest:

We define a true state vector,

xðkÞ ¼ 4 sin ðkp=100Þ�5:1 sin ð7kp=100Þ
þ 1:5 sin ð12kp=100Þ�3 sin ð15kp=100Þ
þ 0:75 sin ð45kp=100Þ, (40)

which has five scales. We then construct b 
 Sx using
Rtrue, and apply the MATLAB 2018b pcg:m routine to
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the problem ðB�1 þ R�1Þx ¼ b for each choice of R: We

recall that S ¼ B�1 þHTR�1H ¼ B�1 þ R�1 as H ¼ I:
Let xest denote the solution that is found using Rest and
xmod refer to a solution found using a modified version of
Rest, namely RRR,RME,RinflRR or RinflME: The maximum
number of iterations allowed for the conjugate gradient
routine is 200, and convergence is reached when the rela-

tive residual is less than 1� 10�6:

From Section 3.5, we expect RR, ME and MVI to
behave differently at small and large scales. We therefore
analyse how using each method alters the solution x at
different scales using the discrete Fourier transform
(DFT). This allows us to assess how well each scale of
xtrue is recovered for each choice of R: As xtrue is the sum
of sine functions, only the imaginary part of the DFT
will be non-zero. We therefore define atrue ¼
imagðDFTðxtrueÞÞ; similarly aest ¼ imagðDFTðxestÞÞ
and amod ¼ imagðDFTðxmodÞÞ:

By construction, as x, given by (40), is the sum of sine
functions of period 2pn=200 for n ¼ 1, 7, 12, 15, 45, atrue
returns a signal with 5 peaks, one for each value of n at
frequency k¼ n. The amplitude for all other values of k is
zero. For frequencies larger than 20, all choices of esti-
mated and modified R recover atrue well. Figure 4 shows
the correction that is applied by the modified choices of
R compared to Rest for the first 20 frequencies. A positive
(negative) value shows that amod moves closer to (further
from) atrue than aest. The distance from 0 shows the size
of this change. For the first true peak (k¼ 1) RR is able
to move closer to atrue than aest. However, both recondi-
tioning methods move further from the truth at the loca-
tion of true signals k¼ 7, 12, 15. For frequencies where
aest has a spurious non-zero signal RR and ME are able
to move closer to atrue than aest. At the location of true
signals k¼ 7, 12, 15, MVI makes smaller changes com-
pared to aest than either method of reconditioning. As all
modifications to Rest move amod further from atrue than
aest for k¼ 7, 12, 15, MVI is therefore better able to
recover the value of atrue than RR or ME at these true
peaks. However, MVI introduces a larger error for the
first peak at k¼ 1 than RR or ME, and changes for fre-
quencies k> 5 are much smaller than for reconditioning.
This agrees with the findings of Section 3.5, that the
weight on all scales is changed equally by MVI, whereas
both methods of reconditioning result in larger changes
to smaller scales and are hence able to make larger
changes to amplitudes for higher frequencies. We recall
from Section 3.5 that ME changes only the smaller scales,
whereas RR also makes small changes to the larger
scales. This behaviour is seen in Fig. 4: for frequencies
k¼ 0 to 5ME results in very small changes, with much
larger changes for frequencies 5 � k � 15: RR makes
larger changes for larger values of k, but also moves
closer to atrue for 1 � k � 3:

We now consider how changing jmax alters the quality
of xRR: As the behaviour for jmax ¼ 100 shown in Fig. 4
was similar for both RR and ME, we only consider
changes to RR. Figure 5 shows the difference between
atrue and aRR for different choices of jmax. Firstly we con-
sider the true signal that occurs at frequencies k ¼

Fig. 5. Difference between atrue and aRR for different choices of
jmax. Vertical dashed lines show the locations of non-zero values
for the true signal.

