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ABSTRACT
The performance of an ensemble forecast, as measured by scoring rules, depends on its number of members.
Under the assumption of ensemble member exchangeability, ensemble-adjusted scores provide unbiased
estimates of the ensemble-size effect. In this study, the concept of ensemble-adjusted scores is revisited and
exploited in the general context of multi-model ensemble forecasting. In particular, an ensemble-size
adjustment is proposed for the continuous ranked probability score in a multi-model ensemble setting. The
method requires that the ensemble forecasts satisfy generalised multi-model exchangeability conditions. These
conditions do not require the models themselves to be exchangeable. The adjusted scores are tested here on a
dual-resolution ensemble, an ensemble which combines members drawn from the same numerical model but
run at two different grid resolutions. It is shown that performance of different ensemble combinations can be
robustly estimated based on a small subset of members from each model. At no additional cost, the
ensemble-size effect is investigated not only considering the pooling of potential extra-members but also
including the impact of optimal weighting strategies. With simple and efficient tools, the proposed
methodology paves the way for predictive verification of multi-model ensemble forecasts; the derived
statistics can provide guidance for the design of future operational ensemble configurations without having to

run additional ensemble forecast experiments for all the potential configurations.
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1. Introduction

Ensemble systems provide a framework for probabilistic
forecasting in numerical weather prediction. A collection
of forecasts with the same target serves as a basis for
the generation of probabilistic products. In this frame-
work, it is well-established that the ensemble-size, that is
the number of forecasts available at the product-gener-
ation stage, has an impact on the quality of the ensem-
ble probabilistic products. This is for example the case
when we consider a cumulative probability distribution
function (CDF) generated from m ensemble members
and the quality of the CDF forecasts estimated with the
continuous ranked probability score (CRPS). When the
ensemble is reliable, the ratio between the expected score
of the m-member-based forecasts and the expected score
if the ensemble was of infinite size is 1+ 1/m
(Richardson, 2001).
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More generally, ensemble-adjusted scores provide a
means to estimate the ensemble-size effect on forecast
performance assuming ensemble member exchangeability
and stationarity of the error statistics. The concept of
score adjustment allows one to derive an unbiased esti-
mate of a score S for an ensemble of size M when say
m < M members are available for the score computation.
Denoted S, adjusted scores can be applied, for
example, to compare ensemble forecasting systems with
different ensemble-sizes, disentangling the ensemble-size
effect and the impact of ensemble/model configuration on
forecast performance. Furthermore, adjusted scores pro-
vide estimates of the expected benefit of an ensemble-size
upgrade without the need to run extra members.
Practically, in numerical experimentation, expected scores
of an M-member ensemble are inferred from a small
number of members (Leutbecher, 2018). This way, unused
computational resources are made available for other
experimental tests. Adjusted versions of the CRPS, Brier
score, and ranked probability score are available in the
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literature as well as an adjusted version of the ignorance
score for forecasts issued as Normal distributions (Ferro
et al., 2008; Siegert et al., 2018).

The first objective of this paper is to revisit the concept
of ensemble-adjusted scores and its applicability in the
general context of multi-model ensembles. The multi-
model ensemble approach refers here to the combination
of forecasts from k(k>1) ensembles with different statis-
tical characteristics. Let my, ..., m; denote the ensemble-
size of the k& ensembles that are going to be combined.
An ensemble-adjusted score Sy, ... m)—(m,, .., m,) Provides
a forecast performance estimate of a My, ..., M} com-
bined ensemble forecast based on verification statistics
from ensembles of size my, ...,m;. In the following, we
discuss how multi-model ensemble-size affects forecast
performance, in particular in terms of the CRPS. As an
application, the ensemble-size effect is investigated for a
dual-resolution ensemble which combines forecasts from
the same model but run at two different resolutions
(Leutbecher and Ben Bouallegue, 2019).

The benefit of the multi-model ensemble approach and
the rationale explaining its success were investigated succes-
sively in Hagedorn et al. (2005); Weigel et al. (2008); Weigel
and Bowler (2009); Leutbecher and Ben Bouallegue (2019).
Multi-model ensembles by definition gather ensemble fore-
casts with different error characteristics. Forecast improve-
ment occurs as a result of a noise reduction associated with
the increase of the ensemble-size or by addition of new pre-
dictable signals (DelSole et al., 2014). When the size of the
combined ensemble is fixed, forecast improvement can arise
from an appropriate weighting of the different ensemble
members. Instead of a simple pooling of the forecasts, post-
processing methods can be applied in order to attribute
more weight to a set of forecasts when justified by previous
forecast performance (see Doblas-Reyes et al., 2005;
Casanova and Ahrens, 2009; DelSole et al., 2013; Baran
et al., 2019, among others).

The second objective of this paper is to propose a new
approach for ensemble-weighting optimisation. We show
that optimal weights can be derived directly from the ker-
nel representation of the CRPS. As a result, ensemble-
size effect and weighting strategy can be analysed simul-
taneously. This is illustrated here in the particular case of
a two-ensemble combination. An exhaustive analysis of
weighted and unweighted ensemble combinations is per-
formed without the need to run large ensemble experi-
ments or complex post-processing methods. This novel
approach to forecast verification is coined predictive veri-
fication which is used as an umbrella term for the assess-
ment of potential ensemble configurations based on a
reduced set of members. As a fundamental application,
predictive verification of ensemble forecasts aims to pro-
vide guidance for the design of future ensemble systems.

