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ABSTRACT
Here we have investigated the possibility of an inertio-acoustic wave-mode to be unstable with regards to
gravity mode perturbations through non-linear triad interactions in the context of a shallow non-hydrostatic
model. We have considered highly truncated Galerkin expansions of the perturbations around a resting,
hydrostatic and isothermal background state in terms of the eigensolutions of the linear problem. For a
single interacting wave triplet, we have shown that an acoustic mode cannot amplify a pair of inertio-gravity
perturbations due to the high mismatch among the eigenfrequencies of the three interacting wave-modes,
which requires an unrealistically high amplitude of the acoustic mode in order for pump wave instability to
occur. In contrast, it has been demonstrated by analysing the dynamics of two triads coupled by a single
mode that a non-hydrostatic gravity wave-mode participating in a nearly resonant interaction with two
acoustic modes can be unstable to small amplitude perturbations associated with a pair of two
hydrostatically balanced inertio-gravity wave-modes. This linear instability yields significant inter-triad energy
exchanges if the nonlinearity associated with the second triplet containing the two hydrostatically balanced
inertio-gravity modes is restored. Therefore, this inter-triad energy exchanges lead the acoustic modes to yield
significant energy modulations in hydrostatic inertio-gravity wave modes. Consequently, our theory suggests
that acoustic waves might play an important role in the transient phase of the three-dimensional adjustment
process of the atmosphere to both hydrostatic and geostrophic balances.

Keywords: wave–wave interaction, triad interaction, hydrostatic adjustment, acoustic waves,
inertia–gravity waves

1. Introduction

With the advent of high-resolution atmospheric models,
there has been a renewed interest in the study of the normal
modes of the non-hydrostatic atmospheric dynamics.
Kasahara and Qian (2000) and Qian and Kasahara (2003)
studied the linear normal mode function theory of the shal-
low non-hydrostatic model (White et al., 2005) in the con-
texts of spherical and the beta-plane geometries,
respectively, and the theory has been augmented with the
account of the non-traditional Coriolis terms (Kasahara,
2003a, 2003b). The linear normal mode function theory has
also been presented by Kasahara (2004) for the full deep
non-hydrostatic case, as well as by Kasahara and Gary
(2006) for the Boussinesq system in which acoustic modes
are absent. However, as the governing equations of the
atmospheric dynamics are non-linear, a more accurate
account of the normal mode theory should also include the
effect of the non-linearity on the wave dynamics.

Recently, Raupp et al. (2019) extended the work of
Kasahara and Qian (2000) by analysing both linear and
weakly non-linear energetics of inertia–gravity and inertia–a-
coustic modes. In the latter case, they studied the dynamics of
a single resonant triad interaction involving an inertia–gravity
wave and two inertia–acoustic modes and showed that in this
kind of resonant interaction an inertia–gravity wave essen-
tially acts as a catalyst mode for the energy exchanges between
the two inertia–acoustic waves, in the sense that it enables the
interaction to occur and controls both the interaction period
and the impacts of the energy modulations on the perturbed
dynamical field variables. Therefore, comparing this finding
with the previous investigations on the non-linear atmospheric
wave theory in the hydrostatic context (Duffy, 1974;
Domaracki and Lossch, 1977; Loesch and Deininger, 1979;
Ripa, 1983a, 1983b; Vanneste and Vial, 1994; Raupp et al.,
2008), it is clear that the role of an inertia–gravity mode in a
resonant interaction involving inertia–acoustic modes is simi-
lar to the role of a Rossby mode in a resonant interaction
involving two inertio-gravity waves.�Corresponding author. e-mail: andre.teruya@usp.br
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In this article, we extend the work of Raupp et al.
(2019) by further investigating the non-linear dynamics of
the shallow non-hydrostatic equations. In particular, we
are interested here in analysing the possibilities of an
acoustic mode to be unstable to gravity wave perturba-
tions, including the study of off-resonant wave triplets as
well as the dynamics of two connected wave triads. In the
latter analysis, we study whether a resonant triad involv-
ing inertia–acoustic and non-hydrostatic inertia–gravity
waves can be unstable with regard to interacting triads
(not necessarily resonant) of inertia–gravity modes. A
motivation for this analysis stems from recent findings in
the non-linear wave literature (Janssen, 2003; Smith and
Lee, 2005; Bustamante et al., 2014) pointing out that
although in a single interacting wave triad the resonance
relation among the mode eigenfrequencies is crucial for
significant energy exchanges to occur in the limit of weak
non-linearity if one relaxes such assumption of weak non-
linearity to take into account off-resonant wave triads,
the mismatch among the wave frequencies within interact-
ing triads might be important for the energy flow
throughout the whole modal space. Bustamante et al.
(2014) showed in a reduced dynamical system of two tri-
ads coupled by two modes (four-wave system) that, for
moderate values of the modal amplitudes, the energy
leakage of a triad increases as the mismatch among the
wave eigenfrequencies of one triad approaches the fre-
quency of amplitude (energy) modulations of the other
wave triplet. This synchronization between the non-linear
frequency and the linear mismatch frequency between dif-
ferent interacting triads has been labelled by the authors
as precession resonance. Bustamante et al. (2014) also
demonstrated the important role of precession resonance
mechanism for increasing the efficiency of the energy
flow throughout the whole system of several connected
triads. Another mechanism that has been shown to yield
significant energy transfers throughout the whole modal
space in a diversity of wave problems is the modulational
instability (Connaughton et al., 2010).