Table 2 Changes to convergence of RR, MI and MVI for
different values of jmax.

jmax 10, 000 1, 000 100 50 10

RR 245 244 170 141 73
ME 240 239 193 145 76
Infl RR 244 244 238 233 199

For all choices of jmax, convergence for Rtrue occurs in 17
iterations and Rest occurs in 244 iterations.

Fig. 4. Change in pointwise difference of discrete Fourier
transform (DFT) from xest to xmod where aest denotes the vector
of coefficients of the imaginary part of DFTðxestÞ: A positive
(negative) value indicates that xmod is closer to (further from) xtrue
than xest and the amplitude shows how large this change is.
Vertical dashed lines show the locations of non-zero values for
the true signal.
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1, 7, 12, 15: For k¼ 1 the smallest error occurs for jmax ¼
50 and the largest error occurs for jmax ¼ 10000: For
k¼ 7, 12, 15 the error increases as jmax decreases. For all
other frequencies, reducing jmax reduces the error in the
spurious non-zero amplitudes. For very large values of
jmax, we obtain small errors for the true signal, but larger
spurious errors elsewhere. Very small values of jmax can
control these spurious errors, but fail to recover the cor-
rect amplitude for the true signal. Therefore a larger
reconditioning constant will result in larger changes to
the analysis. This means that there is a balance to be
made in ensuring the true signal is captured, but spurious
signal is depressed. For this framework a choice of
jmax ¼ 100 provides a good compromise between recover-
ing the true peaks well and suppressing spurious
correlations.

Finally, Table 2 shows how convergence of the conju-
gate gradient method is altered by the use of recondition-
ing and MVI. Using a larger inflation constant for MVI
does lead to slightly faster convergence compared to Rest:

However, reducing jmax leads to a much larger reduction
in the number of iterations required for convergence for
both RR and ME. This agrees with results in operational
data assimilation systems, where the choice of jmax and
reconditioning method makes a difference to convergence
(Weston, 2011; Tabeart et al., 2019).

5. Conclusions

Applications of covariance matrices often arise in high
dimensional problems (Pourahmadi, 2013), such as NWP
(Weston et al., 2014; Bormann et al., 2016). In this paper
we have examined two methods that are currently used at
NWP centres to recondition covariance matrices by alter-
ing the spectrum of the original covariance matrix: the
ridge regression method, where all eigenvalues are
increased by a fixed value, and the minimum eigenvalue
method, where eigenvalues smaller than a threshold are
increased to equal the threshold value. We have also con-
sidered multiplicative variance inflation, which does not
change the condition number or rank of a covariance
matrix, but is used at NWP centres (Bormann
et al., 2016).

For both reconditioning methods, we developed new
theory describing how variances are altered. In particular,
we showed that both methods will increase variances, and
that this increase is larger for the ridge regression
method. We also showed that applying the ridge regres-
sion method reduces all correlations between different
variables. Comparing the impact of reconditioning meth-
ods and multiplicative variance inflation on the vari-
ational data assimilation objective function we find that
all methods reduce the weight on observation information

in the analysis. However, reconditioning methods have a
larger effect on smaller eigenvalues, whereas multiplica-
tive variance inflation does not change the sensitivity of
the analysis to different scales. We then tested both meth-
ods of reconditioning and multiplicative variance inflation
numerically on two examples: Example 1, a spatial
covariance matrix, and Example 2, a covariance matrix
arising from NWP. In Section 4.2, we illustrated the the-
ory developed earlier in the work, and also demonstrated
that for two contrasting numerical frameworks, the
change to the correlations and variances is significantly
smaller for the majority of entries for the minimum eigen-
value method.

Both reconditioning methods depend on the choice of
jmax, an optimal choice of which will depend on the spe-
cific problem in terms of computational resource and
required precision. The smaller the choice of jmax, the
more variances and correlations are altered, so it is desir-
able to select the largest condition number that the sys-
tem of interest can deal with. Some aspects of a system
that could provide insight into reasonable choices of
jmax are:
� For conjugate gradient methods, the condition num-

ber provides an upper bound on the rate of conver-
gence for the problem Ax ¼ b (Golub and Van
Loan, 1996), and can provide an indication of the
number of iterations required to reach a particular
precision (Axelsson, 1996). Hence, jmax could be
chosen such that a required level of precision is guar-
anteed for a given number of iterations.