This paper is organised as follows: the concept of
ensemble-adjusted scores in a multi-model setting is
described and tested in Section 2, applications to ensem-
ble-size optimisation as well as model weighting are dis-
cussed in Section 3 before concluding in Section 4.

2. Score adjustment
2.1. Unbiased estimators

Consider forecasting a continuous outcome y. Consider first
a single ensemble system of size m. The ensemble members
are denoted z,, = (zy, ..., zy ). For the derivation of score
unbiased estimators, it is assumed that the ensemble mem-
bers (from any one model) are exchangeable. We focus in
this manuscript on the CRPS but unbiased estimators for
the Brier score are also provided in Appendix B.

Following Gneiting and Raftery (2007), the kernel rep-
resentation of the CRPS (C) for the empirical distribution
function (EDF) of the ensemble reads:
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where the first term is the mean absolute error of the
ensemble members and the second term is a measure of
the ensemble spread. An unbiased estimator of the score
for an ensemble with M members takes the following
form:
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as discussed in Ferro et al. (2008). The adjusted CRPS is
denoted C,,_j, and it is interpreted as the expected
CRPS if we had M ensemble members, estimated from
our statistical knowledge of the ensemble characteristics
based on m ensemble members.

Now consider that we are in a multi-model setting.
The multi-model ensemble comprises k& models with m;
members from the i-th model. The multi-model ensemble
forecast is denoted

Zkmy, ) (3)

where z;, is the g-th member in the i-th model. The multi-
.,my ) contains the ensemble sizes.
We will refer to it as the (multi-model) ensemble size.
The total ensemble size is |m| = Y m;.

We can form the EDF for each of the k& models and
then combine these to form a probability forecast from
the multi-model ensemble. We define the forecast distri-
bution function to be the mixture
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where A;>0 is the weight assigned to the EDF, F,, of
model i and 3% | %; = 1. The CRPS for this forecast dis-
tribution is

m;
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If we choose A; = 1/k then each model receives equal
weight, and if we choose A; = m;/ " m; then each mem-
ber receives equal weight. We refer to this latter choice as
ensemble pooling and we compare it to estimating optimal
weights in Section 3.

Similarly to the single ensemble case, we would like to
measure the expected ensemble-size effect on forecast per-
formance in a multi-model ensemble setting. Not only is
exchangeability of the ensemble members from any one
model required but also multi-model exchangeability,
which is a form of partial exchangeability (Bernardo and
Smith, 2000), as well as multi-model ensemble size invari-
ance. These so-called generalised multi-model exchange-
ability conditions do not require exchangeability between
models. Formal definitions of the multi-model exchange-
ability and multi-model ensemble size invariance conditions
are provided in Appendix A, Section A2 along with the
corresponding mathematical developments. In addition,
we provide more practical conditions that can be checked
easily for any multi-model ensemble (see Equations (A7)
and (A8)). In plain words, these conditions demand (i)
that the expected mean absolute error of an ensemble
member only depends on the model, i.e. it is the same for
all members generated with that model and (ii) that the
expected mean absolute difference between a pair of dis-
tinct members only depends on which models generated
them, i.e. it is the same for all pairs of distinct members
provided they originate from the same pair of models.
Finally, the impact of the violation of the requirements is
illustrated based on a concrete example in Section 2.3.

When the generalised multi-model exchangeability con-
ditions are satisfied, an unbiased estimator of the CRPS
for a multi-model ensemble with M= (M, ..., M)
members is:

C(zm, 1, y)— 22 22

The adjusted CRPS in a multi-model setting is denoted
Cm—m. How the ensemble-adjusted CRPS can help with
the design of a multi-model ensemble system is discussed
later in Section 3. But first, in the remainder of this sec-
tion, the robustness of Expression (6) as a score estimator
is tested on a particular multi-model ensemble.

M ; m;  m;
o 7’”1 e Z@zig—zm. (6)
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2.2. Multi-model ensemble setting

The concepts developed in Sections 2.1. (and later in
Sections 3) are tested on a dual-resolution ensemble
experiment. A dual-resolution ensemble is a particular
case of a multi-model ensemble because the different con-
tributing ensembles share the same underlying model.
However, this specificity is neither required for the appli-
cation of predictive verification as developed here, nor
impacts the interpretation of the results. The choice of a
multi-resolution ensemble to illustrate our method derives
from a recent interest at ECMWF for this type of config-
uration but the method will also work with more trad-
itional multi-model ensembles (as long as they satisfy the
generalised multi-model exchangeability conditions).

In our test example, the forecast data-set comprises
forecasts from the same numerical model (the ECMWF
integrated forecasting system) but run at two different
resolutions: TCo0639 (~18km) and TCo0399 (~29km).
They are referred to as the higher resolution (Hres) and
the lower resolution (Lres) members, respectively. A dual-
resolution ensemble combines p Lres and ¢ Hres members
into a so-called (p,g) ensemble. The combination parame-
ters, p and ¢, can be varied in such a way, for example,
to keep constant the total computational cost of an
ensemble run. The cost ratio between forecasts at
TCo0639 and TCo0399 is approximately 4:1. Given a fixed
computational cost defined by limited computer resour-
ces, one would like to know the combination (p,q) which
optimises the predictive performance of the ensemble.

