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ABSTRACT
The analysis error covariance is not readily available from four-dimensional variational (4dvar) data
assimilation methods, not because of the complexity of mathematical derivation, but rather its computational
expense. A number of techniques have been explored for more readily obtaining the analysis error covariance
such as using Monte-Carlo methods, an ensemble of analyses, or the adjoint of the assimilation method; but

each of these methods retain the issue of computational inefficiency. This study proposes a novel and less
computationally costly, approach to estimating the 4dvar analysis error covariance. It consists of generating
an ensemble of pseudo analyses by perturbing the optimal adjoint solution. An application with a nonlinear

model is shown.
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1. Introduction

Four-dimensional variational (4dvar) data assimilation is
arguably the most advanced algorithm for assimilating
observations into models, albeit being encumbered by the
quintessential problem of prescribing correct covariances.
Here, we make a distinction between the algorithm itself
and the prescription of error covariances. Even if the
covariances were correctly prescribed, the formulation of
4dvar does not provide the analysis error covariance
(Kalnay 2003, p. 184; Bousserez et al., 2015), which
quantifies the uncertainty in the analysis. The objective of
this study is to provide an approximation of the analysis
error covariance using a 4dvar assimilation system.
Bennett (2002) introduced a Monte—Carlo approach
for estimating the posterior error covariance, but it
requires a large number of samples, each sample being
the solution of the tangent linear model driven by initial
and forcing perturbations drawn from both the initial
and model error covariances, respectively. Moore et al.
(2012) proposed a method to estimate analysis and fore-
cast error variances using the adjoint of the 4dvar system,
based on the premise of perturbing the observations and
background fields. Shutyaev et al. (2012) and Gejadze
et al. (2013) also proposed a method for estimating the
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analysis error covariance in 4dvar by approximating the
inverse of the Hessian matrix through an iterative pro-
cess. The approximation of the Hessian matrix (and thus,
its inverse) is the method also adopted by Auligné et al.
(2016) for computing an ensemble of analyses without
carrying out an analysis for each ensemble member.
Cheng et al. (2010) proposed to estimate the analysis
error covariance using a low-rank hessian inverse
approximation. Another approach consists of running an
ensemble of 4dvar analyses, e.g. Bonavita et al. (2012),
with the assumption that the covariance of the perturbed
analyses simulates the analysis error covariance (Zagar
et al. 2005; Belo Pereira and Berre 2006; Daget
et al. 2009).

The Monte—Carlo approach proposed by Bennett
(2002) is computationally expensive, and so is the ensem-
ble of 4dvar analyses of Bonavita et al. (2012) or the
iterative method of Shutyaev et al. (2012) and Gejadze
et al. (2013), especially when a sizable ensemble is needed
to avoid sampling errors. In addition, the approach of
Moore et al. (2012) using the transpose of the 4dvar sys-
tem is also computationally expensive for estimating the
analysis error covariance, and the application was
restricted to estimate only the analysis error variances.

A new method of approximating the analysis error

covariance is proposed here that consists of an ensemble
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of perturbed analyses, where perturbations are applied to
the optimal adjoint solution. We hypothesize that carry-
ing out an ensemble of 4dvar solutions amounts to com-
puting an ensemble of optimal adjoint solutions, since
neither the forward nonlinear model, the linearized
dynamics and the minimization process of the 4dvar sys-
tem itself are changed. Note that perturbing the optimal
adjoint is equivalent to perturbing the innovation vector
(on which the adjoint linearly depend), and the innov-
ation vector itself depends on the observations and
the background.

The 4dvar problem can be solved in the observations
space using the representer method (Bennett 1992), in which
case the optimal adjoint is determined by the optimal repre-
senter coefficients. Thus, perturbing the optimal adjoint
solution can also be achieved by perturbing the optimal rep-
resenter coefficients. By moving the perturbations to the
optimal representer coefficients, the method proposed in
this study is more computationally tractable because it
involves only the cost of a single 4dvar assimilation, and the
ensemble of pseudo analyses can be run in parallel, each
member being an independent final sweep based on a vector
of perturbed representer coefficients. Thus, unlike the trad-
itional ensemble of data assimilations (EDA), a large ensem-
ble size can be achieved at the native model resolution, and
at the computational cost of one post-multiplication or final
sweep of the 4dvar, thanks to parallelization. The advantage
of using the representer method for this technique is that the
perturbations are generated in the observations space
instead of the control space, the former usually being sub-
stantially smaller than the latter.

Having an ensemble of 4dvar analyses allows the compu-
tation of the full four-dimensional analysis error covariance,
which is necessary to ascribe uncertainty to the analysis and
understand the correlations between variables of the ana-
lyzed model within the assimilation window. The full four-
dimensional analysis error covariance itself cannot be used
in a subsequent assimilation cycle in the form of forecast or
model error covariance. However, the analysis error covari-
ance at the end of the assimilation window can be used as
the initial error covariance in the following assimilation
cycle, although, that is not the main objective of this study.