Another motivation for this study refers to the fact
that, although acoustic modes are eigensolutions of com-
pressible non-hydrostatic models of the atmospheric flow,
due to the highly restrictive computational constraints
related to their numerical treatment with explicit schemes
(Pielke, 2002; Thuburn, 2011), in the numerical weather
prediction models these acoustic waves are treated as
noise in the sense that they are either filtered out (Davies
et al., 2003; Klein, 2009) or subjected to strong damping
associated with semi-implicit numerical schemes (Giraldo
et al., 2010; Klemp et al., 2018). For example, Daley
(1988) proposed a filter for acoustic modes based on nor-
mal mode expansion, in the same spirit of the method

proposed by Tribbia (1979) in the hydrostatic context to
filter out inertio-gravity waves.

However, our analysis of the highly truncated spectral
model of the shallow non-hydrostatic equations (five-
wave system) has demonstrated that an inertia–gravity
mode participating in a resonant triad interaction with
two inertia–acoustic modes can be unstable to small amp-
litude perturbations corresponding to a pair of lower fre-
quency inertio-gravity modes. Since the higher the time
frequency of an inertio-gravity wave the more pro-
nounced the non-hydrostatic effect of vertical acceleration
on it, our results suggest that ultra-high frequency acous-
tic modes can potentially yield amplitude (energy) modu-
lations in hydrostatically balanced inertio-gravity waves
through inter-triad energy exchanges. Therefore, this the-
oretical description suggests that acoustic modes excited
by localized and explosive heating associated with con-
vective storms might play an important role in both
hydrostatic and geostrophic adjustments, as it will be dis-
cussed in Section 5.

The remainder of this article is organised as follows. In
Section 2, we present the model equations, the pseudo-
energy conservation and the linear eigenmodes. Section 3
presents the general solution of the non-linear problem
based on its expansion in terms of the linear eigenmodes. In
Section 3, we also show some energy constraints for the
coupling coefficients of any interacting triad as a conse-
quence of the pseudo-energy conservation. Section 4 analy-
ses the reduced dynamics of one-wave triad and two triads
coupled by a single mode to investigate the possibility of
acoustic modes to excite hydrostatic inertio-gravity waves.
The main conclusions are discussed in Section 5.

2. The model

2.1. Governing equations

In this article, we adopt the shallow non-hydrostatic
model on a mid-latitude f-plane as it is the simplest con-
text bearing the existence of both gravity and acoustic
waves. The shallow non-hydrostatic model consists of a
relaxation of the compressible primitive equations by
adding the vertical acceleration term in the vertical
momentum equation (White et al., 2005). We consider
small-amplitude perturbations embedded in a resting,
hydrostatic and isothermal background state. In this set-
ting, the governing equations for the perturbations in
Cartesian coordinates are:
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where h0 ¼ g
C2

s
p0 � gq0 is related to entropy perturbation,

and all the remaining variables, symbols and operators
have their usual meanings and are defined in Table 1.
The superscript prime denotes the perturbation fields,
whereas the subscript 0 denotes the background state
quantities, defined by u0 ¼ v0 ¼ w0 ¼ 0,T0 ¼ const and

q0ðzÞ ¼ q0ð0Þe�
z
H (7)

p0ðzÞ ¼ p0ð0Þe� z
H (8)

with H ¼ RT0
g representing the scale height of the isother-

mal atmosphere. Only the perturbation terms required to
describe the non-linear triad interactions among the wave
modes have been retained in the equations above,
namely, the leading-order (quadratic) non-linear terms in
the equations (1)–(5) and the linear terms of the equation
of state.

2.2. Pseudo-energy conservation

An useful tool to describe the dynamics of a Hamiltonian
system in the spectral space refers to pseudo-energy con-
servation, since it is a conserved quantity that is quad-
ratic to leading-order in terms of the perturbation
variables (Ripa, 1981; Shepherd, 1990). Pseudo-energy is
the energy related to the departure from a reference
steady state and, for the isothermal background state
considered here, the pseudo-energy of a compressible
non-hydrostatic model is (Andrews, 1981; Shepherd,
1993):

E ¼
ð ð ð �

1
2
qðu02 þ v02 þ w02Þ þ qcpT0h1ðh0=gq0Þ

þ qcpT0h2ðp0=p0Þ
�
dxdydz,

(9a)

h1ðxÞ ¼ x� log ð1þ xÞ, (9b)

h2ðxÞ ¼ ð1þ xÞjðð1� jÞxj þ jx�ð1� jÞ � 1Þ: (9c)

where j ¼ R=Cp: Following the studies of Ripa (1983a)
and Vanneste and Vial (1994), to describe the non-linear
wave interactions it is suitable to explicit the pseudo-energy
conservation in terms of its quadratic and higher-order
dependencies in terms of the field variables. In this way, by
Taylor expanding the functions h1 and h2 and using q ¼
q0 þ q0, we can express the pseudo-energy invariance as:
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, p0, h0Þ4 ¼ const (10)
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2.3. Linear eigenmodes

The linearized version of equations (1)–(5) for the mid-
latitude f-plane approximation (f ¼ const) has linear

Table 1. Definition of variables, symbols and operators.

x Eastward distance
y Northward distance
z Altitude
t Time
u Zonal wind
v Meridional wind
w Vertical wind
V ¼ ðu, vÞT Horizontal wind vector
p Pressure
q Density
T Temperature
R Gas constant for dry air
cp Specific heat at constant pressure
cv Specific heat at constant volume
c ¼ cp=cv
j ¼ R=cp
T0 ¼ 243:878 K Temperature of the isothermal

basic state
Lx ¼ 4� 107 cosð/0Þ m Zonal period
Ly ¼ 107 m Meridional period
zT ¼ 18,000 m Model’s top
X ¼ 2p=ð24� 60� 60Þ s�1 Earth’s rotation rate
/0 ¼ p=4 Central latitude of f � plane
f ¼ 2X sinð/0Þ Coriolis parameter
g¼ 9.8 m s�2 Earth’s gravitational acceleration
CS ¼ ffiffiffiffiffiffiffiffiffiffiffi

cRT0
p

Linear sound wave speed
V � rh ¼ u@xhþ v@yh

r � V ¼ @xuþ @yv Horizontal divergence
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wave-mode solutions of the form (Qian and Kasahara,
2003):

uaðx, y, z, tÞ ¼ q� 1=2
0

�xaf þ kagHeila
x2

a � k2agHe

� �
naðzÞeikaxþilay� ixat

(12a)
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� �
HaðzÞeikaxþilay� ixat

