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ABSTRACT
This is a continuation of a previous paper by Starius, where for the solution of the shallow water equations on the
sphere, we consider Equator-Pole grid systems consisting of one latitude-longitude grid covering an annular band
around the equator, and two orthogonal polar grids based on modified stereographic coordinates. Here, we
generalise this by letting an equatorial band be covered with a reduced grid system, which can decrease the total
number of grid points by at least 20%, with no substantial change in accuracy. Centred finite differences of high
order are used for the spatial discretisation of the underlying differential equations and the explicit fourth order
Runge-Kutta method for the integration in time. In the paper mentioned above, we demonstrate accuracy in the
total mass, which is much higher than needed for NWP, for smooth solutions. Here we show that this holds also
for non-smooth solutions, by considering the Cosine bell no. 1 and the mountain problem no. 5 in Williamson
et al., the solutions of which have discontinuous second and first order derivatives, respectively.

Keywords: conservation, Equator-Pole grid systems, overset grids, reduced grids, shallow water equations on
the sphere
AMS Subject Classification: 35L45, 65M06

1. Introduction

In this continuation paper to Starius (2018), referred to as
(S-E-P) below, we consider numerical methods for the
shallow water equations on the sphere, using the Equator-
Pole (E-P) grid system. We make use of a reduced grid
system for an annular band around the equator, which is
divided into segments, each covered with a lat-lon net. As
in (S-E-P) the equatorial grid is complemented by two
orthogonal polar grids obtained by suitably modified
stereographic coordinates. The whole grid system is opti-
mised by minimising a global measure of uniformity,
namely the maximum of all deviation factors on the
sphere, where as in (S-E-P), the deviation factor for a net
rectangle is the greatest ratio of its side-lengths.

The methods of this paper give an accuracy in the total
mass, which is considerably higher than needed for NWP.
This was already shown for the smooth Rossby-Haurwitz
wave example for the method in (S-E-P). Here it is also
verified, with and without reductions, for non-smooth
solutions by considering the Cosine bell no. 1 and the
mountain problem no. 5 in Williamson et al. (1992), the
former with second order and the latter with first order

discontinuous derivatives in their solutions. We have also
integrated the mountain problem for a time period of
5 years, with maximal relative errors in the total mass of

order 10�5: For the total energy the corresponding quan-

tities were of order 10�2:

If K denotes the number of segments on a hemisphere,
then there are 2K-1 segments on the whole sphere, since
the two segments closest to the equator are merged
together. We note that K¼ 1 is the case considered in (S-
E-P). By reductions the uniformity is improved and the
total number of grid points can be decreased by 20% or
more, with no substantial change in accuracy. For high
resolution also the computing time will be reduced by a
similar percentage. High order one-dimensional centred
interpolation formulas are used to connect the discretisa-
tions on adjacent segments. The kind of deviations from
uniformity that arise by changing the number of grid
points on parallels do not cause any problems, at least
not for the methods described in this paper.

We now briefly comment on some other methods con-
sidered in the literature. Our main sources are the two
overview papers Staniforth and Thuburn (2012) and
Williamson (2007). There are many other grid techniques
than ours for the sphere, among which the most popular�Correspondence. e-mail: goran@chalmers.se
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are the cubed sphere, the icosahedral and the Yin-Yang
grid systems. The paper (S-E-P) contains a more detailed
overview than the one given below.

Cubed sphere grids (Sadourny, 1972) consist of quadri-
laterals and have been used for finite volume methods in,
e.g. (Putman and Lin, 2007; Ullrich et al., 2010), for dis-
continuous Galerkin methods in, e.g. (Nair et al., 2005;
Bao et al., 2014) and for finite difference methods in, e.g.
(Ronchi et al., 1996). Some drawbacks are lack of orthog-
onality and deviation from uniformity, particularly at the
8 corner-points of the cube, where angles up to 120o

instead of the ideal 90o occur.
Icosahedral grids (Williamson, 1968) are generally tri-

angular and have been used for finite volume methods in,
e.g. (Pudykiewics, 2011; Chen et al., 2014) and for discon-
tinuous Galerkin methods in, e.g. (Giraldo, 2006; L€auter
et al., 2008). At the 12 corner-points of the icosahedron
there are angles up to 72o instead of the ideal 60o:

The more recently developed Yin-Yang grid, in
Kageyama and Sato (2004), is an overset grid system consist-
ing of two congruent orthogonal subgrids based on spherical

coordinates and having maximal deviation factor
ffiffiffi
2

p
: This

grid has been used by, e.g. Qaddouri and Lee (2011) and for
a full 3d model by Allen and Zerroukat (2016). Both this
grid system and ours use overset and orthogonal grids, which
leads to an obvious similarity between the two techniques.

The great importance of the axis of the Earth for the
dynamics of the weather is clear. However, the Yin-Yang
grid does not have good rotational symmetry properties rela-
tive to this axis, not even near the poles, for details see, e.g.
Section 1 in (S-E-P). At the end of Section 3.4, we compare
the Yin-Yang grids and ours with respect to the total number
of grid points, both with the same number on the equator.

The paper is organised as follows. In Section 2, we
introduce the set of governing equations, some notation,
and also some coordinate systems. This section is essen-
tially a summary of Section 2 in (S-E-P).

Section 3 is devoted to reduced grid systems for annular
bands around the equator. Two methods, I and II, to divide
the band into segments and then to connect them by inter-
polation, are considered in Sections 3.1 and 3.2. Method I
is quite general and easy to implement but requires more
interpolation coefficients than method II. However,
method II has limitations in its applicability, which is dis-
cussed in Section 3.2. In Section 3.3, two different measures
of uniformity, used to generate suitable grid systems for the
sphere, are compared. In Section 3.4, an E-P grid system is
constructed with square net rectangles at mid-latitudes,
which is often required for NWPmodels.