The proposed method is implemented with the Lorenz-05
model IT (Lorenz 2005) using a representer-based weak con-
straint 4DVAR system, as in Ngodock and Carrier (2014).
Numerical experiments in this study will (i) establish that the
4dvar works well and is robust over many assimilation win-
dows, (ii) compute the ensemble of analyses by perturbing the
representer coefficients and demonstrate that the mean of this
ensemble approximates the 4dvar analysis, (iii) compute the
prior and posterior covariances as in Bennett (2002) and show
that the ensemble covariance from perturbed representer coef-
ficients approximates the posterior covariance computed

according Bennett’s method and (iv) use the estimated covari-
ance at the end of the assimilation window as initial error
covariance in the following assimilation window, and so on.
The computational cost of the proposed method will also be
discussed. The 4dvar assimilation system and the implementa-
tion of the perturbations are described in the next section, fol-
lowed by a description of the model used for application and
the experiments set up in Section 3. Results are presented in
Section 4, followed by a discussion and concluding remarks in
Sections 5 and 6, respectively.

2. The 4dvar system

Consider a model described by the equations
Ou
—=L F+f
5~ L) +F+/,
u(x,0) = I(x) + i(x),
where u(x,t) represents the state of the modeled phenom-
enon at a given time, L represents the dynamics and

0<t<T
- - ()

physics that are nonlinear in nature, F(x,¢) is a forcing
term and f{x,¢) is the model error that can arise from dif-
ferent sources and has a covariance Cy, I(x) is the initial
condition, and i(x) is the assumed error in the initial
condition with covariance C;. Let us also consider a vec-
tor Y of M observations distributed in the space-time
domain, with the associated vector of observation errorse
(with covariance C,),

Ym = Hmu(xa tm) + &, 1 S m S M’ (2)

where H,, is the observation operator associated with the
mth observation, which transforms the model solution
into observation equivalents. We have assumed in (2)
that the observations are sampled at some discrete model
times t,,, thus H,, acts on the spatial dimensions of the
solution. One can define a weighted cost function,

J =

O

T
J J Jf(x, OWy(x, 6, x", ) f (¥, 1 )dx'dr dxdt
Q00

J’_

J J i(xX)W;(x, x)i(x")dx'dx + eT W, 3)
Qo

where Q denotes the spatial domain, the weights W, and W;
are defined as inverses of C; and C; in a convolution sense,
W. is the matrix inverse of C, and the last term in (3) is a dou-
ble summation over the number of observations M.
Boundary condition errors are omitted from (1) to (3) only
for the sake of clarity. It has been shown in multiple publica-
tions related to variational data assimilation, e.g. Bennett
(2002), that the solution of the assimilation problem, i.e. the
minimization of the cost function (3) is achieved by solving
the following Euler-Lagrange (EL) system,
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Z—IZ=L(1))+F+C/-7»,

u(x,0) = I(x) + C"’k(x O)
,% [aL u] HZ}X;W Vn — H) HIS(x — ,)8(1 — 1),
Mx,T) =0,

“4)
where # is the optimal solution, also referred to as the
analysis, & denotes the Dirac delta function, A is the
adjoint variable defined as the weighted residual

T
Mx, 1) = JJ Wix, t, X', 0)f (X, ¢)dx' dt, (5)

0Q
and W, ,,, are the matrix elements of W;. The superscript

T denotes the transposition, and the covariance multipli-
cation with the adjoint variable is the convolution,

T
Crel(x,1) = [ J Crx, t,x', )M, ¢)dx'dt, (6)
00
and,
C;°M(x,0) = J Ci(x, X' )M, 0)dx, (7
Q

for the model and initial condition errors, respectively.

2.1. Strong constraints 4dvar

In strong constraints 4dvar the assumption of no model
error amounts to setting Cr = 0 in (4) which gives

dit
i =L(u)+F,
u(x,0) =I(x)+ Ci°A(x,0),

o [ELL ] x+§M:§M:W — Hyit) HT8(x — x,)3(t — ¢,
o u 1/ Ll &,mn ym mi )1, ()L )””) ( ”)’
AMx,T) =0.

®)

It is clear that all the corrections of the model trajectory
are determined by the optimal adjoint at time 0, i.e. A(x, 0).
We can, thus, generate an ensemble of 4dvar analyses by
perturbing A(x, 0). In essence, we generate an ensemble

Mn(x,0) = A(x,0) + p,(x), n=1,...N, 9)

where p,(x) is the perturbation and N is the size of the
ensemble. The ensemble of analyses is then computed as

ot = L(iln) +F7
iy (x,0) = I(x) + C°Ay(x,0).

(10)

With this ensemble of pseudo analysis trajectories one
can: (i) generate a space-time analysis error covariance;
(if) generate a spatial covariance at the end of the

assimilation that can be used as the initial error covari-
ance for the next assimilation cycle (this covariance will
be referred to as the estimated initial error covariance);
and (iii) use the ensemble at the end of the assimilation
window as the initialization of an ensemble forecast from
which a forecast error covariance can be estimated. It
should be emphasized that this approach significantly
reduces the cost of a true 4dvar EDA where a 4dvar ana-
lysis is computed for each member of the analysis ensem-
ble based on perturbations of both the observations and
the background, e.g. Bonavita et al. (2012).

