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ABSTRACT
The autocorrelation function (ACF) and its relationship to fluctuation analysis (FA) are discussed, based on
the reanalysis monthly mean geopotential height at 500 hPa from ECMWF (ERA-20C). ACF provides a
measure of the influence of correlation at different time points. The principal pattern ACF shows relatively
large positive correlations between every consecutive years in the central Asian continent and the North
African continent. However, the confidence intervals of the ACF distributions are generally too wide, and so
of low confidence level. It is found that the scaling rule of the ACF breaks down typically, while the
distributions of the critical exponent of FA always show patterns. It is also found that the larger values of
critical exponent appear in the tropical region, which reflects a larger climate persistence. The critical
exponent becomes smaller in the jet stream regions, indicating less year to year reappearance. The
characteristic time accounts for the weighted summation of all possible ACFs, which represents a memory
length of a certain climate events. In the boreal winter, some robust patterns can be identified by the
corresponding distribution of the characteristic time, which provides a unified way of describing the
persistence of climate. An approximate relation between the critical exponent of FA and the characteristic
time has been found, and such relation is verified by the distributions of these two physical variables.
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1. Introduction

Atmospheric variables exhibit a wide range of correla-
tions in various spatial and temporal scales. The autocor-
relation function (ACF), denoted as CðsÞ, provides a
measurement of the correlation of a signal with a delayed
copy of itself between any two temporal points s apart.
Autocorrelation analysis is a mathematical tool for find-
ing repeating patterns, such as the presence of a periodic
signal obscured by noise, with strong positive values of
ACF indicating a persistent pattern. However, ACF has
seldom been applied to climate studies to address the cor-
relation between different temporal periods. Does the cli-
mate system contain the character of persistence?, i.e. the
weather events in neighbouring years have a certain
degree of similarity to each other? If the persistence is
true, can we use ACF to describe it adequately? Also,
since ACF is essentially equivalent to a correlation func-
tion, how do we judge the reliability of the result based
on the confidence interval?

Scaling is a very general physical method used to
stretch or shrink an object in a spatial or temporal

domain with a scale factor. The scaling rules of ACF and
its related fluctuation analysis (FA) function are widely
used to describe the mean time correlations of a time ser-
ies. Generally, ACF and FA are found to obey the scal-
ing power-law (Tsonis et al., 1999; Talkner and Weber,
2000; Weber and Talkner, 2001; Monetti et al., 2003; Lin
et al., 2007; Vyushin and Kushner, 2009; Rypdal et al.,
2013; Yuan et al., 2015; Zhao and He, 2015; He et al.,
2016). However, most of the previous studies on discus-
sing scaling rule focus on the surface temperature for
short-time scale of hourly or daily data, and the perform-
ances of ACF and FA based on the longer time scale of
monthly mean data for geopotential height have seldom
been paid attention. The index of FA scaling (called
Hurst index (1951)) contains three main domains, corre-
sponding to correlated, white noise, and anti-correlated
results of a time series. It is unknown to us what is the
behaviour of the climate system based on the criterion of
the Hurst index. Under what circumstance, will the cli-
mate system present the correlated or random state? Can
the anti-correlated situation occur in the climate system?

The accumulation of ACF is intrinsically the character-
istic time (Trenberth, 1984), which reveals climate�Corresponding author. e-mail: jiangnan.li@canada.ca
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memory at different time scales. Since both the character-
istic time and FA are established on the accumulation of
ACF, there must exist a relationship between the charac-
teristic time and the scaling of FA. These are two differ-
ent approaches to describing the persistent
climate phenomenon.

To discuss the above questions by illustrating the tem-
poral correlation in climate and its association with cli-
mate persistence and memory is the purpose of this work.
Different from most previous studies on the application
of ACF and FA to the atmosphere in that the studies
were primarily local in nature and of short time scales. In
this study, ACF and FA will analyse correlations of the
geopotential height at the global scale for longer time
scales. The 111-year monthly mean ERA-20C were used
(Poli et al., 2016), and such data length is similar to that
of the empirical orthogonal functions (EOF) method,
which is widely used in the study of climate patterns.

The outline of the article is as follows: Section 2
presents correlations in climatic time series based on
ECMWF monthly mean data (ERA-20C); Section 3 dis-
cusses the underlying physics of the scaling for ACF and
FA; in Section 4, the distributions of the characteristic
time are shown as the memory length of the climate and
the relationship between the characteristic time and FA
function are addressed; and finally, in Section 5, we sum-
marize major results and draw conclusion.