(12e)

where the vertical structure functions naðzÞ, gaðzÞ and
HaðzÞ are

gðzÞ ¼ A sinðkzÞ, (13)

nðzÞ ¼ 1
C2

s
� 1

gHe

� �� 1

A½k cosðkzÞ � C sinðkzÞ�, (14)

HðzÞ ¼ N2

x
A sinðkzÞ, (15)

In the equations above, A is an arbitrary constant, C ¼
g
C2

S
þ 1

2q0
dq0
dz ¼ 1� 2j

2H is the parameter of adiabatic expansion

(Eckart, 1960), with the second equality being valid for
the isothermal background state considered here; He is
the separation constant, also known as equivalent height
(Taylor, 1936), and is related to the vertical eigenvalue k
through the relation

k2 ¼ 1
gHe

� 1
C2

s

� �
ðN2 �x2Þ�C2, (16)

with the eigenfrequencies x satisfying the following dis-
persion relation
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x3 þ C2

S

�
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4H2

� �

þN2ðk2 þ l2Þ
�
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(17)

whose solutions represent a vortical mode x¼ 0 and two
pairs of eastward and westward propagating inertio-grav-
ity and inertio-acoustic modes.

Considering the commonly adopted rigid-lid boundary
conditions

g ¼ 0 at z ¼ 0 and at z ¼ zT , (18)
with zT � 18 Km yields the quantization of the vertical
eigenvalue spectrum according to

km ¼ mp
zT

,m ¼ 1, 2, 3, ::: (19)

Similarly, for periodic solutions in the (x, y) directions,
the horizontal wavenumbers are quantized according to
the relations

kj ¼ 2pj
Lx

, j ¼ 0,61,62, :::, (20a)

ln ¼ 2pn
Ly

, n ¼ 0,61,62, :::, (20b)

with Lx and Ly representing, respectively, the length of
the zonal circle along the latitude 45� and the distance
from the poles to the equator, that is,

Lx ¼ ð4� 107 � cos p4) m and Ly � 107 m. Therefore, each
particular linear eigenmode of system (1)–(5), which is
labeled by the subscript a in equation (12), must be dis-
tinguished by its zonal, meridional and vertical quantum
indexes j, n and m, respectively, along with its oscillation
type that can be labelled by an index r.1 A special solu-
tion is characterised by g 	 0 (H 	 0). This mode is
labelled as external mode and is characterised by

nðzÞ ¼ Ae�Cz (21a)

He ¼ C2
S

g
(21b)

For this mode, the dispersion relation (17) gives only a
vortical mode and a pair of eastward and westward prop-
agating inertio-gravity modes. An important feature of
the non-hydrostatic wave dynamics is that the equivalent
height He is no longer constant for all the eigenmodes
having the same vertical index m, as it is the case for the
hydrostatic primitive equations in which the equivalent
height depends only on the vertical wavenumber. Rather,
in this model the equivalent height differs from each
eigenmode a ¼ ðj, n,m, rÞ as it relies on the eigenfrequency
x, apart from its dependence on the vertical wavenumber
k. Indeed, equation (16) shows that for the acoustic

modes, whose eigenfrequencies are such that x2>N2, it

follows that He>Hext, with Hext ¼ C2
S
g indicating the

equivalent height of the external mode. In contrast, the

gravity wave oscillation regime (x2<N2) is characterized

by He<Cs
2=g:

Figure 1 shows the dispersion curves of inertio-acoustic
and inertio-gravity waves associated with the meridional
wavenumber n¼ 1, for the first three baroclinic modes
m¼ 1, 2, 3. Figure 1 shows the eastward branch of both
wave types. To highlight the non-hydrostatic effect on the
inertio-gravity waves, Fig. 2 displays only the inertio-
gravity wave dispersion curves associated with the merid-
ional wavenumber n¼ 1 and the first three baroclinic
modes, together with the corresponding dispersion curves
obtained with hydrostatic approximation. The eigenfre-
quency of hydrostatic inertio-gravity waves is obtained by
determining the equivalent height He from the simplified
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version of equation (16) for x2 
 N2, and then
computing the eigenfrequency by the well-known shal-

low-water equation dispersion relation xð61Þ
hk, l

¼
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ gHeðk2 þ l2Þp

: Figure 2 shows that the non-
hydrostatic effect on the inertio-gravity waves only
becomes noticeable for zonal wavenumbers j> 400

(k>9� 10� 5m� 1). An important point to be observed in
Fig. 1 is that, for a discrete spectrum of vertical eigenmo-
des resulting from a finite top zT in equation (18), there
is a large time-scale separation between inertio-acoustic
and inertio-gravity modes. This high time–frequency sep-
aration increases for higher vertical wavenumbers and
has important consequences for the nature of the non-lin-
ear interactions between these wave types. For example,
this time–frequency separation prevents an acoustic mode
to be unstable to a pair of gravity wave modes in a single
triad interaction, as it will be shown in Section 4.