Although, the concept of perturbing the optimal
adjoint solution (for the generation of an ensemble of
pseudo analyses in the strong constraints case) is intro-
duced, the perturbations of A(x,0) themselves are never
generated, as the study focuses on perturbing the optimal
representer coefficients in the broader weak constraints
context that encompasses the strong constraints.

2.2. Weak constraints and the representer method

Accounting for model errors in the weak constraints
approach increases the control space, and thus, the cost
of 4dvar assimilation. Fortunately, the representer
method of Bennett (1992) allows the minimization to be
carried out in the observation space, by expressing the
optimal solution as the sum of a first guess and a finite
linear combination of representer functions, i.e.

M
(X, 1) = up(x, 1) + Y Bprm(x, 1), (11)
m=1
where up(x,t) is the first guess, B, are the representer
coefficients and ry,(x,7),1 <m < M are the representer
functions, one per datum, defined as the solution of the
system:

0
L;” =Lr, + Creo,(x,1),

12)
— =2 =L, + H3(x — X)3(t — tm).

where L denotes the linearized operator [% (u)} The first
guess up(x,t) satisfies

ou
a_[F = LHF+F,
up(x,0) =1.

The linear expansion (11) assumes linearity of the EL sys-
tem (4). In practice with nonlinear systems, the EL is usu-
ally linearized around a first guess or background
solution, then, a linear EL system is solved using the rep-
resenter method to compute an analysis which can be
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used as a background for a new linearization of the EL.
This iteration over linearizations of the EL system is
known as the outer loop. Outer loops will be used in the
numerical example below (Sections 3 and 4). In the linear
case, only assumed here for the sake of theoretical deriva-
tions, the representer method reduces the 4dvar minimiza-
tion process to the search for the vector of optimal

representer coefficients p = (ﬁl,Bz ..... BM)T as the solu-
tion of the linear system (see the Appendix)
(R + C;)p = y—Hug, (13)

where R is the representer matrix with elements R, =
rm(Xu, 1), 1.e. the mth representer function evaluated at
the nth observation location. This is the so-called indirect
representer method (Egbert et al. 1994; Amodei 1995),
which eliminates the need for the computation and stor-
age of the representer functions. B is computed in (13)
using an iterative algorithm such as the conjugate gradi-
ent, and then substituted in (11) to compute the optimal
increment. Note that the linear combination (11) can be
assembled for any P during the iterative process of solv-
ing (13).

Any perturbation of either the background, the obser-
vations, or both, will result in a perturbation of the
innovation vector y—Hupg (i.e. the right-hand side of
(13)), which in turn will yield a perturbation of the repre-
senter coefficients according to (13). As such, an ensem-
ble of 4dvar based on perturbing the
observations and the background can also be achieved by
perturbing the innovation vector, or by way of (13), per-
turbing the representer coefficients. In this study, we per-
turb B at a later stage of the convergence of the iterative
process of solving (13), instead of carrying out a complete
4dvar process for each perturbation of the innovation
vector. The method, therefore, requires only one solution
of (13). Because the optimal 4dvar increments are
governed by B, we generate an ensemble ff=
{B*=Pp+v*.k=1,2,... K}, where v is an M-dimen-
sional vector of scalar perturbations, and thus generates
an ensemble of pseudo 4dvar analyses by using each pr
to compute a 4dvar increment according to (11). For
each B¥, the final sweep generates a 4dvar increment that
defines a member of the ensemble of 4dvar analyses. It is
expedient and convenient to perturb the M-dimensional
vector B rather than fields of significantly higher dimen-
sions, e.g. initial conditions and/or forcing. Note that this
approach can be used for the strong constraints by set-
ting the model error covariance to zero. In short, when
the representer method is used for the 4dvar assimilation
in either strong or weak constraints cases, an ensemble of
analyses can be achieved by perturbing only the opti-
mal B,,.

analyses

2.3. Theoretical derivations

For the sake of clarity, and without loss of generality, the
mathematical derivations below are written with a generic
covariance operator C that represents the actions of
either the initial error covariance (strong constraints), or
both the initial and model error covariances (weak con-
straints) on the adjoint model solution. In its incremental
formulation, the variational assimilation seeks a correc-
tion & to a background state ur such that the analysis
can be written in the form

i=ur+¢§ (14)

within an assimilation window. The correction & depends
on the background, the observations, their respective
error covariances, and the tangent linear and adjoint
models. Following Courtier et al. (1994) this correction
can be written as

¢ =LCL'HT (HLCLTH" + ¢,)"'d = LCLTHT, (15)

where d is the innovations vector and B is the vector of
representer coefficients. Assuming that the prior error
covariance is available, i.e. the error covariance for up in
the form of B, (x,t,x,¢), the error covariance of the
analysis solution (11) or (14) is given by