In Section 4, we investigate our E-P grid systems numer-
ically, both with and without reductions. Centred finite dif-
ferences of high order are used for the spatial
discretisations and the explicit fourth order Runge-Kutta

method for the time integration. First some notation for
various errors is introduced and then, in Section 4.1,
smoothing by addition of a ’hyper-diffusion’ term is consid-
ered. For a discretisation method of order 2p a smoothing
term of the same order is used, in contrast to the method in
(S-E-P) where the order is always equal to 4. In Section 4.2,
the rotation of the Cosine bell is considered and for this sca-
lar advection example both the total mass and energy are
obtained with much higher accuracy than for the height of
the fluid. In Section 4.3, our results for an example by
L€auter et al. (2005) show that the reduction techniques
work quite well, the accuracy is very much the same for
K¼ 1,2,3,4, particularly for the 6th order method. In
Section 4.4, we consider zonal flow over an isolated moun-
tain, example no. 5 in Williamson et al. (1992), with non-
smooth solutions. The errors in the total mass shown in
Table 6 are clearly small enough for NWP. We mention
that no ‘corrections’ or ’fixers’ of any kind have been used.

In (S-E-P) further numerical examples are given, and
also investigations of grid imprinting and comparisons
between formal and computational orders of discretisa-
tion errors are considered.

2. Coordinate systems and governing
differential equations

In this section, we introduce some notation and give a
frame of reference for the paper. It is essentially a sum-
mary of Section 2 in (S-E-P).

2.1. Spherical coordinates and the shallow
water equations

The transformation between Cartesian and spherical
coordinates on the sphere is

x ¼ a cos h cos k,

y ¼ a cos h sin k, 0 � k<2p, � p
2
� h � p

2
,

z ¼ a sin h,

8>><
>>: (1)

where a is the radius of the sphere, k the longitude, and h
the latitude. The advective form of the shallow water
equations in spherical coordinates is given by

ut ¼ �ða cos hÞ�1ðuuk þWkÞ�a�1vuh þ ðf þ a�1u tan hÞv,
vt ¼ �ða cos hÞ�1uvk�a�1ðvvh þWhÞ�ðf þ a�1u tan hÞu,
Wt ¼ �ða cos hÞ�1ðukWþ uWkÞ�a�1ðvWÞh þ a�1vW tan h,

(2)

where W is the geopotential, f ¼ 2X sin h the Coriolis par-
ameter, X the rotation rate of the sphere, and u and v the
eastward and northward velocity components,
respectively.
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2.2. Standard and modified stereographic coordinates

Consider first the standard stereographic coordinates.
The relation between these and spherical coordinates can
be expressed as

xst ¼ a qðhÞ cos k,
yst ¼ a qðhÞ sin k,

(
(3)

where qðhÞ ¼ 2 tan ðu=2Þ, with the colatitude u equal to
1
2 p�h and 1

2 pþ h, on the northern and southern hemi-

sphere, respectively. We also need the map factor
mf ðhÞ ¼ 2=ð1þ a sin hÞ, where a¼ 1 on the northern and
�1 on the southern hemisphere.

Since the velocities in spherical coordinates, u ¼
a cos h dk=dt, v ¼ a dh=dt, are not uniquely defined at
the poles, we use instead the stereographic velocities U ¼
�dxst=dt,V ¼ dyst=dt: Observe the use of the minus sign
in the definition of U, intended to get nicer formulas,
namely

u
v

� �
¼ A

U
V

� �
and

u
�v

� �
¼ A

U
V

� �
, where A ¼ sin k cos k

cos k � sin k

� �
,

(4)

on the northern and southern polar regions, respectively.
In (4), U and V have been scaled by the factor 1=mf ðhÞ:
The mapping (4) is also used in Starius (2014), where it is
derived by orthogonal projection of the vector (u, v) onto
the equatorial plane.

Stereographic projection is only suitable for grid gener-
ation close to the poles. Here we will use a modification
of (3), already recommended in Section 2.3 of (S-E-P), so
that the lat-lon and our new modified stereographic grid
points will coincide on the meridian corresponding to

k¼ 0, and automatically also on the meridians k ¼
1
2 p,p,

3
2 p, provided the number of grid points on parallels

in the last segment of the reduced grid is divisible by 4.
The assumption for k¼ 0 leads to new coordinates ðx0, y0Þ
related to ðxst, ystÞ by

xst ¼ 2a tan ðx0=2Þ,
yst ¼ 2a tan ðy0=2Þ:

�
(5)

The modified coordinates ðx0, y0Þ give rise to more uni-
form polar grids and will also simplify the connection
between these grids and the last segments of the equator-
ial grid system. The shallow water equations expressed in
the coordinates defined by (3) and (5), and the stereo-
graphic velocities U and V given in (4), are written down
in full detail in Section 2.3 of (S-E-P).

3. Reduced latitude-longitude grid systems
covering an equatorial band

In this Section, we consider the possibility to utilise a
reduced grid system for an annular band around the
equator, cf. Gates and Riegel (1963), Kurihara (1965),
Tolstykh and Shashkin (2012), and Starius (2014). We
also mention the reduced Gaussian grids for spectral
models in Hortal and Simmons (1991), reported to
decrease the computing time by about 20%, and used by
ECMWF in their operational model. Further, the papers
Layton (2002) and Li (2018) are worth mentioning in this
context. The band is divided into segments, each covered
with a lat-lon net. Let n be the given number of grid
points on the equator and K the number of segments on
a hemisphere. Here we choose to have invariance under
reflection in the equator, where the closest two segments
are merged together, which implies that the total
number of segments is 2K-1 and the total number of
subgrids is 2Kþ 1. We recall that K¼ 1 is the case
studied in (S-E-P).

