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ABSTRACT
The optimal observation placement in weather forecast and research (WRF) data assimilation is investigated
using a sensitivity analysis method. The method quantifies the sensitivity of observation location to
assimilated results as an unobservability index. The empirical observability Gramian matrix composed from a
time series of WRF model outputs is used to obtain the unobservability index in the WRF domain. A three-
dimensional variational data assimilation (3D-VAR) method is employed in the WRF model to assimilate
the observations of horizontal winds, whose locations are selected based on the unobservability index. The
results from the identical-twin experiments show a correlation between improvement in the assimilated wind
field and the magnitude of unobservability index. The temporal variation of the vertical component of
vorticity is strongly related to the unobservability index, which confirms that an observation location
exhibiting a high unobservability index contributes to error reduction in the data assimilation owing to the
reduction in the uncertainty caused by the strong vorticity changes.
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1. Introduction

Wind farms are recognised as one of the most promising
reusable energy sources (REN21, 2018). The worldwide
trend of using renewable energy results in global market
expansion, and the growing number of wind farms
increases the demand for accurate prediction of atmos-
pheric wind states. Electric power generated by a wind
farm tends to be unstable because of changes in weather
conditions, which cannot be avoided in the atmospheric
system. It is also known that the short-term prediction of
wind power generation is not sufficiently accurate to con-
trol a wind farm, as reported by Enomoto (2006), show-
ing the limitations of the statistical sustainable model in
short-term wind prediction.

The sensitivity of numerical weather prediction (NWP)
to initial conditions originates from the chaotic behaviour
of an atmospheric model (Lorenz, 1963). Numerical mod-
els have uncertainties; thus, long-term integration could
produce a significantly different result. Accurate wind
prediction is mandatory for estimating the amount of
generated power because it strongly depends on changes

in the wind state. In such a situation, it is expected that
data assimilation would improve numerical weather fore-
casts by decreasing the uncertainties in the initial values
with the help of observations in the real world.

Concerning data assimilation in a limited area, such as
a wind farm, it is important to know which observation
location is optimal for data assimilation, because there
are many methods to be used for observations depending
on the locations, such as an anemometer, a wind profiler,
a radiosonde, and light detection and ranging (LIDAR).
The optimisation of observation locations to improve the
NWP is known as targeted observations. Several methods
have been proposed to conduct targeted observations.
Baker and Daley (2000) and Langland and Baker (2004)
proposed adjoint-based methods to assess the observation
impact. Liu and Kalnay (2008), Liu et al. (2009), and Li
et al. (2009) proposed a method using an ensemble pre-
diction, which has similar capability as the adjoint
method with less effort to handle an adjoint code. As for
the sensitivity analysis method, Buizza et al. (2007b),
Cardinali et al. (2007), and Kelly et al. (2007) showed
that observations based on the singular vector-based sen-
sitivity of the Pacific and Atlantic Oceans have more
advantages than observations in other regions. Carrassi
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et al. (2007) carried out Observing System Simulation
Experiments (OSSEs) in a quasi-geostrophic (QG) model
and ensured the effect of an adaptive observation method
using the bred vectors proposed by Toth and Kalnay
(1993), which effectively capture the characteristic error
growth modes of a field.

Kang and Xu (2009) proposed an approach for sensi-
tivity analysis, originated from modern control theory, to
estimate the preferable observation locations for data
assimilation. Compared with the concept of observation
sensitivity, which is a typical method in targeted observa-
tions, this proposed method uses the observation model
but not the data from observations; the information of
the optimal observation configuration can be found
before the assimilation is performed. In modern control
theory, the system’s observability can be assessed by the
regularity of the observability Gramian. However, the
condition does not provide the degree of observability in
a quantitative sense; moreover, it is difficult to compose
the Gramian explicitly from high-dimensional models. In
large models, the effectiveness of observation locations
can be quantified by an eigenvalue of the empirical
observability Gramian constructed from the results of a
numerical model. When the observability for a set of
points is quantified, an observation configuration with a
higher observability contains more information with
which to understand the internal states of the system and
is more effective in eliciting a future state prediction. It is
also beneficial that the approach is independent of any
data assimilation method; as such, it can be combined
with many types of methods, such as 4D-VAR, ensemble
Kalman filter, and particle filter. The effectiveness of this
approach was demonstrated using simple mathematical
models in Kang and Xu (2012) and King et al. (2013).
Recently, there have been practical achievements of the
empirical observability Gramian in the optimal placement
of the phasor measurement units (PMUs) used in electric
power systems (Qi et al., 2015, 2016). As mentioned
above, several methods have been proposed to evaluate
the impact of observation; however, there have not been
examples of the observability used in targeted observa-
tions for weather forecasting. Therefore, there is still a
room for clarifying the relation between the observability
and a wind field considered in an NWP model.