In order to answer this question, several forecast com-
binations with the same computational cost are assessed
and their performances compared. An ensemble with an
operational-like setup, that is a (0,50) ensemble which
comprises 50 Hres members only, is used as the reference
ensemble forecast. Other ensemble combinations are com-
pared with this reference. These baseline combinations
correspond to the (40,40), (120,20), (160,10), and (200,0)
ensembles. Results of this type of analysis are docu-
mented in Leutbecher and Ben Bouallegue (2019). They
show that the (40,40) ensemble performs significantly bet-
ter than the other tested combinations when focussing on
2m temperature short- and medium-range forecasts over
the northern hemisphere.

Here, the question is whether the same results and con-
clusion can be obtained using ensemble-adjusted scores.
The ensemble-adjusted approach potentially allows one
to reduce drastically the cost of an ensemble experiment.
In the case of a positive answer to the above question,
score adjustment would provide the framework for the
analysis of all potential ensemble combination perform-
ance at a lower experiment computational cost (see
Section 3).
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Left: comparison of scores computed from actual (p, ¢) ensembles (ACRPS) and adjusted scores based on a (8) subset of

members (ACRPS,q;). The scores plotted here are CRPS normalised differences between the (0,50) reference ensemble and the baseline
multi-model combinations (40,40), (20,120), (10,160), and (200,0) as represented by squares, circles, triangles, and crosses, respectively.
Each symbol corresponds to the result for one lead-time ranging between 1 and 15days. Right: amplitude of the confidence intervals
(CI) associated with the CRPS normalised differences (grey line) and the adjusted CRPS normalised differences (red lines) based on (2,
4), and (8) subsets of members (dotted, dashed, full lines, respectively), as a function of the forecast lead-time. CI are estimated by
block-bootstrapping with blocks of three days. Results are shown for the comparison between the (0,50) and the (40,40) ensembles only.
CI at day 3 based on a (8) subset of members are reported on the plot on the left. Note that the vertical axes have the same scale in

both plots.

Using Expression (6), performance analysis of multi-
model combinations is based on verification statistics
computed from small subsets of Hres and Lres members.
Subsets of the type (2, 4), and (8) are tested where each
forecast of the subset is selected in order to be exchange-
able with the other members. Leutbecher (2018) provides
more details about member selection and exchangeability
of the ECMWF ensemble.

Dual-resolution ensemble performance is assessed for
several surface weather variables but only results for 2m
temperature forecasts are shown here. Results for 10m
wind speed and 24 h accumulated total precipitation were
analysed as well but only briefly discussed here because
they are qualitatively similar. The chosen verification
period covers the boreal summer (JJA) 2016, and the
forecasts are compared with SYNOP measurements dis-
tributed over the northern hemisphere.

2.3. Hllustration

Performance in terms of CRPS is computed for each
baseline combination, (40,40), (120,20), (160,10), and
(200,0), and compared with the performance of the refer-
ence forecast (0,50). The CRPS difference is normalised
by the mean CRPS of the reference forecast over the veri-
fication period and is simply denoted ACRPS. A negative
difference indicates that the baseline combination is better
than the reference forecast. In terms of experiment

computational cost, this analysis requires, in our example,
to run 50 Hres members and 200 Lres members over a
92-day verification period.

Now, the CRPS for each of the baseline/reference com-
binations is estimated based on a (8) subset of members.
In other words, we compute C(g,g)ﬁ(4o,40),C(g’g)_,(lzo’zo),
and so on using Expression (6). The score differences are
then normalised by the mean scores of the reference com-
bination (C(g 3)—(0,50) and denoted ACRPS,q because
they are based on adjusted scores. This time, the ensemble
performance analysis requires only 8 Hres members and 8
Lres members. This corresponds approximately to 10% of
the experiment computational cost of the original ana-
lysis. Adjusted scores based on smaller subsets, (4) and
(2), are also tested. They correspond to a reduction of the
computational cost by a factor 20 and 40, respectively.

Figure 1 shows the correspondence between ACRPS
and ACRPS,; based on a (8) subset of members.
Performance for 2m temperature forecasts is shown for
the four baseline combinations at each forecast lead-time
(ranging between day 1 and day 15) separately (15x4
points in total). Very good agreement appears between
normalised score differences computed from the actual
dual-resolution ensembles and estimated from the subset
of members. The corresponding correlation coefficient
reaches 0.99 and the rank correlation coefficient is 0.88
as reported in Table 1. When the size of the ensemble
subset on which the estimation is based is smaller than
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Table 1. Gain in experiment computational time and accuracy of
the score estimates based on adjusted scores for different sizes of
ensemble subset.