The exact conservation of Eð2Þ given by equation (11a)
in the linear case implies that the linear eigenmodes sat-
isfy the following orthogonality relation (Kasahara and
Qian, 2000; Qian and Kasahara, 2003):

iðxa �xbÞhua , ubiEð2Þ ¼ 0, (22)

where ua and ub represent two arbitrary eigenvectors
whose components are defined by equation (12) and

h, iEð2Þ refers to the inner product in terms of pseudo-

energy Eð2Þ, given by

hua , ubiEð2Þ ¼
ðzT
0

ðLx

0

ðLy

0
q0ðu�aub þ v�avb þ w�

awbÞ þ p�apb
q0C2

s
þ h�ahb
q0N2

" #
dydxdz:

with the superscript ‘�’ indicating the complex conjugate.

3. General solution

3.1. Modal expansion

Now we use the orthogonality and completeness of the
linear eigenmode functions described in the previous sec-
tion to expand the solution of our nonlinear system
(1)–(5) in a series

u ¼

u0ðx, y, z, tÞ
v0ðx, y, z, tÞ
w0ðx, y, z, tÞ
p0ðx, y, z, tÞ
h0ðx, y, z, tÞ

2
6666664

3
7777775
¼
X
a

AaðtÞua þ C:C:, (23)

where ‘C.C.’ indicates the complex conjugate of what is
preceding, AaðtÞ refers to the complex-valued spectral

amplitudes and the vector ua ¼ ½ua, va,wa, pa, ha�T repre-
sents the eigenvector function of a particular mode given

Fig. 1. Dispersion curves of inertia-acoustic (AI) and inertia-gravity (IG) waves corresponding to the first three baroclinic modes
m¼ 1, 2, 3. All the curves are referred to the meridional index n¼ 1.
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by equation (12). Expansion series above is an exact solu-
tion of system (1)–(5) provided the mode amplitudes Aa

satisfy

EaA0
aðtÞ ¼

X
b

X
c

rbca AbAce� idabct (24)

In equation (24),

Ea ¼ hua, uaiEð2Þ
is the intrinsic energy (i.e. the squared norm) of the a-th
mode and dabc ¼ xa �xb �xc represents the mismatch
among the linear eigenfrequencies of each mode triplet
abc. If dabc ¼ 0, the triad is said to be resonant; the cou-
pling constants rbca are the projection of the non-linear
terms due to the action of two modes b and c onto
another mode a, viz.,

rbca ¼ hua,Bðub , ucÞ þ Bðuc, ubÞiEð2Þ (25)

where B is the bilinear operator containing the non-linear
terms of system (1)–(5), and hence all the information on
the non-linearity of our model equations is contained in
these coefficients. The interacting triads are those whose
coupling constants are non-zero. The orthogonality of the

(x, y) basis functions eikxþily requires the wave modes of
an interacting triad to satisfy

ka ¼ kb þ kc (26a)

la ¼ lb þ lc (26b)

In contrast, the vertical coupling integrals involved in
equation (25) appear in the formðzT

0
q
� 1

2
0 cos ðka6kb6kcÞz½ �dz:

Thus, due to the presence of the ‘weight function’ q
� 1

2
0

in the vertical coupling constants, unlike the horizontal
wavenumbers, there is no an excluding selection rule
imposed by the vertical structures of the triad compo-
nents. However, as q0 is a monotonically decreasing func-
tion of z, if ka6kb6kc 6¼ 0 the vertical coupling integrals
will be small, so that the triads whose wave modes do
satisfy the condition

ka6kb6kc ¼ 0, (27)

together with conditions (26) are believed to undergo the
strongest interactions, although condition (27) is no lon-
ger excluding. However, this non-excluding nature of the
vertical coupling integrals allows a triad of modes whose
vertical wavenumbers do not satisfy condition (27) to be
excited by a primary triplet that does so, as it will be
shown in the next section. Therefore, hereafter we will
assume only the condition (26) to be met when referring
to interacting triads.

Fig. 2. Similar to Fig. 1, but only for the inertia-gravity waves (IG) and their corresponding dispersion curves obtained by hydrostatic
approximation (H).
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3.2. Energy constraints for the interacting triads

As explained by Ripa (1981) in the context of barotropic
Rossby waves and internal gravity waves in a vertical
plane and Ripa (1983a) and Vanneste and Vial (1994) for
the equatorial beta-plane and spherical geometry shallow-
water equations, respectively, the conserved quantities
which are quadratic to lowest order in terms of wave dis-
turbances lead to relations among the coupling constants
of an interacting triad. Thus, in what follows we shall
apply their approach in our non-hydrostatic context. In
this way, substituting the mode expansion (23) into equa-
tions (11a) and (11 b) yields:

Eð2Þ ¼
X
a

EajAaj2 (28a)

Eð3Þ ¼
X
a

X
b

X
c

2SabcReðAaA�
bA

�
ce

idabctÞ (28b)

Equations above show that, as a consequence of the
orthogonality relation (22), the leading-order (quadratic)
pseudo-energy has a diagonalised representation in terms

of the linear eigenmodes, whereas the cubic energy Eð3Þ is
expanded in terms of all interacting triads, with coeffi-
cients Sabc being given by

Sabc ¼
Ð zT
0

Ð Lx

0

Ð Ly

0

�
1
2
qaðu�bu�c þ v�bv

�
c þ w�

bw
�
cÞ þ

paq�bq
�
c

2q0p0C2
s
þ qah

�
bh

�
c

2q20N
2

� ha � h�bh�c
3N2q20g

� 4þ j
6q0C2

s p0
pap�bp

�
c þ CP

�
dxdydz

(29)

where CP means the same term as what is preceding but
with cyclic permutations among the subscripts abc. On
the other hand, from equation (24) it follows

Ea
djAaj2
dt

¼
X
b

X
c

rbca ImðA�
aAbAce� idabctÞ (30a)

dðAaA�
bA

�
cÞ

dt
¼ OðA4Þ (30b)

Taking the time derivative of equations (28a,b) and
using equation (30) we getX

a

X
b

X
c

rbca þ Sabcdabc
h i

2iImðA�
aAbAce� idabctÞ þ OðA4Þ ¼ 0

(31)