In this study, the method formulated by Kang and Xu
(2009) is applied to a data assimilation problem in wea-
ther forecasting with the Weather Research and Forecast-
Advanced Research WRF (WRF-ARW) Version 3.8
(Skamarock et al., 2008) model. Although our final target
is the optimisation of observation locations in a wind
farm, the applicability of this method is investigated in
meso-scale weather forecasting covering the eastern Japan
as a preliminary assessment. First, the observability

estimated by the empirical observability Gramian is
studied in detail by comparing with the corresponding
wind field in an identical-twin experiment. For this
experiment, three-dimensional variational data assimila-
tion (3D-VAR) (Barker et al., 2003) from WRF Data
Assimilation (WRFDA) Version 3.8 (Barker et al., 2003,
2012) software is employed. Compared to other data
assimilation methods, 3D-VAR has advantages in numer-
ical costs, which is important for short-term wind predic-
tion in wind farm applications.

This paper is organised as follows. The computational
methods are presented in Section 2. The relation between
the observability and corresponding wind field is detailed
in Section 3.1. The identical-twin experiment for wind-
state forecasting is discussed using the eigenvalues of an
empirical observability Gramian in Section 3.2. Finally,
we conclude this study in Section 4.

2. Computational methods

2.1. Evaluation of observability

In this study, sensitivity analysis is conducted using the
method proposed by Kang and Xu (2009), which is based
on the observability in modern control theory. The defin-
ition of the observability is presented in this section. The
unobservability index q=e (Krener and Ide, 2009) quanti-
fies the observability of a system. According to Kang and
Xu (2009), the parameters q ð> 0Þ and e are defined as:

e2 ¼ min
dx0

L x0, dx0, kð Þ subject to jdx0j ¼ q, (1)

where L x0, dx0,kð Þ is a function defined as:

L x0, dx0, kð Þ ¼
XN
k¼1

y tk, x0 þ dx0,kð Þ�yk x0,kð Þ� �T
Rk y tk, x0 þ dx0,kð Þ�yk x0, kð Þ� �

¼
XN
k¼1

y tk,x0 þ dx0, kð Þ�y tk,x0, kð Þ�� ��2
Rk
:

(2)

Here, x0 and y tk,x0, kð Þ are the initial value of the sys-
tem and the observations sampled at observation location
k in a model trajectory starting from x0: In this study, Rk

is set to an identity matrix, which assumes no correlation
between different observations. Parameter e is the min-
imum value of L subject to the constraint of initial dis-
turbance dx0 whose norm is positive constant q: In
addition, N indicates the number of time steps for the
WRF model run. If the system is linear ðxkþ1 ¼
Axk, yk ¼ CkxkÞ, e is calculated using the minimum
eigenvalue of the observability Gramian Wo and q as
follows:

e2 ¼ min
dx0

L x0, dx0,kð Þ (3)
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¼ min
dx0

XN
k¼1

y tk, x0 þ dx0,kð Þ�y tk, x0, kð Þ�� ��2
Ri

¼ min
dx0

dxT0
XN
k¼1

Akð ÞTCT
kCkAk

 !
dx0

¼ min
dx0

dxT0Wodx0

¼ rminq
2: (4)

Using Equations (3) and (4), the unobservability index
can be calculated as:

q
e
¼ 1ffiffiffiffiffiffiffiffiffi

rmin
p : (5)

In this study, the observability is evaluated with rmin

because the unobservability index and square root of the
minimum eigenvalue

ffiffiffiffiffiffiffiffiffi
rmin

p
are inversely proportional as in

Equation (5). A smaller unobservability index, i.e. a larger
minimum eigenvalue results in a larger observability.