(p,q) subset (2 “ ()
relative computational time [%] 2.5 5 10
Kendal-t corr. coeff. 0.73 0.88 0.88
Pearson corr. coeff. 0.94 0.98 0.99

(8), the accuracy of the score estimates tends to decrease.
In all cases, the linear correlation between normalised
score differences ACRPS and ACRPS,q; is higher than
0.9, even when based on the computationally very cheap
(2) subset of ensembles. Performing the same analysis for
24h precipitation and 10m wind speed, we notice that
the correlation coefficients for these variables are in gen-
eral smaller than for 2m temperature (not shown).
However, the linear correlation coefficient reaches 0.87
for the former and 0.97 for the latter when based on a (8)
ensemble. In principle, the method proposed here can be
applied similarly to any other weather variable.
Computational resources for experimental testing are gen-
erally limited. In order to decrease computational cost for
numerical experimentation, one can think of reducing the
length of the testing period. This alternative is also considered
here. Scores computed from the actual size dual-resolution
ensembles but over reduced sets of randomly selected verifica-
tion days are compared with scores averaged over a full 92-
day verification period (JJA 2016). Following the same pro-
cedure as for the ensemble-adjusted scores, correlations
between normalised score differences and their estimates are
computed for a range of verification window lengths. The
results are reported in Table 2. It appears that reducing the
number of verification days can provide results substantially
different than results obtained with the original verification
sample. For example, a reduction in computational cost to
~10% of the original cost leads to a rank correlation coeffi-
cient below 0.8. Comparing results in Tables 1 and 2, we see
that estimates from ensemble-adjusted scores are more robust
than estimates based on a reduced sample of observations
with comparable experiment computational time. This is the
case not only for 2m temperature forecasts but also for 24 h
precipitation and for 10m wind speed forecasts (not shown).
Besides the accuracy of the ensemble-adjusted scores,
the level of confidence associated with score differences is
also important when verification results serve as a basis
for decision-making regarding future ensemble configura-
tions. In Fig. 1 (right panel), we show as a function of
the forecast lead-time the uncertainty associated with the
score differences, ACRPS (grey lines) and ACRPS,q;
based on a (8) ensemble (solid red lines), on a (4) ensem-
ble (dashed red lines), and on a (2) ensemble (dotted red
lines). Score uncertainty is represented by the 2.5%-97.5%

Table 2. Same as Table 1 but for score estimates based on
different verification sample sizes and using the actual complete
ensemble with p Lres and ¢ Hres members.

Number of verification days 5 10 19

Relative computational time [%)] 5.4 10.8 15.2
Kendal-t corr. coeff. 0.68 0.76 0.82
Pearson corr. coeff. 0.90 0.93 0.97

percentile of the block-bootstrapped score distribution,
using a block length of three days. In general, the score
uncertainty tends to increase with forecast lead-time. The
score uncertainty increases more rapidly when the per-
formance is estimated with ensemble-adjusted scores. The
uncertainty of the adjusted scores increases with decreas-
ing size of the ensemble used for the score estimations as
illustrated in Fig. 1 (right panel) for adjusted scores esti-
mated from (4, 8) and (2) ensembles. The level of uncer-
tainty (right panel) with respect to the score differences
(left panel) appears however reasonable in this example.
The CRPS difference ACRPS is significant at a 5% level
in 85% of the cases (for all lead times and combinations).
When score estimates are based on a (8) ensemble, the
ratio of significant ACRPS,y values is still 83%. For
example, in Fig. 1 (left panel), the benefit of the (40,40)
combination at day 3 is significant when computing both
ACRPS and ACRPS,q; as depicted by the grey and red
confidence bars, respectively. However, when the score
estimations are based on (4) and (2) ensembles, the per-
centage of significant differences falls to 78% and 57%,
respectively.

Finally in this section, we would like to highlight the
importance of the generalised multi-model exchangeabil-
ity condition. This condition is required in order to have
a valid unbiased score estimator as discussed in Section
2.1. For illustration purposes, we consider a configuration
where the generalised exchangeability conditions are vio-
lated although the individual single ensembles are still
exchangeable: In the following example members from
the two models share the same initial perturbations.
Every Hres member has the same initial condition as one
corresponding Lres member. This implies that the differ-
ence between such a pair of Hres and Lres members shar-
ing the initial condition is on average smaller than the
difference between any other pair of Hres and Lres mem-
bers. Figure 2 shows the adjusted score estimation for
this example that violates exchangeability (bottom panel)
as well as for a configuration that satisfies the generalised
multi-model exchangeability condition (top panel). In the
latter case, the score estimate is unbiased while in the for-
mer case, the CRPS estimate exhibits a clear bias up to
day 6. For any actual ensemble generation methodology,
it can be checked whether the exchangeability conditions
(A7) and (A8) expressed in the Appendix hold within
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Fig. 2. Relative difference between CRPS and adjusted CRPS
for a (40,40) ensemble as a function of the forecast lead time.
The score adjustments are based on a (2) ensemble subset.
Generalised multi-model exchangeability conditions are respected
in (a) and violated in (b). Mean difference over the verification
period (black curve) and variability as measured by block-
bootstrap 90% confidence intervals (grey plume).

sampling uncertainty. Multi-model ensembles based on
ensembles from very different models might of course ful-
fil these conditions, but it is worth noting that if any one
of the models contributing to the multi-model ensemble
fails to respect the criterion of member exchangeability,
the approach proposed here is not applicable. Similarly,
as in Leutbecher (2018), we can affirm that it will be
more difficult to infer scores from a small subset when a
multiphysics-based ensemble is contributing to the
assessed multi-model ensemble because different members
will have different biases. These are likely to render the
expected mean absolute error dependent on the physics
choices of the member and it is likely to render the
expected mean difference of a pair of members dependent
on the physics choices of this pair.