B;(x,2,x,7¢) =B, (x,, X, /)T (x, ) P 'x(x', /), (16)

where r(x, 1) = (ri(x.1),r2(x.7). ..., ru(x.1)", ie. the vec-
tor of all the representer functions introduced in (11),
and P = HLCLTHT + C,, Bennett (2002, p. 70). The pos-
terior error covariance (16) requires the prior error
covariance B,,. But the latter is usually not available. In
most variational data assimilation systems the initial error
covariance is prescribed in addition to the observations
error covariance, and, in some weak constraints applica-
tions, the model error covariance is also prescribed.
Obtaining the prior error covariance is a very difficult
and tedious task of its own. It involves either propagating
the error covariance C through the linearized model and
its adjoint in the form LCLT, or using a Monte—Carlo
method that consists of generating an ensemble of solu-
tions of the tangent linear model in which each member
is driven by random initial and model errors fields
sampled from their respective prescribed covariances (see
Bennett 2002, p. 71-72). These two approaches are both
impractical, especially if the analysis error covariance is
desired within typical time constraints in operational
environments.

Another method of obtaining the analysis error covari-
ance without the full prior error covariance is through
the computation of the Hessian of the cost function. This
method also becomes impractical as the dimension of the
control space increases, especially for weak constraints
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problems. An alternative to the Hessian approach and
(16) is to estimate the posterior error covariance from an
ensemble in which each member is a 4dvar analysis, i.e.
an EDA. Given the computational cost of the 4dvar algo-
rithm, such ensemble is usually limited in size, entailing
sampling errors. This study attempts to circumvent this
problem by generating an ensemble in which each mem-
ber is an approximation of the 4dvar analysis.

An EDA experiment consists of perturbing the back-
ground and the observations, and carrying out an assimi-
lation for each perturbed pair of background and
observations. The perturbations are designed to sample
the probability distribution functions of the background
and observations errors. Each analysis (indexed by k) in
the EDA experiment takes the form

it = (up + duy) + Ly CLTHT (HL, CLTHT + ;)

(17)
x (y + 0yx — H(ur + duy)),

where du;, and dyy are the kth perturbations on the back-
ground and observations, respectively, L; and L{ reflect
the dependence of the TLM and adjoint models on the
perturbed background. We can rewrite each analysis in
the EDA as

it = (up + duy.) + Ly CLTHT (HL, CLTHT + C,) ' (d + 5d;.)
~ (up + dup) + Ly CLTHT (B + 3By
~ur+LCLTHT (B + 8By).
(18)

Apart from the perturbations of the background duy,
an EDA consists of an ensemble of perturbed representer
coefficients vectors projected back into the state space
through the perturbed adjoint L], the initial and model
error covariances, and the perturbed tangent linear model
Lj. In order to avoid carrying out an EDA, an approxi-
mation to the previous analysis is introduced in the last
line of (18) that accounts for the perturbations of only
the innovation vector. This approximation, which is the
essence of this study, neglects both the addition of the
perturbation to the background and the contribution of
the background perturbation to the dynamics of the
TLM and adjoint, yielding a system in which only the
representer coefficients are perturbed.

By perturbing the representer coefficients near the con-
vergence of the minimization, the method proposed here
assumes that the background solution (on which the
TLM and adjoint models depend), and hence the struc-
ture of the representer functions, is unchanged within the
assimilation window. This would clearly be different
when both the observations and the background are per-
turbed in a true 4dvar EDA. The perturbed background
would vyield different representer functions. Thus, the
method proposed here neglects the contribution of

perturbations of the background to the representer func-
tions everywhere in the model domain except at the
observation locations. The impact of such neglect, if any,
can only be quantified by a comparison of the proposed
method with a similarly sized ensemble of 4dvar analyses.
This comparison is also carried out in the experiments
below. Nevertheless, perturbing either the representer
coefficients or the background and observations will both
result in a perturbed analysis in the space-time domain
according to (11), albeit for different reasons.
From the definition of the innovation vector,

d = y—Hug, (19)

and with the assumptions that both observations and
background errors are unbiased, normally distributed,
and not cross-correlated with each other, the innovation
vector is also normally distributed with the covariance

E(dd") = ¢, + HB,, H", (20)

where B, is the error covariance of the four-dimensional
background state. It follows, from the definition of the
representer coefficients

B = (HLCL™H" + C,)'d, Q1)

that the latter also are normally distributed with the
covariance

E(B") = (HLCL™H" + ;) ' (C, + HB,,H")

_ (22)
x (HLCL™HT + ¢,) '

With the further common assumption that initial errors
are propagated by the tangent linear model within the
assimilation window, i.e.