2.2. Empirical observability Gramian

The calculation of an observability Gramian Wo for very
large systems, such as NWP, is extremely expensive; thus,
a method that empirically composes an observability
Gramian from model outputs is employed following the
approach of Krener and Ide (2009) and Kang and Xu
(2009). In this approach, the observability of wind magni-
tude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
is estimated using an observation matrix

and several trajectories of u (wind x-component) and v
(wind y-component) from the disturbed initial wind fields
calculated by the WRF model.

The empirical observability Gramian G is obtained by:

G ¼
XN
k¼1

YT
kRkYk, (6)

with a matrix Yk :

Yk ¼ Dyk, 1, k Dyk, 2, k � � � Dyk, r, k
� �

, (7)

where each vector element is calculated as:

Dyk, j,k ¼ 1
2q

y tk,x0 þ qdx0, j,k
� ��y tk, x0�qdx0, j,k

� �� �
:

(8)

The vector Dyk, j, k is obtained by the difference in the
observed states at a set of locations k between trajectories
from different initial values, x0 þ qdx0, j and x0 � qdx0, j
at a particular sampling time k. In Equation (8), q deter-
mines the size of perturbation dx0, j, while r sets of initial
perturbations dx0, j (1 � j � r) are considered. Thus, the
required number of WRF model runs is 2r times with ini-
tial conditions perturbed by 6qdx0, j: The initial disturb-
ance is defined by spatial modes from proper orthogonal

decomposition (POD), which will be described in the fol-
lowing section.

2.3. Snapshot POD

POD, also known as principal component analysis
(PCA), or empirical orthogonal function (EOF), can be
used to decompose the spatiotemporal variation of a field
into orthogonal bases (POD bases or POD modes, here-
after) which optimally represent the variation. In this
study, the POD modes obtained from the WRF model
run are used as initial disturbance dx0, j in Equation (8).
Particularly, the snapshot POD (Sirovich, 1987) is used
to generate POD bases from WRF model outputs with a
certain sampling interval. It is extremely expensive to
obtain POD modes directly because the outputs from
large models, such as NWP, normally have a dimension
of n (�107) that is too large to solve an eigenvalue prob-
lem. The snapshot POD procedure reduces the size of the
problem on the order of m (�102, � the number of snap-
shots) and calculates the eigenvalue problem for an m�m
matrix to obtain POD modes.

These POD modes are expected to be effective as an
initial perturbation to calculate the empirical observabil-
ity Gramian in Section 2.2, because they show representa-
tive spatiotemporal variations of a wind field during a
time period of interest. Matrix X can be composed of col-
umn vectors of horizontal wind components u and v from
a WRF model run with a certain time interval as:

X ¼ u1 � � � um
v1 � � � vm

� 	
, (9)

where m indicates the number of snapshots. The matrix
XTX can be decomposed by using a singular value
decomposition (SVD) algorithm as:

XTX ¼ VS2VT ¼ VSUTUSVTð Þ, (10)

where V is the eigenvector and S2 corresponds to the
eigenvalue. The POD modes U can be represented by:

U ¼ XVS�1: (11)

The resulting POD modes U ¼ ½dx0, 1, . . . , dx0,m� are
used as initial perturbations to evaluate the empirical
observability Gramian. Note that not all the POD modes
are used for the empirical observability Gramian. Instead,
the leading r modes determined by the cumulative energy
ratio are used as the initial perturbation.

2.4. 3D-var

In this study, 3D-VAR in WRFDA Version 3.8 is uti-
lised (Barker et al., 2003) as a data assimilation method
based on variational analysis, which explores the analysis
x that minimises the cost function J as:
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J ¼ Jb xð Þ þ Jo xð Þ

¼ 1
2

x�xbð ÞTB�1 x�xbð Þ

þ 1
2

Hx�y0ð ÞTðE þ FÞ�1 Hx�y0ð Þ, (13)

where xb is the first-guess of the state and y0 is the obser-
vation of the state available at that time. The 3D-VAR
routine requires the background error covariance matrix
B in advance; thus, B was approximated on the basis of
the NMC method (Parrish and Derber, 1992) using the 1-
year-averaged 24-h forecast error of GFS with the T170
spatial resolution (Wang et al., 2017). For the observa-
tion errors E, the wind speed and direction are assumed
to have small error of 0.1m/s and 0.1	, respectively. F is
the representativity error covariance matrix of observa-
tion matrix H, which is given in WRFDA. The cost
function in Equation (13) is minimised using the gradient
obtained by:

dJ
dx

¼ B�1 x�x0ð Þ þHT E þ Fð Þ�1 Hx�y0ð Þ: (14)