3. Multi-model ensemble design

In this section, the concept of ensemble-adjusted scores is
exploited to efficiently assess the ensemble-size effect on

multi-model ensemble performance. This is illustrated in
the context of the design of a dual-resolution ensemble as
described in Section 2.2. Here, again, the target is the
minimisation of the ensemble expected CRPS. First, opti-
mal mixtures of higher and lower resolution ensemble
forecasts for a given computational cost are investigated
in Section 3.1. Second, optimal weighting strategies for
fixed combinations of members are discussed in Section
3.2. Both applications are complementary. The illustra-
tions are based on the case where k=2, that is when
forecasts from two different models are combined, but
the methodology can be generalised to the combination
of any number of models.

3.1. Ensemble pooling

We first consider flexibility in terms of ensemble-size in
the design of a multi-model ensemble. This is for instance
the case in the dual-resolution ensemble example: A deci-
sion can be made about the number of Lres and Hres
forecasts to be combined with computer power limited by
current or foreseeable resources. Using ensemble-adjusted
scores, forecast performance of any combination is esti-
mated from a small set of Hres and Lres forecasts. These
estimates of the scores for many different configurations
are available virtually for free once the required verifica-
tion statistics from one representative small ensemble
have been computed. There is no additional cost in terms
of numerical experimentation or in terms of repeated
computations of verification statistics.

As suggested by results in Section 2.3, we illustrate the
adjusted score applications by deriving statistics from an
(8) ensemble. Indeed, in that case, ensemble-adjusted
CRPS are expected to provide robust performance esti-
mations for larger ensemble combinations. Adjusted
CRPS are estimated here for a range of model combina-
tions (p,q) with p € [0,200] and ¢ € [0, 50].

In Fig. 3, results are shown for 2-metre temperature
forecast at day 5. On the left panel, a simple pooling of
all combined members is considered. To ease readability,
the CRPS is normalised by the minimum CRPS over all
tested combinations: this shows the percentage of deteri-
oration with respect to this (local) optimal score, indi-
cated with an asterisk on the graph. Among all
configurations considered here, the optimal one is not the
(200,50) but the (25,50): adding more lower resolution
members to the ensemble degrades the ensemble perform-
ance in this example. Configurations with equal predictive
performance are highlighted with contour lines (solid
black lines). Configurations with computational cost
equivalent to the current one are indicated with a dashed
descending diagonal line.
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Fig. 3. Left: ensemble-adjusted CRPS of a dual-resolution ensemble as a function of the number of Lres (p) and Hres (¢) members
combined with equal weighting. The CRPS values are normalised in order to indicate the percentage degradation with respect to the
optimal solution among the tested combinations (as indicated by a *). Black lines indicate ensemble combinations with equal
performance. The diagonal dashed line indicates ensemble combinations with computational cost equivalent to the (0,50) reference
forecast. Dotted lines indicate results for ensemble combinations with half or double the reference computer resources. Right: ensemble-
adjusted CRPS (CRPS,q) after normalisation as a function of the number of Hres (Lres) members ¢ (p) considering a fixed
computational cost equivalent to running 50 Hres forecasts. The plot shows performance for ensembles with equal weighting (o) and
optimal weighting (+) for each combination. Weights are estimated based on a (8) ensemble. Grey shading indicates 90%-confidence
intervals (see text). Optima are highlighted in bold. Results for the baseline/reference combinations of the original analysis are indicated

in red. Results are valid for 2m temperature forecast at day 5.

Parallel lines to the descending diagonal indicate
results for combinations with equal computational costs.
For example, results for combinations that require twice
and half the current level of computer resources are indi-
cated with dotted lines. Focussing on the current compu-
tational cost (dashed diagonal), one can consider running
a (200,0) ensemble (top left corner), or a (0,50) ensemble
(bottom right corner), or any intermediate combination.
The ensemble performances of all these ensemble combi-
nations with equal computational cost are reported on
the right panel in Fig. 3.

In Fig. 3 (right panel), the ensemble-adjusted CRPS
provides estimates of the dual-resolution ensemble per-
formance for the full range of possible combinations
between Lres and Hres members given the current com-
puter resources (grey circles). The original analysis
focussed only on four baseline plus one reference combi-
nations (red circles) pointing to a (40,40) ensemble as the
optimal combination. Applying score adjustments, a finer
analysis shows that the (20,45) ensemble is the optimal
dual-resolution combination for this particular weather
variable and forecast lead time (2m temperature at day
5). Using the adjusted CRPS in Expression (6), this type
of analysis can be repeated easily, and at no additional
cost for any other computational resource constraint.

3.2. Ensemble weighting

We consider now the case where the number of forecasts
to be combined is fixed. The question is whether the
ensemble performance can be improved by applying
appropriate weighting to each combined model. We pro-
pose here an analytical expression of the optimal weights
which is directly derived from the kernel representation
of the CRPS. In contrast to post-processing methods gen-
erally in use, no numerical optimisation procedure is
required in the proposed approach. Nevertheless, prior
knowledge of forecast performance based on historical
data is needed.