B, = LCLT, (23)

we get,
E(BBT) = (C, + HLCLTHT) ", (24)

that is the error covariance of the representer coefficients
vector is the inverse of the error covariance of the innov-
ation vector. Perturbations of the representer coefficients
should, therefore, sample the above covariance, but this
is a difficult task, because the four-dimensional error
covariance (23) is not usually available, much less the
inverse in (24). Nevertheless, the above expression indi-
cates that the variance of the representer coefficients
should be smaller than the inverses of both the observa-
tions and the background errors. Since perturbations
of the representer coefficients cannot be designed to
sample the otherwise unavailable covariance (24), they
should at the very least provide an analysis error covari-
ance that approximates (16), where the latter is computed
using the methodology in Bennett (2002, p. 72).
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Fig. 1. MAE of the background (solid line) and analysis

(dashed line) errors through all the assimilation cycles.

3. The model and experiments setup
The application of the method described above uses the
Lorenz-05 model II (Lorenz 2005)

du,
dt

=[wulg ,~u+F,n = 1... N, (25)

where

oI
[wuly , = E E ﬁ(*un—ﬂ(—iun—](—j + Up—K-+j—iUn+K+j)>
g —

(26)

with N=240, F=15 K=8, J=K/2, the dimensionless
time step is df = 0.025, and the model is discretized using
the fourth-order Runge-Kutta scheme. The model with
these parameters has an error doubling time of 2days
(Lorenz 2005), the equivalent of 160 time steps. Note that
a time window of 20 time steps corresponds to about 6h
in the real atmosphere (Fairbairn et al. 2014). We carry
out an idealized twin-data experiment, in which the
model is spun-up for 2000 and 2060 time steps to gener-
ate initial conditions for the background and the true sol-
utions, respectively. The experiment consists of a series of
99 assimilation windows of 60 time steps each.
Observations are sampled from the true solution at every
four grid points and every three time steps, with an
observation error variance of 0.09. The initial error
covariance C; consists of a Gaussian correlation function
with a decorrelation length of 10 grid points, and a pre-
scribed variance of 0.09. The model error is simulated by
integrating the background with the value of F=14.99.

The model error covariance consists of the same spatial
correlation function as the initial error covariance, multi-
plied by a Markov-type time correlation with a decorrela-
tion time of 5 time steps, and a relatively small variance
of 0.0009. Given the doubling time of two days, small
errors in the initial conditions, i.e. the residuals from the
assimilation in the previous window, will grow over the
relatively long window of 60 time steps. Choosing a small
model error variance allows us to readily detect changes
in the analysis due to changing the initial condition
error covariance.

Care was taken to ensure the accuracy of the tangent
linear and adjoint models of Equations (25 and 26)
through the three standard tests. First, the identity test
that requires that the operator L and its adjoint L7 sat-
isfy the identity (Lvl,v2) = (v1,L7v2) for any two ran-
dom vectors v/ and v2 in state space. Second, the
symmetry of the representer matrix requires that for any
two observation locations (xi,#;) and (xp,f) (in the
model domain) and their associated representer functions
ri(x,t) and ry(x, 1), we have ri(x, 1) = ra(xy, #1). Third,
the gradient test, based on the first-order Taylor’s expan-
sion of a function J, requires that g(e) :%W:
1+ o(e) as ¢ tends to zero. For this test, J is defined as
half the sum of squared differences between the back-
ground and the observations. When the adjoint model is
solved backwards in time with the innovations as forcing,
the adjoint state at time 0 provides the gradient of J. The
first two tests were accurate for integration windows of
up 35 time steps, and the gradient test was accurate for a
window of up to 15 time steps. An assimilation window
of 60 time steps is, therefore, longer than what the gradi-
ent test suggests would be suitable for a strong con-
straints 4dvar, yet it is a challenging opportunity to
demonstrate the robustness of the weak constraints
4dvar. It should be emphasized that the setup of the
assimilation problem is to provide a means for imple-
menting the proposed method; it is not meant to explore
optimal settings for the model or covariances. In fact, the
study is not about how prior covariances are prescribed,
but rather how to estimate the posterior covariance once
the prior have been provided.

4. Results

4.1. Weak constraints 4dvar with prescribed
covariances

The first two figures below are shown to illustrate the
robustness of the assimilation system. Because of the cha-
otic nature of the model, the representer-based weak con-
straints 4dvar is carried out with 6 outer loops (Courtier
et al. 1994; Bennett et al. 1996) and 125 inner loop
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Grid points

Time

Fig. 2.
iteration of cycle 80.

iterations, where an inner loop consists of iteratively solv-
ing (13). These relatively high numbers of iterations are
chosen to allow the minimization to converge, as seen
below. The first guess for the representer coefficients vec-
tor B is set to zero each time (13) is solved. An example
of the assimilation’s error reduction is shown in Fig. 1
with the mean absolute error (MAE) in every cycle.
Errors in a given solution are defined as the difference
from the true solution, i.e. the solution from which the
observations are sampled. Two solutions are compared in
Fig. 1 through their residuals: the analysis and the back-
ground (i.e. the model solution initialized by the assimila-
tion at the end of the previous assimilation cycle).
Despite being initialized by the analysis on previous
cycles, Fig. 1 shows that the background errors grow
quickly in magnitude, due to the analysis residuals from
the previous cycle, the chaotic nature of the model, and
the rather long assimilation window. As expected the
assimilation significantly reduces all the errors in
the background.