We will later define latitudes h1<h2<:::<hK such that
the i:th segment Si is bounded by hi�1 and hi, i ¼
1, 2, :::,K, where h0 ¼ 0: Also the number of grid points
ni on a parallel in Si has to be defined and satisfy
n1>n2>:::>nK , and the longitudinal steps are defined by
Dki ¼ 2p=ni, where i ¼ 1, 2, :::,K: We note that n1 ¼ n
and when only one longitudinal step is used, for example
for K¼ 1, it is called Dk:

We now discretise the segments introduced above.
Assume that all the latitudes hi are multiples of a latitu-
dinal step Dh: Consider for each i, with 1 � i � K, the
parallels hi�1 þ kDh, k ¼ 0, :::, si, where si ¼
ðhi�hi�1Þ=Dh, and let Sd

i be the corresponding lat-lon

net. Note that we have let Sd
i and Sd

iþ1 both contain the

parallel corresponding to hi, which will ease the presenta-
tion in Sections 3.1 and 3.2. When the discrete segments

have been defined, we omit the parallel hi from Sd
iþ1,

i¼ 1,…K-1, cf. Fig. 1.
In this section, we will often use the fact that for a par-

allel with latitude h and angular longitudinal step Dk, the
distance along the parallel between two consecutive grid
points is Dk cos h:

3.1. Method I: reduced latitude-longitude
grid system

Here the number of segments K will be given by the user.
The deviation factor at the equator is rK ¼ Dk1=Dh, where
Dh will be the same for all discretised segments and deter-

mined later. We consider the segment Sd
i and require that

the distances between grid points on the parallel hi�1 are
equal to Dk1, that is Dki cos hi�1 ¼ Dk1, where i ¼ 2, :::,K:
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Further, the maximal deviation factor for the segment Sd
i is

maxðDki cos hi�1=Dh , Dh=ðDki cos hiÞ Þ, which is obvi-
ously minimised, with respect to Dki=Dh, when the two
deviation factors in the max above are equal. We now have
the equalities

Dki cos hi�1 ¼ Dk1 and
Dki cos hi�1

Dh
¼ Dh

Dki cos hi
, (6)

and substituting Dki in the second equality by
Dk1= cos hi�1 and using rK ¼ Dk1=Dh, gives

cos hi�1

cos hi
¼ r2K , i ¼ 1, 2, :::,K ) 1

cos hK
¼ r2KK : (7)

The transition from Sd
K to a polar grid gives that rK ¼

mf ðhKÞ ¼ 2=ð1þ sin hKÞ, where mf ðhÞ is the mapfactor in

Section 2.2, cf. (12) in Section 3.2 of (S-E-P). This equal-
ity and the right hand side of (7) imply

cos hK ¼ 1þ sin hK
2

� �2K

, (8)

which can be solved by, e.g. Newton’s method. We then

determine rK ¼ 2=ð1þ sin hKÞ and by using cos hi ¼
cos hi�1=r2K ¼ r�2i

K we find hi, i ¼ 1, 2, :::,K�1. Note that

(8) implies that hK ! 1
2 p, and hence rK ! 1, as K ! 1:

Now Dh ¼ Dk1=rK can be evaluated and for practical
reasons modified by defining the integer m to be
1
2 p=ðDk1=rKÞ rounded to the nearest integer and then

redefining Dh ¼ 1
2 p=m: With Dh known we now round the

latitudes hi, i ¼ 1, 2, :::,K, to their closest multiples of Dh:
Finally we set ni ¼ n cos hi�1, round it to the nearest inte-
ger, and define Dki ¼ 2p=ni, i ¼ 2, :::,K:

In Table 1, the overlap between the last segment in the
reduced grid and the polar grid is 3, which only affects the
number of parallels in this segment. An increase in the num-
ber of segments leads to a decrease in the total number of dis-
cretisation points and in the maximal deviation factor. In Fig.
1, a reduced grid with n¼ 160 and K¼ 3 is illustrated. More
realistic resolutions for NWP are for instance n¼ 1000,
K¼ 10, which gives p¼ 20.7% and s10 ¼ 9, and n¼ 2000,
K¼ 10, which gives p¼ 20.8% and s10 ¼ 16: We recall that
the above procedure requires only one-dimensional interpol-
ation and that the coefficients in the formulas should be com-
puted and stored during preprocessing. The number of
sequences of interpolation coefficients is n1 þ 2ðn2 þ :::þ
nK�1Þ þ nK , which for high resolution is negligible compared
to other storage requirements. A less general method using
considerably fewer interpolation formulas is briefly described
in Section 3.2.

Fig. 1. A small part 0 � k � 45o and h � 0 of a reduced grid for n¼ 160 and K¼ 3.
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A way to avoid scalability problems for the couplings
between the reduced grid and the northern polar grid,
say, is to let the former reach a high latitude. Since hK
increases slowly with K (for instance K¼ 10 gives only
h10 ¼ 65:8o) we will now consider a modification of
method I, which is suitable for high latitudes. We choose
K and determine the first K segments and the correspond-
ing maximal deviation factor rK, and then complement
this by the desired number of additional segments,
each optimised with respect to rK. More specifically,
additional latitudes hKþ1, hKþ2, ::: can be determined
by the equation cos hi ¼ r�2i

K , i>K, and then also ni ¼
n cos hi�1 and Dki ¼ 2p=ni, i>K, where the ni have been
rounded in a suitable way.

We conclude this subsection with two examples. For
initial K¼ 3, we have r3 ¼ 1:0988 and the corresponding
latitudes are: 34.0, 46.8, 55.1, 61.9268, 67.0595, 71.1657,
74.4912, 77.2050, 79.4305, 81.2615. If we want the
reduced grid to reach the polar circles, then we add two
segments, so that K¼ 5, and reach latitude 67o: The max-
imal deviation factor for the whole reduced grid system is
still r3. In a second example, with initial K¼ 1 and r1 ¼
1:1892, two segments have to be added, so that K¼ 3,
for the reduced grid to pass the polar circles. There is
obviously a trade-off between uniformity and the possi-
bility to use a small number of segments.

3.2. Method II: reduced latitude-longitude
grid system

This method is essentially applicable with a small number
of segments and special choices of n. However, its range
of applicability can be extended in ways described below.
The notation and assumptions of Section 3.1 will be used
here, and only a brief outline of the method will be given.