The weighting strategy proposed here is useful for
showing the relative merits of the different model ensem-
bles and its expected impact on multi-model ensemble
performance. Potentially, further improvement could be
achieved with considering additionally bias correction of
the ensemble members. Such corrections are left for
future studies.

In the following, we discuss the case where forecasts
from two models are directly combined (k=2). We use
the simplified notations defined in Appendix A, Section
Al. Mathematical developments
Appendix A, Section A4 where a general solution for

can be found in
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optimal weighting is presented for an arbitrary number
k > 2 of models.

Considering the constraint A; + A, = 1, the minimisa-
tion problem follows:

argmin(Cy, my) (M) 7)
M

The optimal weighting depends directly on the number
of members combined from model 1 and model 2, that is
my and m,, respectively. Optimal weights can also be esti-
mated accounting for the ensemble-size effect. In order to
derive optimal weights for a (M, M>) ensemble based on
a subset (m;, my) of forecasts, one must solve

dC(ml ,my)—(My, M>) (7\'1 )
dh

=0. (8)

Using the kernel representation of the adjusted CRPS
in a multi-model context, an analytical solution of
Equation (8) can be found applying linear algebra. The
optimal weight estimate follows:

e 2*6 1+ Rlz
A=l ©
2R12
where the first two terms on the numerator correspond to
the adjusted CRPS of model 2 and model 1, respectively,
and with R, defined as:

Riy =2D,—Dy1—Dx (10)

where Dij is an estimate of the expected absolute differ-
ence between members of model i and members of model
Jj. So Ry, is proportional to the difference between ‘inter-
model spread’ and mean ‘intra-model’ spread. This term
is positive as soon as there is less similarity between mem-
bers originating from two different models than between
members originating from the same model.

From Equation (9) and the developments in Appendix
A, Section A4, we can make the following remarks
regarding the values that 71(1’ can take:

. XT =0.5if C; = (,, that is model 1 and 2 have the
same performance;

e i =1ifC,=0and C,#0, that is model 1 is per-
fect and model 2 is not;

e i =0if Cy=0and C| #0, that is model 2 is per-
fect and model 1 is not.

Exploiting these results, performance of dual-resolution
ensembles can be now examined considering optimal
weighting. For each (p, ¢) ensemble, optimal weights are
estimated using Equation (9) and applied to the score
estimation in Expression (6). For illustration purposes,
we apply an out-of-sample approach for the computation
of the weights and their application to the multi-ensemble
forecast before verification. We proceed as follow: the 92-
day verification sample is divided into a training period
and a testing period. Elements of the training group are

200 160 120 80 40 0

1.0

kHres
0.4

0.2

0.0
|

Fig. 4.
the number of Hres (Lres) members q (p) considering a fixed
computational cost equivalent to running 50 Hres forecasts:
weights when ensemble pooling is applied (grey line), optimal
weights estimated from a (200,50) ensemble (black line), optimal
weights estimated from a (8) ensemble (red line). The vertical
dotted line indicates the optimal (p,g) combination as seen in Fig.
3 (right panel).

Weight associated with the Hres model as a function of

randomly selected as 15 blocks of three consecutive days
with replacement, that is blocks that can overlap. Days
not selected for training are used for testing. We average
the CRPS over all pairs in the training period and then
compute the optimal weights for the mean CRPS.
Optimal weights estimated over the training period are
applied to the forecasts over the testing period. Testing
and training period are then swapped. Verification of the
weighted ensemble forecasts is finally computed over the
whole verification window. The process is repeated 1000
times with a random selection of training and testing
days in order to obtain a score distribution from which
statistics are derived.

Figure 4 shows the optimal weights as estimated from
a (200,50) ensemble (black line) and from a (8) subset of
members (red line). Optimal weighting is compared with
ensemble pooling where all combined members have the
same weight (grey line). When a coloured line is above
the grey line, it means that the weight optimisation
increases the contribution of the Hres members with
respect to the ensemble pooling. This is the case when the
number of combined Hres members is smaller than the
one associated with the optimal (p, g) combination as
indicated by the vertical line. We also see that the differ-
ences between optimal weight estimates based on a
(200,50) ensemble or a (8) ensemble are small. Moreover,
the resulting CRPS when applying one or the other
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optimal weight exhibit differences which are not larger
than 0.1% and non-significant (not shown).

In Fig. 3 (right panel), ensemble forecast performances
with optimal weighting are plotted for each ensemble
combination (p,q). The CRPS of the forecast with opti-
mal weights (crosses) can be compared with the CRPS of
pooled forecasts (circles) for a given combination of Hres
and Lres forecasts. Grey shading shows confidence inter-
vals as measured by the 5%-95% percentiles of the score
distribution. They represent the performance uncertainty
associated with the weighting procedure.

From the results presented on the right panel in Fig. 3,
we conclude that (i) the application of optimal weights
can substantially improve the performance of a multi-
ensemble forecast, (ii) a large range of ensemble combina-
tions have near-optimal score when optimal weighting is
applied, and (iii) the optimal combination with pooled
forecasts (the (20,45) ensemble) is not improved further
by model weighting.