WRFDA decreases the computational cost of 3D-
VAR using a control-variable transform and an incre-
mental method to avoid the direct calculation of B
(Barker et al., 2003), which is commonly large. The con-
trol-variable transform calculates the analysis increment
from the basic variables considered to be independent of
each other through the transform matrix Ut: The incre-
mental method expresses the cost function with an incre-
ment w, which is the difference between the analysis and
first guess. The transform matrix deforms the cost func-
tion, as shown in Equation (15), because Ut implicitly
has the information of the background error:

J Vcð Þ ¼ 1
2
VT

c Vc þ 1
2

d�HUtVcð ÞTR�1 d�HUtVcð Þ: (15)

Five variables compose the control variables Vc : the
stream function, unbalanced velocity potential,

unbalanced temperature, pseudo-relative humidity, and
unbalanced surface pressure. Equation (16) shows the
transform from control variables to model variables:

UtVc ¼ x� xb ¼ w: (16)

After this transformation, the increment w is obtained
from the model variables.

In WRFDA, it is possible to adjust a background error
correlation in B: Correlation / with the shape of the
Gaussian distribution is a function of the horizontal dis-
tance between two grid points s and spatial length scale L
as:

/ sð Þ ¼ exp � s2

2L


 �
: (17)

As will be discussed in subsequent sections, we focus
on the atmosphere below the planetary boundary layer;
therefore, the spatial length scale is adjusted depending
on the altitude levels of interest.

2.5. Evaluation of empirical observability Gramian
in WRF

The computational conditions, the domain and a wind
field at level 12, are presented in Table 1 and Fig. 1,
respectively. In the time period of 2017/2/7 06:00–18:00
GMT, there was a dominant seasonal wind from contin-
ental Asia to the Japanese islands caused by a typical
pressure pattern of winter in Japan. In addition, small
disturbance of the wind field can be seen in the area of
the circle A in Fig. 1.

The initial condition for the observability analysis is
set to the instantaneous field at 2017/2/7 06:00 GMT, and
the energy dominant four POD modes (r¼ 4) are used
for the perturbations of the initial wind field. Note that
the cumulative energy of those POD modes reaches
approximately 99.9%. Using the initial conditions dis-
turbed by the POD modes, time integration is performed

Table 1. Conditions for the observability calculation.

Computational conditions

Time period (Section 3.1) 2017/2/7 06:00 – 2017/2/7 18:00
Time period (Section 3.2) 2017/2/7 06:00 – 2017/2/7 12:00
Horizontal grid distance 9 km
Number of horizontal grids 151� 151
Time step interval 15 s
Number of vertical grids 30
Snapshot time interval for POD 15min
Time interval for measurements 15min
Number of POD modes used for perturbations 4
Length of time integration 12 h
Variable to be measured Wind speed [m/s]
Number of measurements 1
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for 12-h until 2017/2/7 18:00 GMT, which is 6-h ahead of
assimilation. The wind field is acquired every 15min as a
snapshot to construct matrix X, which results in 49 snap-
shots in total. Factor q in Equation (8) is set to 1000

because each element of the POD bases is on the order of
10�4 by normalisation during SVD.

Figure 2 shows the leading four POD modes of wind
components u and v that were used for the initial pertur-
bations in level 12.

2.6. Identical-twin experiment and evaluation

The effectiveness of the empirical observability Gramian
on WRF data assimilation is evaluated in an identical-
twin experiment. Table 2 summarises the conditions for
the identical-twin experiment. xi, true in Equation (18),
the true state, is generated based on the condition in
Table 2. JMA-NHM is mainly used to generate initial/
boundary conditions for the true state, while NCEP-GFS
is used for the first guess.