The method is based on the following simple idea. In a
consecutive manner we replace q longitudinal mesh inter-

vals in segment Sd
i with q�1 intervals in the following

segment Sd
iþ1: As for method I we require that

Dki cos hi�1 ¼ Dk1, where i ¼ 2, :::,K, and further that
each ni, with i<K, is divisible by q. This implies that

Dkiþ1=Dki ¼ ni=niþ1 ¼ q=ðq�1Þ: Further, Dki cos hi�1 ¼
Dkiþ1 cos hi together with (7) leads to Dkiþ1=Dki ¼
cos hi�1= cos hi ¼ r2, where we write r instead of rK,
since r is now independent of K. We choose q and deter-
mine r and #0, where #0 is the width of the reduced grid,
by using

r2 ¼ q
q� 1

and
2

1þ sin#0
¼ r:

We now determine hi by cos hi ¼ r�2i, i ¼ 1, 2, ::: until
hi>#0: Further, we can choose K from jhK�#0j ¼
minijhi�#0j and then redefine #0 ¼ hK : For low reso-
lution it might be necessary to replace K by a smaller
value in order to get a reasonable number of parallels in

the segment Sd
K : Since n1 ¼ n is known we can use

niþ1 ¼ ðq�1Þni=q, wherei ¼ 1, :::,K-1, and then
define Dki ¼ 2p=ni, i ¼ 2, :::,K:

The above works only if n is divisible by qK�1, where
K has our desired value, in which case the number of
sequences of interpolation coefficients required is only
q�1, provided symmetry is used to reduce the number of
sequences whenever possible.

If we get a number ni0 , with i0<K, not divisible by q,

then k ¼ 2p will not correspond to grid points in Sd
i0þ1:

Since we now cannot have equidistant grid points in all
our discretisations, we switch to a modification of

method II, which allows that. From segment Sd
i0þ1

onward, we define niþ1 ¼ ðq�1Þni=q, for i ¼ i0, :::,K and
then round them to integers and define Dkiþ1 ¼ 2p=niþ1,
for i ¼ i0, :::,K: This transition to method I is very simple
but requires more sequences of interpolation coefficients.

For high resolution, we indicate an improvement of
the above modification of method II. If ni0þ1 is rounded
to an integer divisible by q, then the interpolation

between Sd
i0þ1 and Sd

i0þ2 can be done with the q�1 inter-

polation formulas. We still use method I for the interpol-

ation between Sd
i0 and Sd

i0þ1: This can be repeated by

choosing ni0þ3 divisible by q, using method I between

Sd
i0þ2 and Sd

i0þ3, and then the q�1 interpolation formulas

between Sd
i0þ3 and Sd

i0þ4, etc.

Table 1. Reduced lat-lon grids with n¼ 360 and K segments on a hemisphere, using method I. Let NK be the total number of
discretisation points for given K, pK is the decrease in per cent of N1, that is NK ¼ ð1�pK=100ÞN1, and the quantity si is the number
of parallels in the segment Sd

i : The area of the polar regions as per cent of the total area of the sphere is given by qK ¼ 100ð1� sin hK Þ:

K h1 h2 h3 hK�1 hK s1 s2 s3 sK�1 sK rK pK qK

1 45.0 56 1.1892 0 29
2 37.4 50.8 43 17 1.1269 9.5 23
3 34.0 46.8 55.1 38 14 11 1.0988 14.2 18
4 31.5 43.6 52.0 57.5 35 13 9 8 1.0848 16.2 16
5 29.1 40.3 48.8 55.3 60.0 32 12 9 7 7 1.0718 17.9 13
6 27.5 38.8 46.4 57.8 61.6 30 12 8 6 6 1.0641 19.4 12
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We conclude this subsection by considering an example

with q¼ 6, which preliminarily gives r ¼ ffiffiffiffiffiffiffiffi
6=5

p ¼ 1:0954:
We have #0 ¼ 55:7 and the following sequence of latitudes
determining the segments: 33.6, 46.0, 54.6, 61.2, 66.3, 70.4,
73.8, 76.6, 78.8, 80.7. Thus according to the above we
choose K¼ 3, redefine #0 ¼ h3, and obtain a new r ¼
2=ð1þ sin h3Þ ¼ 1:1019: If n is divisible by 62, then method
II works perfectly well for K¼ 3. However, if we want
K> 3 and n is not divisible by 63, we can use a modification

as described above for the segments following Sd
3 :

3.3. Comparison between two measures of uniformity

The measure of uniformity most commonly referred to in
the literature is the ratio of maximum to minimum grid
length, which we call c in this section. Our main interest
here is to investigate which measure of uniformity is best
suited for grid generation. Our maximal deviation factor
has already been used for this purpose, and we therefore
now turn our focus to the ratio c by studying two examples.

Example (i): Let Sd be a segment on the northern hemi-
sphere bounded by the latitudes h1<h2 and consisting of a lat-
lon net with the longitudinal step Dk: We define r as the devi-
ation factor for net rectangles at h1, that is r ¼ Dk cos h1=Dh,
where Dh is the latitudinal step, not yet determined. The ratio
of maximum to minimum grid length on Sd is

c ¼ cðrÞ ¼ Dk cos h1
minð Dh,Dk cos h2 Þ ¼

r
minð1, r cos h2= cos h1 Þ ,

from which it follows

c ¼ cos h1= cos h2, r � cos h1= cos h2,
r, r � cos h1= cos h2,

�

The minimum of c is cos h1= cos h2, which is attained for
all r � cos h1= cos h2: The result is unsatisfactory since we
want the grid to be uniquely defined.