An example of the convergence of the 4dvar minimiza-
tion process is shown in Fig. 2 for cycle 80 (randomly
selected). The representer coefficients after every mini-
mization iteration are used to compute an analysis solu-
tion from which the MAE to the true solution is also
computed. As the minimization progresses through inner
and outer iterations the representer coefficients should
converge, leading to the convergence of the analysis. The
analysis residuals at the beginning and end of the mini-
mization are shown in Fig. 2, along with the MAE evolu-
tion with the minimization iterations. As mentioned
above the nonlinear and chaotic nature of the model
causes small initial errors from the previous cycle analysis
to grow rapidly resulting in a high MAE at the beginning
of the minimization. It can be seen in Fig. 2 that errors
in some areas of the space-time domain are as high as 15,
ie. 50 observations standard deviations. The errors

Time

1
40 0 0 . 0 100 200 30 &0 500 00 700 800

Minimization iterations

Residuals at the beginning (a) and end (b) of the minimization iterations, and MAE of the assimilated solution at every

decrease rapidly in the first two outer loops (from 4.1 to
1.4), and there is only marginal decrease of the analysis
errors in the remaining outer loops (from 1.4 to 1.1 in
500 inner iterations). In fact, there is virtually no further
decrease in the MAE in the last three outer loops

4.2. Comparison of pseudo and true ensembles
of analyses

We now proceed to the main objective of this study: the
approximation of the analysis error covariance by gener-
ating an ensemble of pseudo analyses through the per-
turbation of the optimal representer coefficients. As seen
above, the covariance in (24) indicates that the repre-
senter coefficients are correlated, and that the perturba-
tions of the representer coefficients should sample the
covariance in (24). But the latter is not available. What
we do have available is the set of representer coefficients
vectors for each minimization iteration. This set of repre-
senter coefficients vectors is used to generate a correlation
matrix that simulates the correlation in (24). Next, we
generate a vector of uncorrelated individual (i.e. compo-
nent-wise) perturbations from a random normal distribu-
tion. This vector has the dimension of the observations
space, just as the vector of representer coefficients. We
then multiply the correlation matrix with the uncorrelated
random vector; this constitutes a perturbation of the rep-
resenter coefficients vector that we add to the optimal
vector to generate one member of the pseudo ensemble of
4dvar analyses. For each perturbed B, a pseudo analysis
is computed following (11) and kept as a member of
what is referred to as the ensemble of pseudo analyses.
According to Fig. 2, convergence of the minimization
happens in outer loop 3. Thus, perturbations are gener-
ated during the third outer loop, and added to the repre-
senter coefficients at the end of the same outer loop 3.
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(e). The analytical covariance used 1000 samples for the prior, and the estimated covariance used 300 members.

The covariance from this ensemble of pseudo analyses,
hereafter referred to as the approximated analysis covari-
ance, is compared to the true analysis error covariance
computed from the analytical expression in (16), where
the prior computed using
Monte—Carlo simulations as in Bennett (2002), and all
the representer functions for cycles 70 and 80 were also
computed. We carried out 1000 Monte—Carlo simulations
for the generation of the prior error covariance, and 300
pseudo analyses. Figure 3 shows a comparison of both
covariances at the end of the assimilation window for
both cycles 70 and 80, and also includes the original

error covariance was

prescribed covariance. It can be seen that in general the
approximated analysis covariance has lower variance and
different correlation patterns than the analytical analysis
covariance. The differences between the two covariances
are primarily attributed to (1) the neglected perturbation
of the background (e.g. Burgers et al., 1998) as mentioned
in the approximation (18) and (2) the unknown and
unattainable covariance of the optimal representer coeffi-
cients (24) from which to draw the perturbations of the
representer coefficients. Differences between the two
covariances are to be expected, for many reasons: (1) the
analytical covariances requires the computation of the
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(b) and the evolution of the residual norm (c) using the prescribed covariance (black) and the estimated covariance (red).

error covariance for the model trajectory through
Monte-Carlo simulations as well as the computation of
all the representer functions. The approximated covari-
ance relies on perturbations of the representer coeffi-
cients, with perturbations that are supposed to sample a
distribution that is not available. The only source of
information about the representer coefficients in a given
assimilation cycle is the set of representer coefficients that
have already been computed during the minimization.
One should keep in mind that the analytical covariance
computed here is also an approximation, even though a
bigger sample is used for its generation.