Data assimilation is performed with one observation
every 10 grids horizontally, which means 13� 13¼ 169
assimilations for each level. To evaluate the data assimila-
tion result with/without the targeted observation, the
change in the layer-averaged root-mean-square error
(RMSE) due to data assimilation is evaluated at each obser-
vation point. The RMSE and its change are evaluated by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

xi�xi, trueð Þ2
vuut , (18)

and

RMSE change

after the assimilation
%½ �

¼ RMSE of analysis� RMSE of first guess
RMSE of first guess � 100:

(19)

Fig. 1. Computational domain, geographical height, and
streamline at the assimilation time (2017/2/7 12:00 GMT) for
level 12. The strong northwest wind observed in the figure is
caused by a typical pressure pattern of winter in Japan. A small
turbulence is found in circle A.

Fig. 2. Proper orthogonal decomposition (POD) bases for wind components u and v at level 12. Each mode is normalised in
whole domain.
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These RMSE changes are plotted at 169 points for each
level and their spatial distributions are given. We carry
out the above evaluation at four layers: levels 2, 7, 12,
and 17. In addition, we evaluate the RMSE changes right
after assimilation because 3D-VAR can improve a finite-
time forecast. When the RMSE change is negative, the
analysis has a higher accuracy than the first guess.

Levels 2, 7, 12, and 17 of the WRF model outputs are
referred for the following discussion. Levels 2 and 7 are
lower than the planetary boundary layer, where the tem-
poral and spatial scales of the wind field become smaller.
Therefore, we set the spatial length scale L in Equation (17)
to 0.15, whereas it was set to 0.25 for levels 12 and 17.

Figure 3 explains the WRF cases considered in the
numerical experiment, i.e. true state, first guess for data
assimilation, and an ensemble for evaluating observability
Gramian. Snapshot POD is applied to the output from
the first guess. The relationship of those WRF runs in
time is also shown in Fig. 3.

3. Results

3.1. Minimum eigenvalue of empirical
observability Gramian

With the conditions mentioned in Table 1 and Sections
2.5–2.6, the eigenvalues of the empirical observability
Gramian in Equation (6) are composed using the WRF
model. In this section, the Gramian is composed point-
by-point because wind observation is obtained at one
grid point as in Section 2.6. Based on Equations (6)–(8),
Gramian G is obtained at each location k(X, Y, Z). A

map of the minimum eigenvalue is generated by decom-
posing each Gramian, and an overall trend of the observ-
ability regarding one wind observation is visualised. As
explained in Section 2, we focus on the minimum eigen-
value for simplicity because it is inversely proportional to
the unobservability index. In this study, the dimension of
the Gramian is 4; which depends on the number of POD
modes used in Equation (6).

Examples of the spatial distributions of the minimum
eigenvalue are shown in Fig. 4a–d. Each eigenvalue corre-
sponds to the estimated observability of a wind observa-
tion at each point, where a large minimum eigenvalue
corresponds to large observability. The east-south region
seems to have higher observability, whereas terrain effects
appear at low levels (Fig. 4a and b).

We now discuss the relationship between the eigenvalues
and corresponding wind fields. A meteorological field can
include several flow configurations, such as convection
caused by pressure and temperature gradients, and the
unsteady wake of terrain roughness. The eigenvalue from the
empirical observability Gramian appears to have a relation-
ship with the vertical components of the vorticity vector
(xz ¼ ov

ox � ou
oy) computed from horizontal wind components u

and v, because the observability analysis evaluates the spatial
and temporal changes in u and v, as mentioned in Section 2.
Therefore, we investigate the correlation between the eigen-
value and the following three types of time-averaged vortic-
ities (Xave, Xpert, Xvar) with different time scales.

 The magnitude of the time-averaged vorticity:

Xave ¼ 1
T

ð
T

xi, j, tdt

����
����:

Table 2. Computational conditions for the identical-twin experiment.

First guess True state

Time period 2017/2/7 06:00 – 2017/2/7
18:00

2017/2/6 12:00 – 2017/2/7
18:00

Horizontal grid distance 9 km
Number of horizontal grids 151� 151
Length of time step 15 s
Number of vertical grids 30
Time for assimilation 2017/2/7 12:00
Observed variable – Wind speed [m/s]/Wind

direction [	]
Number of Observations for each data assimilation 1
Initial/boundary conditions NCEP GFS JMA MSM (NCEP GFS for

soil variables)
Time integration scheme Runge–Kutta 3rd-order
Cumulus physics Kain–Fritsch scheme
Surface-layer physics Revised MM5 Monin–Obukhov scheme
Microphysics WSM three-class simple ice scheme
PBL scheme YSU scheme
Radiation scheme RRTM scheme (Long wave), Dudhia scheme (Short wave)
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 The time-averaged magnitude of the perturbation
component of vorticity:

Xpert ¼ 1
T

ð
T

x
0
i, j, t

��� ���dt, x
0
i, j, t ¼ xi, j, t � 1

T

ð
T

xi, j, tdt:


 The time-averaged magnitude of the temporal vari-
ation of vorticity:

Xvar ¼ 1
T

ð
T

xi, j, tþ1�xi, j, t

Dt

����
����dt:

The calculations of abovementioned three quantities
are performed with the same data as the observability
computation, with the setting of T ¼ 12h for time averag-
ing and Dt ¼ 15 min for the sampling interval. We

calculated the correlation coefficient between these three
domain-normalised vorticities Xi, j, k and the eigenvalue
rmini, j, k at level k using the following equation:

Corr ¼
E rmini, j, k�E rmini, j, k½ �� �

Xi, j, k�E Xi, j, k
� �� �h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E rmini, j, k�E rmini, j, k½ �� �2h i

E Xi, j, k�E Xi, j, k
� �� �2h ir ,

ð1�k�29Þ,
(20)

where E½�� calculates the expected value at level k, and
Xi, j, k corresponds to Xave, Xpert or Xvar:

Figure 5 shows the correlation coefficients with respect
to the vertical height, the eigenvalue distributions, and

Fig. 3. Schematic of identical-twin experiment and the calculation of observability.

Fig. 4. Spatial distribution of minimum eigenvalues at each level, where (a), (b), (c), and (d) correspond to the distribution at level 2
(150m), 7 (850m), 12 (3200m) and 17 (8000m), respectively.
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the time-averaged vorticities at four levels: level 2
(150m), level 7 (850m), level 12 (3200m), and level 17
(8000m). The time-averaged magnitude of the temporal
variation of vorticity Xvar (green line) has the highest cor-
relation for all vertical levels. In contrast, the correlation
with the time-averaged vorticity (Xave) is the lowest for
most of the levels. The differences among these three cor-
relations are clear below 5000m. In this region, the cor-
relation with Xave (red line) remains under 0.2, which
shows almost no correlation.

The decay of the Xave (red line) below 5000m implies
that the observability does not take the effect of time
average of vertical vorticity z but rather their temporal
changes. This results in a low correlation between the
eigenvalue and Xave, which captures the stable part. In
the region influenced by the terrain, vorticity z tends to
be large due to the flow unsteadiness behind hills. Figure
5c,f,i, and l show Xave for each level and show clearer
vorticity structures from the mountains in the Japan
islands and northwest region than the other vorticity met-
rics. On the other hand, Xpert, Xvar, which do not include
any time-averaged vorticity (Fig. 5a,b,d,e,g,h,j, and k),
show a higher correlation with the eigenvalue.

From the above discussion, it is confirmed that the
eigenvalues from this observability analysis have a strong
relationship with Xvar: Therefore, the eigenvalue can be
an index that indicates the unsteadiness of the flow,

visualising a region where there have been large changes
in the vorticity. In data assimilation, we can expect that
observations at points with higher eigenvalues can effect-
ively decrease the error of the first guess.

3.2. Application to WRF data assimilation

In this section, we verify the effect of the observability
analysis on the result of WRF data assimilation. Figure 6
shows the eigenvalue distributions and RMSE changes in
wind magnitude at levels 2, 7, 12, and 17. The RMSE
change is defined in Equations (18) and (19) using the
true state and the forecast defined in Table 2. At almost
all levels, we can find the relationship between the eigen-
value and the RMSE in area A, where the RMSE
decreases in the region with high observability. However,
there are some exceptions, e.g. the south-west region at
levels 2 and 7 (Fig. 6b and e) in area B. The eigenvalue
distributions in Fig. 6, which are slightly different from
those in Fig. 5, are based on the same conditions as
Table 1 with the exception that the wind data until the
assimilation time (2017/2/7 6:00 GMT–2017/2/7 12:00
GMT) are utilised to compose the Gramian.