� For more general methods, the condition number
can provide an indication of the number of digits of
accuracy that are lost during computations (Gill
et al., 1986; Cheney, 2005). Knowledge of the error
introduced by other system components, such as
approximations in linearised observation operators
and linearised models, relative resolution of the
observation network and state variables, precision
and calibration of observing instruments, may give
insight into a value of jmax that will maintain the
level of precision of the overall problem.

� The condition number measures how errors in the
data are amplified when inverting the matrix of inter-
est (Golub and Van Loan, 1996). Again, the magni-
tude of errors resulting from other aspects of the
system may give an indication of a value of jmax

that will not dominate the overall precision.
For our experiments, we considered choices of jmax in

the range 100�1000: For Experiment 2 these values are
similar to those considered for the same instrument at
different NWP centres e.g. 25, 100, 1000 (Weston, 2011),
67 (Weston et al., 2014), 54 and 493 (Bormann et al.,
2015), 169 (Campbell et al., 2017). We note that the
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dimension of this interchannel error covariance matrix in
operational practice is small and only forms a small block
of the full observation error covariance matrix.
Additionally, the matrix considered in this paper corre-
sponds to one observation type; there are many other
observation types with different error characteristics.

In this work, we have assumed that our estimated
covariance matrices represent the desired correlation
matrix well, in which case the above conditions on jmax

can be used. This is not true in general, and it may be
that methods such as inflation and localisation are also
required in order to constrain the sources of uncertainty
that are underestimated or mis-specified. In this case, the
guidance we have presented in this paper concerning how
to select the most appropriate choice of reconditioning
method and target condition number will need to be
adapted. Additionally, localisation alters the condition
number of a covariance matrix as a side effect; the user
does not have the ability to choose the target condition
number jmax or control changes to the distribution of
eigenvalues (Smith et al., 2018). This indicates that recon-
ditioning may still be needed in order to retain valuable
correlation information whilst ensuring that the computa-
tion of the inverse covariance matrix is feasible.

The choice of which method is most appropriate for a
given situation depends on the system being used and the
depth of user knowledge of the characteristics of the error
statistics. The ridge regression method preserves eigen-
structure by increasing the weight of all eigenvalues by
the same amount, compared to the minimum eigenvalue
method which only increases the weight of small eigenval-
ues and introduces a large number of repeated eigenval-
ues. We have found that ridge regression results in
constant changes to variances and strict decreases to
absolute correlation values, whereas the minimum eigen-
value method makes smaller, non-monotonic changes to
correlations and non-constant changes to variances. In
the spatial setting, the minimum eigenvalue method intro-
duced spurious correlations, whereas ridge regression
resulted in a constant percentage reduction for all varia-
bles. In the inter-channel case, changes to standard devia-
tions and most correlations were smaller for the
minimum eigenvalue method than for ridge regression.

Another important property for reconditioning meth-
ods is the speed of convergence of minimisation of vari-
ational data assimilation problems. It is well known that
other aspects of matrix structure, such as repeated or
clustered eigenvalues, are important for the speed of con-
vergence of conjugate gradient minimisation problems.
As the condition number is only sensitive to the extreme
eigenvalues, conditioning alone cannot fully characterise
the expected convergence behaviour. In the data assimila-
tion setting, complex interactions occur between the