Equation above shows that total pseudo-energy is no
longer conserved for an arbitrary truncation of (23).2

However, the rate of change of total pseudo-energy for
an arbitrary truncation of our model equations is of
OðA4Þ: Thus, the smaller the disturbance amplitude the
smaller the variation of total pseudo-energy for a trun-
cated version of the model. Conversely, irrespective of the
modal truncation, a necessary condition for equation (31)
to hold is that the sum inside the square brackets must
vanish identically for all interacting triads, namely

rbca �racb � rabc ¼ � dabcSabc (32)

For resonant triads (dabc ¼ 0) or triads containing only
vortical modes, the constraint above reduces to

rbca � racb � rabc ¼ 0:

For these kinds of wave triplets, the quadratic compo-

nent Eð2Þ of total pseudo-energy is exactly conserved.
Consequently, for these triads the coupling constants

rbca ,r
ac
b and rabc have always the same sign, and the wave

mode with the largest absolute value coupling constant
(say, mode a) will always receive energy from or lose
energy to the remaining triad components. Moreover, in
these resonant interactions, condition rbca �racb � rabc ¼ 0,
together with the resonance relation xa �xb �xc ¼ 0,
implies that this mode having the largest absolute value
coupling coefficient will always be the one with the larg-
est absolute eigenfrequency. This mode is usually labeled
as pump wave from the context of plasma physics
(Weiland and Wilhelmsson, 1977). However, for non-res-
onant triads the pump mode, or the potentially unstable
mode of the triad does not necessarily have the largest
absolute coupling coefficient, according to relation (32).

Indeed, Table 2 summarises a sample of interacting tri-
ads involving acoustic and gravity wave types. It can be
noted that the acoustic mode is always the pump wave in
near resonant triads involving acoustic and gravity modes
(i.e. triads containing two acoustic modes and one gravity
wave). In contrast, for interacting triads involving two
gravity modes and one acoustic wave, which are charac-
terised by a large frequency mismatch dabc, either an
acoustic mode (e.g. Triads 3, 5 and 9) or an gravity wave
(e.g. Triads 6, 7, 8, 14 and 15) can be the unstable mode
(pump mode) of the triplet. However, the large time–fre-
quency mismatch associated with this triad interaction
type inhibits the energy exchanges among the mode com-
ponents, since it requires an unrealistically high amplitude
of the pump mode in order for instability to occur, as it
will be shown in the next section.

4. Analysis of highly truncated spectral solutions

Given the general theoretical framework on the non-lin-
ear interaction among the wave modes of our non-hydro-
static model employed in the previous section, in this
section we will further investigate highly truncated ver-
sions of the interaction equation (24) to analyse the possi-
bility of acoustic modes to excite inertio-gravity waves.
First we will consider the most elementary form of the
interaction equations: a single interacting wave triplet.
Then we augment our analysis for considering two
coupled interacting wave triads.

NON-LINEAR INTERACTION 7
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4.1. Single triad interaction

If one truncates the modal expansion (23) to consider a
single interacting triad of modes (a, b, c), equation (24)
now reads:

EaA0
a ¼ rbca AbAce� idabct, (33a)

EbA0
b ¼ racb AaA�

ce
idabct, (33b)

EcA0
c ¼ rabc AaA�

be
idabct: (33c)

In the case of a resonant interaction (dabc ¼ 0), it is
well known that if one of the wave modes holds most
part of the initial energy of the triplet, this mode will
only be unstable if it is the pump wave of the triad
(Craik, 1988, Chapter 8). Here, we extend such linear sta-
bility analysis for an arbitrary value of the mismatch dabc
to encompass all the possibilities of interacting triads
involving acoustic and gravity modes in this model.

To study the stability of one-wave mode in the
single-triad interaction equations above, it is suitable to

make the transformation of variable AbðtÞ ¼ ~AbðtÞeidabct:
Inserting this transformation, equations (33a,b,c) become

EaA0
a ¼ rbca AbAc, (34a)

EbðA0
b þ idabcAbÞ ¼ racb AaA�

c , (34b)

EcA0
c ¼ rabc AaA�

b, (34c)

where the ‘�’ has been omitted to avoid cumbersome
notation. Let us assume that Mode a holds almost the
total energy of the triad initially, that is, jAað0Þj �
jAb, cð0Þj: With this assumption, equation (34) can be
approximated by their linearized version around the amp-
litude of Mode a as follows

AaðtÞ ¼ Aað0Þ ¼ const, (35a)

A00
b þ idabcA0

b ¼ � rabc racb
EcEb

jAaj2Ab: (35b)

Thus, as the coupling constants are purely imaginary
numbers, in order for instability to occur two conditions
must be satisfied:

Imðracb ÞImðrabc Þ>0, and (36a)

d2abc<
4Imðracb ÞImðrabc Þ

EbEc
jAaj2: (36b)

Otherwise, the solution is stable, and no amplification
of Modes b and c occurs. Condition (36a) says that
Mode a must be the pump mode of the triad. For an
exact resonant interaction, this condition is the only
requirement for instability to occur. Conversely, accord-
ing to condition (36b), the minimal value of the ampli-
tude of Mode a for instability to occur increases linearly
as the absolute value of the mismatch param-
eter increases.