We argue that, although, being different from the ana-
lytical analysis covariance, the approximated covariance
has more dynamical structure and information than the
static Gaussian covariance that was originally prescribed.
In fact the approximated analysis covariance at the end
of the assimilation window can be used as initial error
covariance in the following assimilation window instead
of the static covariance. The original assimilation experi-
ment that uses the prescribed static covariances is referred
to as experiment 1 (EXP1). An additional experiment,
hereafter referred to as experiment 2 (EXP2), is carried
out in which the approximated analysis covariance at the
end of the assimilation window is used as the initial error
covariance for the data assimilation in the following win-
dow and so on for all the cycles except the first. No other
changes are made in the assimilation process in terms of
the minimization method except for the number of inner
loops. It was noticed that the minimization process con-
verged faster when using the estimated covariance than
the prescribed. EXP2 was set to use only 50 inner loops
instead of 125 in EXP1. Thus, in EXP2, only 50 inner
loops are used to generate the correlation matrix for per-
turbing the representer coefficients, still in the third outer
loop. Results from EXP2 are compared in Fig. 4 to
results from EXP1 in terms of residuals and convergence,

for cycle 70 (also randomly selected). The main observa-
tion in Fig. 4 is that the analysis residuals from both
experiments are similar. Residuals from EXP1 are mar-
ginally lower that their EXP2 counterpart. This is due to
the fact that EXP2 uses significantly less iterations. EXP2
was set to run with 6 outer loops of 50 inner iterations
each. The evolution of the MAE with minimization itera-
tions shows that EXP2 has the same level of errors after
300 minimization iterations as EXP1. Thus, the margin-
ally lower residuals from EXP1 are only due to its add-
itional 450 minimization iterations. Figure 4 also shows
that EXP2 converges in about 100 to 150 iterations.

This is an encouraging unintended development, since
convergence was not an objective of the study, and
exploring the reasons for the faster convergence of EXP2
is beyond the scope of the study. Nonetheless, we exam-
ine whether the rapid convergence of EXP2 is consistent
throughout the cycles by computing the MAE of the
background and analysis after 100 iterations for both
EXP1 and EXP2. It can be seen in Fig. 5 that, although,
the two background solutions have similar error levels,
EXP2 has consistently lower errors after 100 iterations
than EXP1. The estimated covariance thus seems to be
more effective than the static prescribed covariance. It
can be seen from Fig. 3 that the estimated covariance is
arguably a better approximation to the analytical covari-
ance than the prescribed static covariance.

5. Discussion

The method proposed here alleviates the burden of carrying
out an EDA experiments (only one minimization is per-
formed), and provides an estimate of the analysis covari-
ance, not just the variances. This method is clearly different
from the hybrid methods. It may appear that the prescribed
static covariance was inadequate for the data assimilation
problem posed in this study. It is possible to tune the
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Fig. 5. Mean absolute error of the background (solid lines) and
analysis (dashed lines) from EXP1 (black) and EXP2 (red). The
analyses are computed after 100 minimization iterations.

parameters of the prescribed covariance in order to improve
the results of the assimilation for a given set of observations.
This is a tedious and time consuming process that has to be
repeated every assimilation cycle, and as such should be
avoided. The study at hand is not about the proper prescrip-
tion of prior covariances, but the estimation of the posterior
covariances once the prior have been prescribed. The pro-
posed method simplifies such a process (there is no need to
guess the correlation scales or variances) and improves the
analysis results. The posterior covariance is still needed and
computationally costly to obtain even for adequately pre-
scribed prior covariances and a well-conditioned minimiza-
tion for the data assimilation problem. The method
described here, although, lacking perturbations of the back-
ground solution, still yields a flow-dependent covariance
that is a better approximation to the analytic than the pre-
scribed. This is probably the reason for better results from
EXP2. This study shows that the time-consuming and com-
putationally costly process of guessing the covariances can
be avoided by adopting the posterior covariances at the end
of the assimilation window for initial error covariance for
the following assimilation window.

In the case of the classic strong constraints 4dvar, one
can still apply the method proposed here by perturbing
the optimal adjoint at the initial time. However, it may
still be preferable to use perturbations of the optimal rep-
resenter coefficients for two reasons. First, the observa-
tions space is usually smaller than the initial conditions

space, and second, the validity of the tangent linear
approximation that enables the strong constraints also
ensures that the representer method with no model error
yields the same solution as the strong constraints 4dvar.
However, with the classic strong constraints 4dvar the
ensemble of pseudo analyses will consist of solutions of
the nonlinear model instead of the linearized model used
in the representer method. Still, both methods will yield a
flow dependent covariance in which cross correlations are
determined by the dynamics of the nonlinear (strong con-
straints) or linearized (representer) model. The applica-
tion of the method proposed here to realistic models of
the atmosphere or ocean for which a 4dvar system exists,
and comparisons with an ensemble of 4dvar analyses,
should be straightforward.

5.1 The computational cost

Given sufficient resources, parallel computing provides
the ability to generate an ensemble of model solutions
simultaneously, i.e. for the same wall-clock time it take to
obtain one model solution. This is the reason why ensem-
ble-based data assimilation is said to be ‘embarrassingly
parallel’. Assuming that N computer nodes are needed
for one model solution, the same N nodes are used for
the 4dvar system, in the sequential application of the for-
ward and adjoint models, or adjoint and tangent linear
models. The wall-clock time of the 4dvar system is thus
driven by the iterative minimization process. An ensemble
of 4dvar solutions of size M requires MN computer
nodes with no additional wall-clock time. The method
proposed in this study requires only the N nodes for one
4dvar analysis. The additional applications of the final
sweep to generate the ensemble of pseudo analyses also
requires MN nodes, all in parallel with the final sweep of
the underlying 4DVAR. Therefore, the generation of the
ensemble of pseudo analyses does not require additional
wall-clock. In general, a large ensemble size (M > 100) is
needed to avoid sampling errors in the covariance. It is
doubtful that 100N nodes are available during each
assimilation cycle, and for the time it takes for 4dvar ana-
lysis, when N itself is already large.