constituent matrices (Tabeart et al., 2018), which can
make it hard to determine the best reconditioning method
a priori. One example of this is seen for operational
implementations in Campbell et al. (2017) and Weston
(2011) where the ridge regression method results in fewer
iterations for a minimisation procedure than the min-
imum eigenvalue method, even though the minimum
eigenvalue method yields observation error covariance
matrices with a large number of repeated eigenvalues.
Furthermore, Tabeart et al. (2018) found cases in an
idealised numerical framework where increasing the con-
dition number of the Hessian of the data assimilation
problem was linked to faster convergence of the mini-
misation procedure. Again, this was due to interacting
eigenstructures between observation and background
terms, which could not be measured by the condition
number alone. Additionally, Haben (2011) and Tabeart
et al. (2018) find that the ratio of background to observa-
tion error variance is important for the convergence of a
conjugate gradient problem. In the case where observa-
tion errors are small, poor performance of conjugate gra-
dient methods is therefore likely. This shows that changes
to the analysis of data assimilation problems due to the
application of reconditioning methods are likely to be
highly system-dependent, for example due to: quality of
estimated covariance matrices, interaction between back-
ground and observation error covariance matrices, spe-
cific implementations of the assimilation algorithm, and
choice of preconditioner and minimisation routine.
However, the improved understanding of alterations to
correlations and standard deviations for each method of
reconditioning provided here may allow users to antici-
pate changes to the analysis for a particular system of
interest using the results from previous idealised and
operational studies (e.g. Weston et al., 2014; Bormann
et al., 2016; Fowler et al., 2018; Tabeart et al., 2018;
Simonin et al., 2019).
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Appendix

Equivalence of the minimum eigenvalue method with the
Ky-Fan 1-d norm method

We introduce the Ky-Fan p – k norm. We show that
the solution to a nearest matrix problem to X 2 Rd�d in
the Ky-Fan 1�d norm is equivalent to the minimum
eigenvalue method of reconditioning introduced in
Section 2.2 with an additional assumption.

Definition A.3. The Ky-Fan p-k norm of X 2 C
m�n is

defined as:

jjXjjp, k ¼
�Xk

i¼1

ciðXÞp
�1=p

, (A.1)

where ciðXÞ denotes the i-th largest singular value of X,
p � 1 and k 2 f1, . . . ,minfm,ngg:

As covariance matrices are positive semi-definite by
definition, the singular values of a covariance matrix
X 2 R

d�d are equal to its eigenvalues.

Theorem A.1. Let X 2 R
d�d be a symmetric positive semi-

definite matrix, with eigenvalues k1 � k2 � . . . � kd � 0
and corresponding matrix of eigenvectors given by VR. The
choice of X̂ that minimises

jjX�X̂jj1, p, (A.2)

subject to the condition jðX̂Þ ¼ ĵ, for ĵ � d�lþ 1, is
given by X̂ ¼VRDiagðk�ÞVT

R, where k� is defined by

k�k ¼
l� :¼ k1ĵ if kk<l�

k�k ¼ kk otherwise

�
(A.3)

and where l is the index such that kl � l�<kl�1:

Proof. We apply the result given in Theorem 4 of Tanaka
and Nakata (2014) for the trace norm (defined as p¼ 1
and k¼ d) to find the optimal value of l�: Theorem 2 of
the same work yields the minimising solution X̂ for the
value of l�:

We remark that the statement of Theorem 4 of Tanaka
and Nakata (2014) uses the stronger assumption that
ĵ � d: However, a careful reading of the proof of this
theorem indicates that a weaker assumption is sufficient:
we assume that ĵ>d�lþ 1 where l is the index such that
kl � l�<kl�1: w

We note that this optimal value of l� is the same as
the threshold T ¼ k1ĵ defined for the minimum
eigenvalue method in (5) and hence the minimum
eigenvalue method is equivalent to the Ky-Fan 1-d
minimizer of (A.2) in the case that j � d�lþ 1:

The minimum eigenvalue method is still a valid
method of reconditioning when the additional assumption
on the eigenvalues of X is not satisfied. In particular, in
the experiments considered in Section 4 we see
qualitatively similar behaviour for the choices of T that
satisfy the assumption, and those that do not. It is
possible that the lower bound on the condition number
imposed by the additional constraint on jmax could
provide guidance on the selection of the target
condition number.
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