For comparison we mention that the minimum of the
maximal deviation factor for this segment isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos h1= cos h2
p

, which is attained if and only if Dk=Dh ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h1 cos h2

p
: We get square net rectangles at the lati-

tude h for cos hDk ¼ Dh, which implies

cos h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h1 cos h2:

p
(9)

This formula will be used in the next Section 3.4. �
Example (ii): In this example the ratio c will be

minimised over the whole sphere. We choose the E-P grid
system with K¼ 1, which we optimised in (S-E-P) by
using the maximal deviation factor. Now instead we min-
imise c. Let the equatorial grid cover the band jhj � #0,
which will be determined later. Our northern polar grid
will go down to #0 and the corresponding map factor is
mf ¼ 2=ð1þ sin#0Þ: According to (12) in (S-E-P) the
greatest and smallest grid lengths in our polar grids are

Dh and Dh=mf ¼ Dh hð#0Þ, respectively, where hð#0Þ ¼
ð1þ sin#0Þ=2: For our polar grids the ratio c and the
maximal deviation factor are the same.

The ratio c for the whole sphere can now be written as

c ¼ Dk
minð Dk cos#0,Dhhð#0Þ Þ

¼ 1
cos#0

1
minð 1, hð#0Þ=ðr cos#0Þ Þ ,

where r ¼ Dk=Dh: We now consider the equation
hð#0Þ=ðr cos#0Þ ¼ 1, with a unique root h�ðrÞ in the
interval ð0p=2Þ: Elementary computations show that

cos h�ðrÞ ¼ 4r=ð4r2 þ 1Þ and h�ðrÞ is increasing: (10)

We look at two cases, namely

#0 � h�ðrÞ () hð#0Þ=ðr cos#0Þ � 1, c ¼ 1= cos#0 � 1= cos h�ðrÞ
and

#0 � h�ðrÞ () hð#0Þ=ðr cos#0Þ � 1, c ¼ r=hð#0Þ
� r=hðh�ðrÞÞ ¼ 1= cos h�ðrÞ:

(11)

In both cases cðr,#0Þ � 1= cos h�ð1Þ ¼ 1:25, with equality
if and only if r¼ 1 and #0 ¼ h�ð1Þ�36:87o: This result
was also reported in (S-E-P) but without mentioning the
condition r¼ 1, which we regret.

The sole reason why lat-lon coordinates are not suitable
for the whole sphere is the convergence of meridians when
we are moving towards a pole. Therefore, we find it inappro-
priate to use square net rectangles at the equator instead of
rectangles with longer longitudinal than latitudinal sides.�

The examples (i) and (ii) above convincingly show that
the maximal deviation factor is a better tool for gener-
ation of suitable grid systems on the sphere, than the
ratio of maximum to minimum grid length.

3.4. Square net rectangles at mid-latitudes

Grids for NWP are generally constructed to be uniform
(having square net rectangles) at mid-latitudes, h ¼
6p=4, a condition we will study in this section. We will
also compare the total number of grid points used in the
Yin-Yang grids and ours, both with the same number of
grid points on the equator, and by considering the mid-
latitude condition above.

We first use method I of Section 3.1 to determine the

segment Sd
i0 with hi0�1<p=4<hi0 and then use (9) with h ¼

p=4, which leads to the equation

cos �hi0�1 cos �hi0 ¼ 1=2: (12)

For our ’mid-latitude method’ we use notation with bars
to distinguish the variables from those used for methods
I and II. In order to avoid over-determined systems of
equations we replace equation (8) by (12) and use the left
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part of (7) to get cos �hi0 ¼ �r�2i0 , which together with (12)

gives �r�4i0þ2 ¼ 1=2: We then determine �r and �hi, i ¼
1, :::,K, by solving the equations

�r4i0�2 ¼ 2, cos �hi ¼ �r�2i, i ¼ 1, :::,K: (13)

We conclude this subsection with an example, in Table 2,
where two reduced lat-lon grids are considered. Choose
n¼ 3600 and K¼ 10 in method I, which corresponds to
Dk ¼ 0:1o on the equator and about 11 km between nei-
bouring grid points everywhere on the sphere.

For the Yin-Yang grid we let the Yin subgrid have
square net rectangles at h ¼ 645o: If the Yang grid is
congruent with the Yin grid the total number of grid

points will be 2 � ffiffiffi
2

p � 3=16
� �

n2, which for n¼ 3600 is

about 6:873 � 106: This grid system only satisfies the mid-
latitude condition in a crude sense. By replacing this grid
by one of ours in Table 2 we get a reduction in the num-
ber of grid point of about 34%. Moreover, we get good
rotational symmetry properties relative to the axis of the
Earth, much better uniformity, and perfect possibilities to
satisfy the mid-latitude condition in suitable ways.

Provided we accept less uniformity than in Table 2, a
smaller number of segments can be used, e.g. K¼ 3 or 5.
If we also want the reduced grid to reach high latitudes it
can be complemented by additional segments by the pro-
cedure described at the end of Section 3.1.

For a full lat-lon grid, satisfying the mid-latitude con-
dition and with n¼ 3600, the total number of grid points

is about 9:164 � 106:

4. Numerical experiments

In this section, we investigate the E-P grid system numeric-
ally, both with and without reductions in the equatorial
grid. Test examples no. 1 and 5 from Williamson et al.
(1992) and time dependent flow from L€auter et al. (2005)
are considered, cf. also (S-E-P) where other numerical
examples and investigations, such as grid imprinting, are
studied. We recall that the number of segments in the equa-
torial grid is 2K-1, that the total number of grids in the E-P
system is 2Kþ 1, and that K¼ 1 corresponds to the grid

system used in (S-E-P). Method I, intended for reduction
and connection between segments, has been used in all the
tables below. However, in Sections 4.3 and 4.4 we give
some short comparisons between methods I and II.

The spatial discretisation is obtained by using centred
finite difference approximation of orders 6 or 4 on non-
staggered grids, for which formulas can be found in
Section 2.4 of (S-E-P). The classical explicit fourth order
Runge-Kutta method is used for the time integration,
which requires interpolation between grids for each of the
four stages in a time step.

Explicit time integration seems to work quite well for
the shallow water equations. However, for realistic NWP,
3d models are used and with vertical spacing much
smaller than the horizontal ones, which would lead to
very small time steps for explicit methods. This is why
HEVI(horizontal explicit and vertical implicit) schemes
are of interest in the atmospheric community.