Consequently, for an interacting wave triplet com-
posed of two inertio-gravity waves and one inertio-
acoustic mode, the amplitude regime of the pump
mode required to yield instability might be so high to
be observable in the real atmosphere due to the high
time–frequency mismatch among the triad components
in this case. For example, for the case of Triad 3 of
Table 2 composed of mesoscale acoustic and gravity

modes, the frequency mismatch is dabc
2X � 378, giving a

threshold amplitude associated with vertical wind per-
turbations of the order of 200m/s. Thus, for an acous-
tic mode amplitude value yielding dynamical field
perturbations with realistic values, there is no pump
wave instability for this triplet. Figure 3 shows the
result of a time integration of the full nonlinear version
of the three-wave interaction equation (33) for an amp-
litude value of the pump mode of Triad 3 of Table 2
that yields realistic values of the perturbation field vari-
ables. Figure 3 confirms that, for the mode amplitudes
associated with realistic values of atmospheric flow dis-
turbances, the high-frequency mismatch associated with
the interacting triads involving an acoustic mode and
two gravity waves strongly inhibits the energy
exchanges among the modes of such triads.

In contrast, an acoustic-inertia wave mode can
undergo pump wave instability in near resonant triads
involving another acoustic-inertia wave and an inertio-
gravity mode. In fact, for the parameters of Triad 1 of
Table 2 and the value of jAaj chosen to yield a vertical
wind magnitude of � 2:4 m/s, parametric instability does
occur. Numerical integration of the full equation (33) in
this referred amplitude regime illustrates the expressive
energy modulations undergone by the three-wave modes
(Fig. 4) of this triplet.

Raupp et al. (2019) analysed the dynamics of a single
resonant triad interaction with a wave triplet similar to
the one illustrated in Fig. 4. They analysed the analyt-
ical solution of the interaction equation (33) for the
exact resonant case dabc ¼ 0 with jAaðt ¼ 0Þj ¼ 0 and
discussed the consequences of the mode energy modula-
tions for the physical space solution ½u0, v0,w0, p0, h0� in
view of the energy partition of each mode type on the
kinetic, available elastic and available potential forms.
Here we will not repeat this analysis and, rather, will
stick to the modal space dynamics to further investigate
the possibility of an acoustic mode to excite inertio-
gravity waves. As in the full system (24) a single-wave
mode may participate of several connected wave triplets,
to investigate in a simplified fashion the possibility of
each of the wave modes excited by the pump acoustic
wave instability shown in Fig. 4 to excite other gravity
wave modes, we shall augment our analysis of the

NON-LINEAR INTERACTION 9



phase-space dynamics to consider two triads coupled by
a single mode.

4.2. Two triads coupled by one mode

Let us now consider a truncated version of modal expan-
sion (23) that considers five modes (a,b,c,d,e) whose
wavenumbers and eigenfrequencies satisfy the relations

ka ¼ kb þ kc, (37a)

la ¼ lb þ lc, (37b)

ka ¼ 6kb6kc, (37c)

xa ¼ xb þ xc þ dabc, (37d)

kc ¼ kd þ ke, (37e)

lc ¼ ld þ le, (37f)

xc ¼ xd þ xe þ dcde: (37g)

Notice that we have imposed the interaction condition
for the vertical wavenumbers only to the primary triad
(a,b,c). This is because the condition for the vertical
wavenumbers is no longer excluding, as previously dis-
cussed, so that other modes whose coupling constants are
non-zero, although small, can be excited by the mode
coupling the two triads. In this situation, equation (24)
now reads

EaA0
a ¼ rbca AbAce� idabct, (38a)

EbA0
b ¼ racb AaA�

ce
idabct, (38b)

EcA0
c ¼ rabc AaA�

be
idabct þ rdec AdAee� idcdet, (38c)

EdA0
d ¼ rced AcA�

ee
idcdet, (38d)

EeA0
e ¼ rcde AcA�

de
idcdet: (38e)

Thus, to analyse the stability of the triad interaction
(a,b,c) to small amplitude perturbations associated with
the interacting modes (c,d,e), let us first assume that
jAcðt ¼ 0Þj � jAd, eðt ¼ 0Þj: In this case, Mode c evolves
independently of Modes d and e, and its amplitude
obeys the three-wave equations (33). Furthermore, by
explicitly expressing Ac, Ad and Ae in terms of their real
and imaginary parts, the linearized version of equation
(38d,e) around the amplitude of Mode c can be written
as

X0 ¼ MðtÞX (39)

where X ¼ ½Adr ,Adi ,Aer ,Aei �T and the matrix M(t) is
defined by

MðtÞ ¼
�

02�2 MdðtÞ
MeðtÞ 02�2

�
(40)

with MdðtÞ being defined as

Fig. 3. Time evolution of the mode quadratic energies associated with the solution of the three-wave interaction equations (33) for the
modes of Triad 3 of Table 2. The present triad is non-resonant.

10 A. S. W. TERUYA AND C. F. M. RAUPP



If the matrix coefficient M(t) is periodic, Floquet the-
orem (Arnol’d, 1989; Vanneste and Vial, 1994; Majda,
2003) can be used to study the stability of system (39).
Conversely, as we are considering arbitrary time–fre-
quency mismatchs dabc and dcde, in order for M(t) to be
exactly periodic (and, therefore, Floquet theory be
applicable), two conditions must be met: (i) the mis-
match dabc and the non-linear oscillation frequency of
the spectral amplitudes Aa, Ab and Ac must be co-meas-
urable; and (ii) the resulting oscillation frequency of
AcðtÞ be also co-measurable with the second triad mis-
match dcde. As these two conditions are very restrictive,
a more general way to analyse the stability of the afore-
mentioned linear system is to estimate its maximal
Lyapunov exponent (MLE) (Zounes and Rand, 1998),
for which the MLE being positive means instability.3

The MLE has been evaluated using the method

described in Benettin et al. (1976), whose implementa-
tion is available in (Datseris, 2018).