We denote by Fc the cost of a final sweep (in the rep-
resenter method) in CPU time. It comprises the cost of
the adjoint model, the covariance multiplication, and the
tangent linear model. If K minimization iterations are
needed, the 4dvar is (K+ 1)Fc. The cost of an M-sized
ensemble of 4dvar analyses is M(K+ 1)F¢, while a simi-
larly sized ensemble of pseudo analyses by the proposed
method costs (K+ M)Fc. Note that the 4dvar solution is
counted as a member of the ensemble of pseudo analyses.
The difference in CPU time is K(M — 1) Fc, which
increases with both M and K. Thus, the ensemble of
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4dvar analyses will always require more resources than
the method proposed in this study.

6. Summary

A method for estimating the analysis error covariance in a
4dvar data assimilation is proposed. It consists of perturb-
ing the optimal representer coefficients and generating an
ensemble of pseudo analyses (Epya), one per each perturbed
vector of representer coefficients, through the final sweep
of the representer method. The method was applied to the
Lorenz-2005 model, in a twin-data assimilation experi-
ment. The estimated covariance at the end of the assimila-
tion window was compared to its theoretical counterpart.
It was found that the estimated covariance had slightly
lower variances and weaker correlations. In addition, an
experiment in which the estimated covariance at the end of
the assimilation cycle was used as initial error covariance
in the following cycle produced analyses with similar error
levels as the original experiment, but consistently con-
verged faster throughout the cycles.

By perturbing only the representer coefficients, which
are defined in the observations space, the method proposed
here neglects the potential contribution of the perturba-
tions of the background solution (as a truly perturbed ana-
lysis would require) to the perturbations of the representer
functions elsewhere in the model domain. The proposed
method applies the Monte-Carlo technique to the final
sweep of the representer method, a significantly less expen-
sive way of generating an ensemble of pseudo analyses. A
large ensemble size is, therefore, achievable with no add-
itional wall-clock time, since only one assimilation mini-
mization is required, and each member of the ensemble can
be generated in parallel with the 4dvar final sweep.
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Appendix

For the sake of clarity and for readers who are not
familiar with the representer method (Bennett 2002) this
appendix details how the adjoint solution is computed
given the representer coefficients. The inner loop of the
assimilation system attempts to solve (4) using the
expansion (11) in which the representer functions and
adjoint representer functions are defined in (12). We use
the following notations for the differential operators

0
D=~-L (A1)
and
pr—_2 1 (A2)
ot

Applying the differential operator (Al) to the linear
expansion (11) gives

M M
Dii=Dup + Y B,Drom=F+> B,Creo,. (A3)
m=1 m=1

By virtue of (A3) and the definitions (5) and (6) we get

M
A=C;lef=C;lelDi— Fl=> B,om(z.t) (A4
m=1

Also, applying the differential operator (A2) to (A4)
results in

M M
DT}“ = Z BmDTam = Z Bm,HSIS(I - .I'7n)8(t - tm)’

m=1 m=1

(AS5)

from the definition of the adjoint representer functions in
(12), and from the Euler-Lagrange system (4), then, we get

M M
DTK = E Z Wc. mn(ym - Hlnﬁ')Hg;B(l‘ - :E,L)S(t - t”)'

m=1 n=1

(A6)

Once the representer coefficients are computed (below)
Equation (AS5) shows how the adjoint solution is obtained.
Note that, although, the representer coefficients are defined
in the observations space, the adjoint solution is defined
over the entire space-time data assimilation domain.
Equating the right-hand sides of (A5) and (A6) gives
M
Bro = Weomn(yn — Hytt). (A7)
n=1
In (A7) the representer coefficients still depend on the
unknown optimal solution <. Substituting the linear
expansion (11) into (A7) with some rearranging leads to the
linear system (13). Thus, using the representer method for
solving the Euler-Lagrange system (4) involves two steps:
solving the linear system (13) to obtain the representer
coefficients, and then substituting the latter into (AS) to
obtain the optimal adjoint solution that will in turn be
substituted into the first two equations of the Euler—Lagrange
system (4) for the optimal model solution. This procedure
holds for both strong and weak constraints, the only
difference being the absence or presence of the model error
covariance in the strong constraints. Note that the traditional
strong constraints uses the nonlinear forward model.
However, since we are computing an increment/correction to
the first guess in either strong or weak constraints, the
forward dynamics can be replaced by the tangent linear
model as long as it is valid, and the first guess can be
computed with the full nonlinear model. A is a full field.
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