More generally, the multi-model ensemble performance
under simple pooling and optimal weighting provide com-
plementary information. For the design of an ensemble
system, the assessments of raw and of potential perform-
ance after optimal weighting are both relevant figures.
Both can be performed efficiently based on the ensemble-
adjusted CRPS.

4. Summary

Ensemble-adjusted scores allow one to account for the
ensemble-size effect on ensemble forecast performance.
This paper revisits the ensemble-adjusted score concept in
the context of multi-model ensemble forecasting. An
unbiased estimator of the continuous ranked probability
score as a function of the ensemble size is proposed and
its robustness tested on dual-resolution ensemble fore-
casts. It is shown that adjusted scores S, .. m)—(m, ..., M)
based on a small subset of exchangeable members from
each model (typically m; = 8 for any combined models i)
provide good performance estimates of any (M, ..., My)
ensemble configuration. The validity of the approach
depends on generalised multi-model exchangeability con-
ditions. A simple tool is provided to determine whether
the multi-model ensemble at hand satisfies the conditions
within sampling uncertainty. Score adjustment of the
Brier score in a multi-model ensemble context is also pro-
vided in the appendix of this article. Further research is
welcome in order to develop ensemble-size adjustment of
other scores for a more comprehensive analysis of ensem-
ble performance based on small subsets of ensem-
ble members.

From a research testing perspective, the use of ensem-
ble-size adjusted scores can represent a substantial saving

in terms of the computational cost for the numerical
experimentation. In our illustrative example, a decrease
up to a factor 10 of the experiment cost (by running
fewer members) does not considerably deteriorate the
quality of the analysis: The unbiased score estimates are
highly correlated with scores computed from the actual
size ensemble. It is shown that this strategy is more effi-
cient than a strategy consisting in drastically reducing the
verification sample in terms of the number of forecast
start dates. The latter can be detrimental to a robust
assessment of ensemble performance.

Ensemble-adjusted scores find applications in the
design of multi-model ensemble systems. This is also illus-
trated here with a dual-resolution ensemble where an
optimal combination of higher- and lower-resolution fore-
casts is targeted. Not only simple pooling of forecasts but
also optimal weighting of the contributing models can be
investigated, accounting for the ensemble-size effect.
Based on linear algebra, optimal weights are directly
derived from the CRPS kernel representation. Applying
optimal weighting strategies helps to demonstrate the
potential performance of optimally combined ensemble
forecasts. The derivation of optimal weights, in a non-
iterative fashion, can be applied without restriction to
any combination of ensemble members.

At low experiment computational cost and with limited
verification effort, it is possible to draw a full picture of
expected performance in terms of CRPS as a function of
the number of members from each contributing model.
The optimal ensemble configuration can be easily identi-
fied for a given computational cost with and without
weighting members. This new type of ensemble skill
investigations is coined predictive verification and aims to
provide a framework for making informed decisions on
future multi-model ensemble configurations.
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APPENDIX A: Mathematical details for
CRPS adjustment

In the following, the mathematical details that were
omitted from the main text are provided. The required
exchangeability conditions and the proof that the score
estimator given these conditions is unbiased are provided

first. Then, the general solution for the optimal weights
is derived.

Al. Kernel representation in compact notation

It is convenient to introduce a compact notation for
the derivations that follow. The verification statistics that
need to be aggregated in order to apply the score
adjustment in the kernel representation of the CRPS are
the mean absolute error E; and the L1-spread matrix D;;.
When obtained from numerical experimentation with
ensemble size m, these verification statistics are

I &

Ei(m) = —3 |2y, (A1)
Zg:1

D;;(m) (A2)

ZZI% 2.
Zmlmj po

The matrix D is symmetric. Its off-diagonal terms
describe the diversity between models, or ‘inter-model
spread’, while the diagonal terms describe the spread
within the individual models, or ‘intra-model’ spread.

The CRPS kernel representation for the multi-model
ensemble with weights A as given earlier in Equation (5),
can be expressed in terms of E and Dj; as

ZxE ZZMDU

i=1 j=
Similarly, the adjusted score according to (6) can be

(A3)

written as
k
CmHM(A') = _szz’\{l i
: (a9
= NLEi(m)=> > NA;Di(m, M),
i=1 i=1 j=1
with the adjusted spread matrix given by
Dyj = Dyj + 87, Dy (AS)
and ensemble-size adjustment factors
(]W,—m,)
R e B 7 A
U v r— (A6)

where 9;; = 1 if i=j and 0 otherwise. The k+ k(k+ 1)/2
numbers F;, D;; with 4 <j characterise the joint
distribution of y and z, completely in terms of the
CRPS. Storing the E; and D;; permits the computation of
the CRPS estimator for any set of weights A and any
target ensemble size M from numerical experimentation
with ensemble size m.

A2. Generalised multi-model exchangeability conditions

Now, we focus on the conditions required to render
the adjusted score given by Expressions (6), (A4) an
unbiased estimate for the target ensemble size M. The
multi-model exchangeability and the
invariance conditions described in Sections A2.1 and

ensemble size
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A2.2 are sufficient but impractical to validate.
Subsequently in Section A2.3, we provide less general
conditions in terms of expected absolute differences
between members and between members and the
verification data. The latter conditions are more practical
as they can be checked easily for
model ensemble.