In the tables below, 2p is the approximation order of the
spatial discretisations of the underlying differential equa-
tions. The order of the interpolation formulas connecting
the polar and equatorial grids is 2pþ 1, and between discre-
tised segments the order used is 2pþ 2. The overlapping
number is denoted by s ð¼ pÞ, cf. Section 3.3 in (S-E-P).

The geopotentialW is defined as gH, where g is the accel-
eration of gravity andH the height of the fluid. We will often
use the relative error norm ‘2ðHÞ, introduced in Williamson
et al. (1992). Let ‘2ðH, dÞ denote this norm after d days. For
the vector ð‘2ðH, 1Þ, ‘2ðH, 2Þ, :::, ‘2ðH,TÞÞ, where T is the
integration time in days, we define a mean value by

�‘2ðH,TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
d¼1

‘2ðH, dÞ2
vuut : (14)

The global conservation properties for mass and energy
will also be studied below. The integral formulas can be
found, e.g. in Starius (2014) and their numerical compu-
tation is described in (S-E-P). The relative errors for the
total mass after each day are stored in the vector
ðrmð1Þ, rmð2Þ, :::, rmðTÞÞ, with mean value �rmðTÞ, defined
by (14). The quantity �reðTÞ for the total energy is defined
analogously.

Table 2. Let N be the total number of discretisation points and si the number of parallels in the segment Sd
i : The areas of the polar

regions as per cent of the total area of the sphere is given by q10 ¼ 100ð1� sin h10Þ:

Grid system optimised according to method I

h1 h2 h3 h4 h10 s1 s2 s3 s4 s10 r q10 N

23.9 33.3 40.1 45.6 65.9 251 98 71 58 28 1.0456 8.7 4:504 � 106

Grid system with square net rectangles at h ¼ 6p=4 in Sd
4

�h1 �h2 �h3 �h4 �h10 �s1 �s2 �s3 �s4 �s10 �r �q10 �N

25.0 34.9 42.0 47.7 68.2 264 103 75 60 27 1.0508 7.2 4:535 � 106
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4.1. Smoothing

Smoothing is essential for the centred finite difference meth-
ods to work properly and will be achieved by adding a so
called ‘hyper-diffusion’ term to each equation. Since ‘hyper-
diffusion’ has no known physical meaning, we consider our
smoothing a purely numerical stabilisation process.

Let Lh be the five-point operator associated with minus

the Laplacian �r2, and defined by

Lhui, j ¼ 4ui, j�uiþ1, j�ui, jþ1�ui�1, j�ui, j�1:

To the first, second, and third equation in (2), we add the
terms �cLp

hu,�cLp
hv, and �cLp

hW, respectively. In the equa-
tions for the polar grids, U and V are used instead of u and v.
Since our grid systems are almost uniform, it is natural to use

Lh for the whole sphere. We observe that Lp
hW ¼ OðDh2pÞ,

for any smooth function W: In the temporal discretisations
the smoothing terms will be multiplied by Dt: The smoothing
constant c � 0 will often be determined by minimising
‘2ðH,TÞ, �‘2ðH,TÞ,�rmðTÞ or �reðTÞ: We have used the
MATLABVR routine fminbnd, for the numerical minimisation.

In an earlier work we have used Lh as a five-point dif-
ference approximation to minus the Laplacian in spher-
ical coordinates, without any improvement for almost
uniform grids.

We point out that the optimisations in this paper, are
essential in order to ease comparisons between differ-
ent methods.

4.2. Rotation of the Cosine bell

In this example we consider a solid body rotation of the
Cosine bell, according to test problem no. 1 from
Williamson et al. (1992). The advecting wind is given by

u ¼ u0ð cos h cos aþ sin h cos k sin aÞ, v ¼ �u0 sin k sin a,

where a is the angle between the axis of the solid body
rotation and the polar axis, and u0 ¼ 2pa=12 m/day.

The E-P grid system will be used for K equal to 1 and 3
and the smoothing parameter c will be determined by
minimising ‘2ðH, 12Þ, �rmð12Þ and �reð12Þ: The results are
given in Table 3, first for 2p ¼ 6 and then for 2p ¼ 4:

Despite the solution having discontinuous second order
derivatives, the accuracy of H is considerably higher for the
case 2p ¼ 6 than for 2p ¼ 4: The actual approximation orders
can still be fairly equal. The accuracy for the total mass must
be caused by cancellation of errors since it is much higher
than for H. In this specific example, the same can be said
about the total energy. Minimisation of ‘2ðH, 12Þ leads to
slightly more accurate values of H, for K¼ 1 than for K¼ 3,
but the values of �rmð12Þ are much smaller for the smoother
caseK¼ 3, which also require fewer grid points.

For the rest of this subsection we only consider the
most important case 2p ¼ 6: The minimisation of �rmð12Þ
leads to much greater values of c than for the other alter-
natives, which results in greater values for ‘2ðH, 12Þ and
�reð12Þ, see for example the case K¼ 1. For this reason we
reject the use of �rmð12Þ for the determination of c and
note that �reð12Þ works better for this example if we focus
on the other errors ‘2ðH, 12Þ and �rmð12Þ and not on the
values of c themselves, which are much smaller compared
to the ones corresponding to ‘2ðH, 12Þ:

4.3. Time dependent flow, the L€auter example

The following time dependent flow is a solution of the
shallow water equations and was introduced in L€auter
et al. (2005), cf. also Pudykiewics (2011),

uðk, h, tÞ ¼ u0ð sin a sin hð cos k cosXt� sin k sinXtÞ þ cos a cos hÞ,
vðk, h, tÞ ¼ �u0 sin að sin k cosXtþ cos k sinXtÞ,

W�ðk, h, tÞ ¼ �0:5½u0ð sin a cos hð� cos k cosXtþ sin k sinXtÞ
þ cos a sin hÞ þ aX sin h	2 þ k1�k2,

Wsðk, h, tÞ ¼ 0:5ðaX sin hÞ2 þ k2,

(15)

Table 3. Normalised errors for solid rotation of the Cosine bell, n¼ 360, Dt ¼ 600 s, T¼ 12 days, a ¼ p=3, and minimisation over c.