The relationship between the distribution of the
Gramian eigenvalues and the RMSE changes after the
assimilation is observed, because the eigenvalues are
strongly related to temporal changes in vertical

Fig. 5. Correlations of the minimum eigenvalues and the actual distribution at levels 2, 7, 12, and 17. The vertical and horizontal axes
correspond to the correlation coefficient and vertical height, respectively. The correlations with the time-averaged vorticity (red line),
time-averaged perturbation of vorticity (blue line), and time-averaged temporal variation of vorticity (green line) are plotted. Each label
on the left plot corresponds to the vorticity distributions on the right.
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component of vorticity as discussed in Section 3.1. These
eigenvalues visualise the unsteadiness caused by the tem-
poral changes in the vorticity; therefore, the difference of
the true state and first guess is pronounced in a high
eigenvalue region as the effect of chaotic behaviours of
the model. Hence, the possible error distribution can be
known from the eigenvalues of the Gramian, and a

forecast is improved by assimilating observations in such
a region.

The exceptions at levels 2 and 7 (the area B in Fig. 6b
and e) are due to the influence of domain boundaries,
which can be avoided by setting the appropriate domain
size for the problem of interest. The true state and first
guess in this experiment use different boundary

Fig. 6. The distribution of eigenvalue, RMSE changes of wind magnitude, and time-averaged temporal variation of vorticity for levels
2, 7, 12, and 17, respectively. Area A shows the region where the correlation with the eigenvalue distribution is observed. Area B shows
the region where RMSE reduction is observed regardless of almost zero eigenvalue. The first 6 h of the wind data (2017/2/7 6:00 GMT –

2017/2/7 12:00 GMT) are utilised to compose the Gramian.
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conditions generated by different re-analysis data shown
in Table 2, i.e. there are large differences between both
calculations near the southwest boundary that works like
an inflow boundary. Assimilation of additional observa-
tions around these regions may further decrease
the RMSE.

The comparison of the RMSE and Xvar shows some
differences in area C of levels 2 and 7 (Fig. 6i and l). In
the area, small-scale winds caused by the effect of the ter-
rain, such as Japanese mountains and continental Asia,
significantly appear. The area shows a large temporal
variation in vorticity Xvar with small spatial scales. The
result implies a difference between the spatial scale of a
background error given in a data assimilation system (L
in Equation (17)) and the spatial scale of the actual error,
which is usually unknown. We set a relatively large L
assuming meso-scale forecasting, which is the preliminary
application of the observability calculation. Thus, 3D-
VAR with such L reduces the errors of meso-scale winds
at high levels; however, it does not reduce small-scale
errors at low levels effectively. As we mentioned in
Section 1, our focus in this study is to investigate the
effectiveness of target observation based on the observ-
ability Gramian, and the effectiveness is confirmed in the
meso-scale WRF data assimilation.

4. Conclusion

In this study, the effectiveness of the observability
Gramian for the targeted observation was investigated in
the identical-twin experiment with the WRF model and
3D-VAR, assuming a meso-scale wind prediction. There
have not been prior attempts to use the observability for
weather data assimilation in targeted observations.

We discussed the relationship between the spatial
eigenvalue distribution of the empirical observability
Gramian and corresponding wind fields. Their correlation
coefficient are calculated and evaluated for levels 2, 7, 12
and 17. The correlation coefficients showed strong rela-
tionships between the eigenvalue and time-averaged mag-
nitude of the temporal variation of vorticity Xvar when
one observation was considered. This confirmed the rela-
tionship between regions with high observability and
those with large unsteadiness in the wind field.

Identical-twin experiments were then conducted to
investigate the effect of the observability analysis by com-
paring assimilation results and the eigenvalue distribution
of the observability Gramian. As a result, the forecast
error was effectively reduced by choosing the area with
high observability as an observation location.

As for future study, we will focus more on small-scale
flows in an effort to produce accurate wind prediction
around a wind farm. To realise this, observability analysis

will be carried out in smaller domains with large eddy
simulations. Moreover, the observability of other varia-
bles (e.g. atmospheric pressure, wind speed, temperature,
humidity) will be assessed. The empirical observability
Gramian has the capability to evaluate the observabilities
for different variables simultaneously. The eigenvalue
decomposition of this Gramian considers the correlations
among those variables and is expected to produce infor-
mation about which variable has a large impact on
a forecast.
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