A2.1. Multi-model exchangeability

We extend the notion of exchangeability to the multi-
model setting as follows. For each of the k models consider
an arbitrary permutation of its members. This describes a
permutation for the entire ensemble that respects the order
of the models in the vector z,. We can represent this
permutation via its block-diagonal permutation matrix P.

An ensemble composed of members from k different
models is said to be multi-model exchangeable if for any
such permutation P that consists of arbitrary permutations
of the single-model sub-ensembles, the joint distribution of
Pz is identical to the joint distribution of z.

A2.2. Multi-model ensemble-size invariance

Consider an ensemble generation method that can
generate multi-model exchangeable ensembles of different
sizes, say m = (my, ...,mg) and m = (my, ...,my ). Let
zm and Zg denote the two ensembles corresponding to the
ensemble size m and m. One can compare marginal
distributions constructed from the two ensembles that
contain the same number I; < min(m;,m;) of distinct
members from each model j. Let H and H denote
operators that extract for each model j a subset of J;
members from the ensembles z,, and z;, respectively. We
define the multi-model ensemble generation method to be
ensemble-size invariant if for any ensemble sizes m and m
and for any subensemble extractions H and H that yield
the same number of distinct members from each model j,
the joint distribution of Hz, is identical to the joint
distribution of Hzg.

A2.3. Conditions in terms of expected distances

For an ensemble that satisfies the generalised multi-
model exchangeability conditions given in A2.1 and A2.2,
the expected values of the distance between members and
the distance between members and verification depend
only on the model indices i, j and neither on ensemble
size m nor on member numbers g, # within a model:

Elzig — zjn| = (1-8;;841) Aij,
]E|Z,;g — y‘ = @,

any multi-

(AT)
(A8)

These conditions are the key ingredient for the
following proof.

A3. Proof

With the conditions expressed in Equations (A7) and
(A8), the expected E and D are given by

E D;j(m) :%Az‘j for i # j,
(m;—1)

2m;

(A10)

E Dj(m) = Aj;. (A1)
This implies that the expected adjusted spread matrix
satisfies

N M;—1

Therefore, EDii(m,M) =ED;;(M) which yields the

desired result that
Cm—Mm(X) =E Cm(M).

Ay (A12)

(A13)

So Cpom(}) is an unbiased estimator for the expected
CRPS at the target ensemble size, M.

A4. Optimal weighting

Now, we describe how to obtain the optimal weights A
for a target ensemble size M. Let

e=(E E)" (A14)

denote the column vector with the mean absolute errors.
Then, the adjusted CRPS can be written in matrix notation as

Cnom(X) = 1Te—ATDA. (A15)

Optimal weights are sought subject to the constraint
> A; = 1. This can be achieved via a Lagrange multiplier.
Define

L% $) = Cum(M)—d('r 1)

with the vector u= (1

(A16)
1)". The optimum weights
are then the solution of

V3oL = 0. (A17)

This yields linear equations for the weights and the
Lagrange multiplier ¢:
2DA =e—du,

u'h=1.

(A18)
(A19)

Solving (A18) for the weights and inserting in (A19)
yields the Lagrange multiplier

uTD le—2
=——_ - A20
¢ u'D lu ( )

Now, the optimum weights can be computed as

A0 ~ D~ —_
A :lD’l e—wu .
2 u'D " lu

If we consider the combination of only two models
(k=2), the optimal weight associated with model 1 can
be written as

(A21)

jo_ Ca=Cit Riy (A22)
! 2R '

with C; the expected value of the adjusted CRPS of
model 7 in the single ensemble case,
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(A23)
and with

Riy =2D13—Dy1—Da. (A24)

From Equation (A22), it is straightforward to see that
XT =0.5 when C, = (:‘1‘ We can also note that XT =1
when ensemble 1 is perfect (and ensemble 2 is not), that
is él =0 (and éz # 0). Indeed, in that case, 2z, = y with
g=1,...,m  which implies that D=0 and
Dlz _—Ez, so Rip=0C,. Similarly, we can show that
7» = 0 when ensemble 2 is perfect and ensemble 1 is not.

APPENDIX B. Adjusted brier score for multi-
model ensembles

Consider forecasting a binary outcome, y. Suppose that
we have m = (my,my, ..., m;) ensemble members from
k models, and let N; denote the number of the my;
members that forecast the event {y = 1}. Suppose that
we form the probability forecast

k
N;
hi—, (B1)
- my;
i=1
a linear combination of the proportions, N;/m;, from
each model with weights A = (A, Ay, ..., %) associated
with the k& models. The Brier score for this probability

forecast is

m. ) -y} (B2)

the Brier
obtain if we had

B(m, L) = {P(

Suppose that we want to estimate B(M, ),
score  that we
M = (M, M, ..., M;;) ensemble members from the k
models. An unbiased estimate for the expected value of
B(M, ) is

would

k M -m;) N; N;
Z i(my; — 1)m7 (1_H) (B3)

(3

This result holds under the same generalised multi-
model exchangeability conditions as the CRPS result (see
Appendix A, Section A2).
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