Minimum of K 108 � c 2p s l2ðH, 12Þ �rmð12Þ �reð12Þ
l2ðH, 12Þ 1 66.3 6 3 2.6832e-03 1.6530e-06 9.1873e-06
�rmð12Þ 1 717 6 3 5.1712e-03 3.6007e-07 6.9466e-05
�reð12Þ 1 3.9 6 3 3.1638e-03 3.3152e-06 5.4354e-07
l2ðH, 12Þ 3 57.6 6 3 2.8474e-03 8.6327e-08 8.8857e-06
�rmð12Þ 3 111 6 3 2.9961e-03 2.4432e-08 1.6017e-05
�reð12Þ 3 2.08 6 3 3.4038e-03 4.4039e-06 5.3897e-07
l2ðH, 12Þ 1 146 4 2 7.9403e-03 1.0634e-05 2.5847e-04
�rmð12Þ 1 39.5 4 2 8.3855e-03 7.6221e-06 7.3130e-05
�reð12Þ 1 0 4 2 1.2667e-02 2.2503e-05 8.9115e-06
l2ðH, 12Þ 3 130 4 2 8.4252e-03 1.4219e-07 2.6351e-04
�rmð12Þ 3 164 4 2 8.4670e-03 4.6614e-08 3.3125e-04
�reð12Þ 3 0.475 4 2 9.6882e-03 1.2742e-05 4.4044e-06
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where u0 ¼ 2pa=12 m/day, k1 ¼ 133681 and k2 ¼
10m2=s2: We will compute W� ¼ gH�, where H� is the
height of the fluid. We note that the solutions are peri-
odic in time with period 1 day, which means that the
problem corresponding to (15) is periodic in all its varia-
bles. In Kreiss and Oliger (1972) it is shown, for a simple
periodic advection model, that the discretisation error
increases linearly in the number of time periods. This
behaviour in time of the discretisation error is the best we
can hope to achieve.

We make some comments concerning Table 4. For
order 2p ¼ 6 the errors decrease somewhat from the case
Dt ¼ 300 to 200. This indicates that there is no real can-
cellation between the spatial and temporal local discret-
isation errors. For order 2p ¼ 4 there seems to be
cancellation, and more so for Dt ¼ 300 than for Dt ¼ 200:
For 2p ¼ 6 the accuracy obtained for K¼ 1,2,3,4 is very
much the same, particularly for Dt ¼ 300: For each case
the error grows very close to linearly in the number
of days.

The third row of Table 4 will be ð300, 3, 12:3,
6, 2:1010e�9, 4:1408e�9, 6:2201e�9Þ, if method II is used
instead of method I. For this very smooth example there is
no real difference in accuracy between the two methods.

In Table 5, �reð15Þ is minimised in order to investigate
whether it may be used instead of �‘2ðW�, 15Þ, since the latter
quantity is not easily available for realistic NWP. The values
of c in the second to fourth rows in Table 5 are much smaller
than those in Table 4, but the corresponding errors do not
differ very much, except for the two cases K¼ 3, 4 and
T¼ 15days. However, the minimisation of �reð15Þ might still
give some insight in certain situations. In the next section, we
will look at another way to determine values of c.

The solutions (15) are very smooth and have very small
variation, which explains the high accuracy for the geopo-
tential, and for the total mass and energy cancellation of
errors has further increased the accuracy, see Table 5.

4.4. Zonal flow over an isolated mountain

Test problem no. 5 in Williamson et al. (1992) is con-
cerned with zonal flow impinging on a mountain on the
sphere, with a circular base. The centre of the base is
denoted by ðkc, hcÞ and the initial conditions are

u ¼ u0 cos h, v ¼ 0andW ¼ gh0�ðaXu0 þ u20=2Þ sin 2h,

where u0 ¼ 20 m/s and h0 ¼ 5960 m. The geopotential
corresponding to the conical mountain is

Table 4. Normalised errors for time dependent flow(L€auter), �‘2ðW�, 15Þ minimised over c, n¼ 360, T¼ 15 days, a ¼ p=4:

Dt K 108 � c 2p l2ðW�, 5Þ l2ðW�, 10Þ l2ðW�, 15Þ
300 1 0.647 6 2.0990e-9 4.1368e-9 6.2114e-9
300 2 4.55 6 2.1000e-9 4.1388e-9 6.2162e-9
300 3 8.34 6 2.1009e-9 4.1406e-9 6.2194e-9
300 4 19.4 6 2.1017e-9 4.1425e-9 6.2246e-9

200 1 19.4 6 4.1770e-10 8.2351e-10 1.2441e-9
200 2 33.4 6 4.2473e-10 8.3782e-10 1.3045e-9
200 3 41.5 6 4.3385e-10 8.5626e-10 1.3103e-9
200 4 53.2 6 4.4641e-10 8.8151e-10 1.3570e-9

300 1 29.8 4 4.2311e-8 8.5435e-8 2.5160e-7
300 3 49.8 4 9.2164e-8 1.8420e-7 4.6289e-7
200 1 57.4 4 7.7793e-8 1.5523e-7 3.9484e-7
200 3 98.6 4 1.7989e-7 3.5752e-7 7.8727e-7

Table 5. Normalised errors for time dependent flow(L€auter), �reð15Þ minimised over c, n¼ 360, 2p ¼ 6,Dt ¼ 300 s,
T¼ 15 days, a ¼ p=4:

K 108 � c ‘2ðW�, 5Þ ‘2ðW�, 10Þ ‘2ðW�, 15Þ �rmð15Þ �reð15Þ
1 0.686 2.0990e-9 4.1368e-9 6.2114e-9 4.9431e-12 1.8120e-11
2 2.58 2.1000e-9 4.1388e-9 6.2175e-9 1.4348e-12 2.3018e-11
3 1.13 2.1008e-9 4.1418e-9 1.8382e-8 9.2212e-12 2.0840e-11
4 4.31 2.1011e-9 4.1610e-9 9.1909e-8 3.3190e-11 2.6892e-11
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Ws ¼ ghs0ð1�r=RÞ, wherehs0 ¼ 2000,R ¼ p=9,

and r ¼ min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk�kcÞ2 þ ðh�hcÞ2

q
,R

� �
: We have com-

puted W ¼ W� þWs, which occurs in the two momentum
equations, whereas W� ¼ W�Ws appears in the continuity
equation. After an initial transient phase there seems to
be fairly well-behaved solutions, but with discontinuous
first order derivatives on the circle limiting the base of
the mountain and thus less smooth than the Cosine bell
in Section 4.2. Contour curves for the total height H are
depicted in Fig. 2.

It is fairly easy to experimentally determine a ’stability
interval’

0<cmin � c � cmax,

where cmin guarantees that there is enough smoothing for
stability and cmax that we stay inside the stability region
of the time integrator, in the left part of the complex
plane. We observe that for implicit methods cmax can be

infinite. For the present example we can choose cmin ¼
0:1
 10�6 and cmax ¼ 18
 10�6 for 2p ¼ 6, and cmin ¼
0:5
 10�6 and cmax ¼ 140
 10�6 for 2p ¼ 4:

In Table 6, the conservation properties are about the
same for 2p ¼ 6 and 2p ¼ 4, which is natural since they
are caused by cancellation of errors in the height of the
fluid rather than by accuracy. We recall that q is the
number of longitudinal mesh intervals that is replaced by
q�1 intervals in the following segment, cf. Section 3.2.
Only q�1 interpolation formulas are required and
repeated periodically. This can be seen as a more regular
way to interpolate between segments than the one of
method I, which has resulted in greater accuracy for the
total mass. The values of c in Table 6 have been obtained
by using some tests.

In order to further investigate the reliability of our
Equator-Pole grid systems, we have integrated the moun-
tain problem for 5 years, using methods of order 6. In
Table 7, the maximal relative errors in magnitude of the

Fig. 2. Contour curves for the total height H of the fluid for the mountain problem, no. 5 from Williamson et al. (1992): n¼ 360,
K¼ 3, 2p¼ 6, c ¼ 10�5, T¼ 15 days. Method I.

Table 6. Zonal flow over an isolated mountain, hc ¼ 30o, n¼ 360, K¼ 3, Dt ¼ 300, T¼ 15 days, 6 or 4 before �rmð15Þ or �reð15Þ
denotes the approximation order.

Method 106 � c 6, �rmð15Þ 6, �reð15Þ 106 � c 4, �rmð15Þ 4, �reð15Þ
I 10 1.0986e-06 2.3144e-03 3 1.0277e-06 2.3085e-03
I 12 1.0977e-06 2.3143e-03 5 9.9984e-07 2.3039e-03
I 15 1.0985e-06 2.3142e-03 10 1.0358e-06 2.2925e-03

II, q ¼ 6 0.4 3.4746e-07 2.3150e-03 1 5.5676e-07 2.3132e-03
II, q ¼ 6 0.5 3.4208e-07 2.3150e-03 3 4.8095e-07 2.3086e-03
II, q ¼ 6 1 3.5403e-07 2.3150e-03 5 4.8333e-07 2.3039e-03
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total mass appear in the fourth column and the corre-
sponding quantity for the total energy in the last one,
both after 5 years. The values of c are taken from
Table 6.

5. Summary

The Equator-Pole grid system introduced in (S-E-P), for
the solution of the shallow water equations on the sphere,
consists of one equatorial and two polar grids. Here we
generalise this by permitting the equatorial grid to be
reduced, that is divided into segments. We give two meth-
ods of reduction, called method I and method II, in
Sections 3.1 and 3.2, respectively. The reduction tech-
nique seems to work quite well, as can easiest be seen in
Table 4.

By using reductions the total number of grid points on
the sphere can be decreased by 20% or more, and for
high resolution also the computing time by a similar per-
centage. The change in accuracy for the height of the
fluid is negligible, and for the total mass the accuracy is
increasing with increased uniformity of the grid system,
cf. Table 3. High uniformity might have additional
advantages, for example in conjunction with comprehen-
sive wave propagation. The different wave speeds com-
puted will, among other things, depend on the uniformity
of the grid system used and its resolution. Low uniform-
ity or resolution might lead to interaction between waves
with no analogue in the continuous model.

We have demonstrated high accuracy in the total mass
for fairly simple problems, both with and without smooth
solutions. For realistic NWP models the situation can be
more complicated, e.g. water can contribute to the atmos-
phere’s mass and give rise to far less smooth problems
than those considered here. We mention that Allen and
Zerroukat (2015) have derived a two-dimensional general-
isation of the shallow water equations, which
includes moist.

We use high order centred finite difference approxima-
tions of first order spatial derivatives, in the shallow
water equations. This requires only a fraction of the
work per grid point compared with some other methods
of the same order. This fraction decreases rapidly with
the order of approximation. Further, one can very easily
increase the order of approximation by increasing the
order of approximation for first order derivatives. For

methods of order 4, 6, 8 and 10 the corresponding spatial
stencils contain only 9, 13, 17 and 21 grid points, respect-
ively. The higher the order of the spatial approximation,
up to a bound depending on the resolution, the better
treatment of fronts in the solutions, see for instance
Table 2 in (S-E-P). For the time integration, we have
used the explicit fourth order Runge-Kutta method.

The Equator-Pole grids presented here only focus on
uniformity, except in Section 3.4, and are mainly intended
to be basic grid systems. To make them more flexible, for
instance when taking jet streams and orography into
account, they need to be modified, perhaps by using over-
lapping techniques.
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