For the five-wave system composed of the modes of
Triads 1 and 2 of Table 2, the MLE of system (39) asso-
ciated with the linearised dynamics of the gravity modes

(170, 1, 2) and (169, 1, 2) is KL ¼ 1:35� 10� 5s� 1, corre-
sponding to a growth rate of 1=20:5h� 1, which seems
compatible with the typical time scale of internal-gravity
waves. In this case, the time modulation of AcðtÞ refers to
the solution shown in Fig. 4. The instability of the gravity
wave-mode (339, 1, 2) to the other two gravity modes of
Triad 2 of Table 2 is illustrated in the numerical integra-
tion of system (39) shown in Fig. 5, which shows the
growth of the gravity wave harmonics (170, 1, 2) and
(169, 1, 2). Since the gravity mode (339, 1, 2) representing
Mode c in this example is the pump wave of the triplet
(c,d,e), this instability appears more likely to be a pump

Fig. 4. Time evolution of the mode quadratic energies associated with the solution of the three-wave interaction equations (33) for the
modes of Triad 1 of Table 2. The present triad is nearly resonant.

MdðtÞ ¼
� Imðrced Þ

Ed
ðAcr sinðdcdetÞ þAci cosðdcdetÞÞ

Imðrced Þ
Ed

ð�Aci sinðdcdetÞ þ Acr cosðdcdetÞÞ
Imðrced Þ

Ed
ðAcr cosðdcdetÞ�Aci sinðdcdetÞÞ

Imðrced Þ
Ed

ðAci cosðdcdetÞ þ Acr sinðdcdetÞÞ

2
664

3
775 (41)

NON-LINEAR INTERACTION 11



Fig. 5. Numerical solution of the linearized system (39) composed of modes (170,1,2,IG) and (169,1,2,IG) of Triad 2. These modes are
parametrically forced by the mode (339, 1, 2, IG) of Triad 1. This solution presents a maximal Lyapunov
exponent kL ¼ 1:35� 10� 5s� 1:

Fig. 6. Numerical solution of the linearized system (39) composed of modes (170,1,1,IG) and (169,1,1,IG) of Triad 13. These modes
are parametrically forced by the mode (339, 1, 2, IG) of Triad 1. This solution presents a maximal Lyapunov
exponent kL ¼ � 4:85� 10� 10s� 1:
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wave instability than a modulational instability explored
by Connaughton et al. (2010) in the Rossby
wave context.

In fact, if we consider the coupling between Triads 1
and 13 of Table 2 through the same gravity mode (339,
1, 2), that is, if we replace Triad 2 to Triad 13 (which has
a larger time–frequency mismatch) in our five-wave
system, the solution of (39) is stable (MLE KL ¼
� 4:85� 10� 10s� 1) and no amplification of a pair of
other gravity waves occurs (Fig. 6). Figure 7 shows a
similar situation when Modes d and e are gravity modes
and Mode c is an inertio-acoustic mode. In this case, the
planetary acoustic mode of Triad 1 of Table 2 couples
this triad with the two inertio-gravity modes of Triad 15,
and the MLE of system (39) is positive but very close to

zero. In fact, the MLE in this case is KL ¼ 6:59�
10� 11s� 1, corresponding to a growth rate of

� 1=180day� 1, which is no longer compatible with the
observed time scale of gravity waves. Therefore, in this
situation, as in the previous case shown in Fig. 6, system
(39) is stable and there is no amplification of the two
gravity modes. The numerical integration of the non-lin-
ear five-wave system (38) for the corresponding stable

cases of the linearized system (39) shown in Figs. 6 and 7
confirms that there is no energy leakage from Triad 1
towards the other gravity modes, so that the time evolu-
tion of Modes (a,b,c) is identical to that predicted by the
three-wave problem shown in Fig. 4 (figures not shown).

A result of numerical integration of the full five-wave
system for the unstable case of system (39) is shown in
Figs. 8 and 9. In this numerical integration, the initial
condition is similar to those considered in Fig. 4, in
which the pump acoustic wave (340, 1, 1) holds almost
total initial energy of the system, with only a small per-
turbation distributed among the remaining modes b, c, d
and e. From Figs. 8 and 9 one notices that, after Mode a
excites Modes b and c through pump wave instability,
part of Mode c energy leaks to the gravity modes (170, 1,
2) and (169, 1, 2) (Modes d and e), yielding the excitation
of these modes. In this case, Mode c acts as the pump
mode in the triad interaction with Modes d and e.
Consequently, the time evolution of the mode energies of
the five-wave system in this case shows that, apart from
the considerable energy modulations of the gravity modes
d and e at the expense of Mode c, the coupling of Mode
c with the two gravity modes d and e also yields a multi-
plication of the periods associated with the time evolution

Fig. 7. Numerical solution of the linearized system (39) composed of modes (169,1,2,IG) and (–168,1,1,IG) of Triad 15. These modes
are parametrically forced by the mode (1, 1, 1, IA) of Triad 1. This solution presents a maximal Lyapunov
exponent kL ¼ 6:59� 10� 11s� 1:

NON-LINEAR INTERACTION 13



Fig. 8. Numerical solution of the five-wave system (38) composed of the modes of Triads 1 and 2 of Table 2. This figure illustrates
the time evolution of the quadratic energies corresponding to Modes of Triad 1 only.

Fig. 9. This is same as Fig. 8, but illustrating the quadratic energies of the secondary gravity modes of Triad 2.
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of the energies of Modes a and b, disturbing the energy
modulations of these modes from their exactly periodic
nature predicted by the three-wave equations (33).

Another interesting feature regarding the unstable case
is that the eigenfrequencies of the gravity modes (170, 1,
2) and (169, 1, 2) representing Modes d and e in this
example are such that the linear wave dynamics of these
modes is well described by hydrostatic approximation, as
well as the non-linear interaction involving these inertio-
gravity waves and vortical modes. As the non-linear inter-
action involving inertio-gravity waves and vortical modes
has been demonstrated to play an important role in the
non-linear geostrophic adjustment (Majda and Embid,
1998; Vanneste, 2004; Vanneste and Yavneh, 2004), the
theoretical results described here suggest that acoustic
modes might be important for both hydrostatic and geo-
strophic adjustment processes in the atmosphere.

5. Summary and conclusions

Non-linear triad interactions involving inertio-acoustic
and inertio-gravity waves are studied here in the context
of the mid-latitude f-plane shallow non-hydrostatic equa-
tions for a background state at rest and characterised by
a hydrostatic balance and an isothermal temperature pro-
file. In this context, we have adopted highly truncated
Galerkin expansions in terms of the eigensolutions of the
linear problem. For a single-triad interaction, we have
shown that the interacting triplets involving two inertio-
gravity waves and one acoustic mode require a likely
unrealistic modal amplitude regime in order for pump
wave instability to occur. Consequently, for direct triad
interactions, we have shown that an inertio-acoustic wave
mode can only be unstable to perturbations associated
with a pair of acoustic/gravity modes.

In contrast, the analysis of the dynamics of two triads
coupled by a single-wave mode shows that a non-hydro-
static inertio-gravity wave mode (i.e. having an eigenfre-
quency such that the non-hydrostatic effect of vertical
acceleration is not negligible) participating of a nearly res-
onant interaction with two acoustic modes is unstable in
nearly resonant triad interactions with a pair of lower fre-
quency inertio-gravity waves. In fact, for the representative
example illustrated here in which the eigenfrequencies of
the two excited inertio-gravity waves are nearly a half of the
time–frequency of the primary wave (which couples the two
triads), the numerical results of the non-linear dynamics of
the five-wave system confirm that this instability yields
energy modulations on the two secondary gravity modes.
Since the higher the time frequency the more important the
non-hydrostatic effect of vertical acceleration on the iner-
tio-gravity waves, the results suggest that inertio-acoustic
waves may induce hydrostatically balanced inertio-gravity

waves to undergo episodic amplitude (energy) modulations
due to inter-triad energy exchanges. On the other hand, if
one of the acoustic modes of a resonant interaction involv-
ing acoustic/gravity waves couple the two triads in our
reduced five-wave dynamics, our results show that the max-
imum Lyapunov exponent of the corresponding linearized
system for the two gravity waves gives a growth time-scale
of � 180 days, which is no longer compatible with the
observed time-scale of internal gravity waves and, conse-
quently, the resulting instability might likely be irrelevant
in the atmosphere.

As discussed in Section 1, due to the ultra-high fre-
quency of acoustic waves, their numerical treatment using
explicit schemes implies highly restrictive computational
constraints. Consequently, in non-hydrostatic numerical
models adopted for meso-scale simulations the acoustic
modes are either filtered out or subjected to strong damp-
ing associated with implicit schemes having time-steps
much higher than the acoustic cut-off period. However,
acoustic waves play an important role in the hydrostatic
adjustment process as they are responsible for the vertical
displacements of fluid parcels associated with the expan-
sion of an instantaneously heated atmospheric layer
(Bannon, 1995, 1996; Duffy, 2003). In fact, Chagnon and
Bannon (2001) demonstrated that the steady-state solu-
tions of anelastic and other sound filtering models exhibit
significant differences from those of fully compressible
models allowing acoustic modes.

Acoustic waves may be excited by thermal forcings associ-
ated with convective storms, especially the localized ones
that have a duration shorter than the acoustic cut-off period

given by 4pH
CS

(Chagnon and Bannon, 2005a, 2005b). Our sim-

plified theoretical model suggests that these acoustic modes
generated by explosive and localised storms might play an
important role in the transient phase of the three-dimen-
sional adjustment process of the atmosphere to both hydro-
static and geostrophic balances. Specifically, this role of
acoustic modes in the adjustment process of the atmosphere
might be due to not only their linear energy propagation as
studied by Chagnon and Bannon (2005a, 2005b) but also
their non-linear effect of exciting hydrostatic inertio-gravity
waves as pointed out by our theoretical analysis. Fanelli and
Bannon (2005) investigated the hydrostatic and geostrophic
adjustments to a prescribed thermal forcing utilising a non-
linear compressible model, but they considered a heating
function with a duration longer than the acoustic cut-off
period of � 5 min so that no acoustic waves were excited.
However, similar numerical studies with a shorter time-scale
forcing should be done to apply this theory to the hydro-
static and geostrophic adjustments in a more realistic fashion
by considering the full expansion (23). This might be the
next step in the generalisation of this theory to further
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understand both the non-linear dynamics of the non-hydro-
static wave modes itself and its role in the non-linear hydro-
static/geostrophic adjustment, along with testing the
robustness of this theory.
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(Coordenaç~ao de Aperfeiçoamento de Pessoal de Ensino
Superior) and CNPQ (Conselho Nacional de
Desenvolvimento Cient�ıfico e Tecnol�ogico. The work of
Carlos F. M. Raupp was supported by FAPESP
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Notes

1. r¼ 0 for a vortical mode and r ¼ 61 (±2) for
westward/eastward inertio-gravity (inertio-
acoustic) modes, for example.

2. In reality, total pseudo-energy of model
equations (1)–(5) is not exactly conserved even
for the full expansion case due to the
Oðu0, v0,w0, p0, h0Þ4 terms in equation (10).

3. To estimate the MLE (KL) of X0 ¼ MðtÞX, we
obtain two solutions whose initial conditions
differ by a small separation, namely X1ðtÞ and
X2ðtÞ	X1ðtÞþdðtÞ, with jdð0Þj¼jX1ð0Þ�X2ð0Þj:
Then, the MLE is defined by the following
equation jdðtÞj¼jdð0ÞjexpðKLtÞ, representing a
measure of the exponential rate of separation
between two neighbouring trajectories.
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