2. Climate event correlation calculations

Considering a time series of wðtÞ, where t ¼ 1, 2, :::,m
denotes the discretized time, its normalized variability is
defined as

ŵðtÞ ¼ wðtÞ�hwðtÞi
r

, (1)

where r is the standard deviation of wðtÞ, hwðtÞi ¼ �w is
the time average of the series. ACF at each spatial point
over interval s is defined by

CðsÞ ¼ hŵðtÞŵðtþ sÞi: (2)

The detrended ECMWF monthly mean 500 hPa geopo-
tential height data (ERA-20C) is used for 111 years from
1900 to 2010 and a horizontal resolution of 1� latitude by
1� longitude (Poli et al., 2016). The annual cycle is
removed as well. The ACF’s CðsÞ provides a measure-
ment of the correlation between signals at any two differ-
ent temporal points separated by interval s and so is able
to indicate repeating patterns, such as the presence of
periodic signals obscured by noise. Values of CðsÞ near
positive/negative unity represent a tendency nearly perfect
in correlated/anti-correlated patterns. Monahan (2012)

has used this method to demonstrated the geographical
distributions of ACF for surface wind speed.

In the top panel of Fig. 1, the geographical distribu-
tions of CðsÞ in the boreal winter are shown for several
values of s ¼ 1�4 years. In each plot, there are several
apparent contour patterns in the Pacific and Atlantic
oceans and also over the Asian continent. These patterns
represent the chance of persistence of climate events
between two temporal points. Note that the patterns of
CðsÞ are not equivalent to climate patterns as these are
defined as climate events that happen in different loca-
tions in the atmosphere at the same time, where CðsÞ rep-
resents the persistence of climate events with a certain
temporal interval of s.

When s¼ 1 year, CðsÞ represents the time average of
the correlations between every two consecutive winter
seasons and so displays climate events which have a rela-
tively large chance to reoccur in two consecutive boreal
winters. For example, there is a specific structure shown
in the North Atlantic, the contour values are positive in
its upper part and close to zero in its lower part, indicat-
ing positive and weak correlations, respectively, in every
two consecutive winters.

The Cðs ¼ 1Þ distributions also show the existence of a
wave pattern in the Pacific and North America, similar to
the Pacific/North American teleconnection pattern
(PNA), the lower latitude of the eastern Pacific in the
vicinity of Hawaii (25�N, 145�W), across to the higher
latitude of western America continent (50�N, 120�W) and
back to the lower latitude of the eastern American con-
tinent (38�N, 80�W). Although the values of Cðs ¼ 1Þ in
these three regions are positive, they are small, which
means that the chance for this kind persistent structure in
two consecutive winters exists, but the probability is low.

Cðs ¼ 1Þ is the principal distribution with a higher
chance of occurring compared to the other distributions
of CðsÞ, s ¼ 2, 3, :::: Any relatively larger positive contour
shown in Cðs ¼ 1Þ indicates a bigger chance of
unchanged from year to year; any relatively larger nega-
tive contour indicates a less year to year reappearance.

The geographical distribution of Cðs ¼ 2Þ represents
the chance of the reappear climate events in winters sepa-
rated by 2 years. In the North Atlantic, the structure is
similar to the result of Cðs ¼ 1Þ, as the contour values
are positive in its upper part (around 58�N) and close to
zero in its lower part (around 45�N), indicating the sign
does not systematically change for every second winter.
Also the PNA type structure of Cðs ¼ 2Þ is similar to
that of Cðs ¼ 1Þ: In the upper North Atlantic, there is a
double-centre structure with values of positive and close
zero. One centre has a larger year to year persistence
than another. other. In some areas, the contour is posi-
tive in Cðs ¼ 1Þ, but turns to negative in Cðs ¼ 2Þ:
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Fig. 1. The top and third panels are the northern hemispheric distributions above 20�N of the values of ACF for boreal winter and
summer. The second and fourth panels are the corresponding results for the confidence interval. Based on ECMWF monthly mean data
of ERA-20C (1900–2010).
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However, for regions with a substantial positive value in
Cðs ¼ 1Þ, the chance to turn to negative in Cðs ¼ 2Þ is
small. For example, the North African continent always
keeps the positive value for both CðsÞ, s ¼ 1, 2:

The geographical distribution of Cðs ¼ 3Þ represents
the chance of reappear climate events in every two win-
ters with a temporal gap of 3 years. The noticed differ-
ence is that the double-centre structure disappears in the
North Atlantic compared with Cðs ¼ 1Þ and Cðs ¼ 2Þ,
indicating that the persistence of ŵ in the upper North
Atlantic is weak between two winters separated by 3
years. The wave pattern structure in the Pacific and
North America shown in Cðs ¼ 3Þ is different from that
of Cðs ¼ 1Þ: The sign in the lower latitude of the eastern
Pacific turns negative, and so the type of structure in
every third winter could be different. The phase and amp-
litude of each type of structure could be different for dif-
ferent winter seasons.

In the distribution of Cðs ¼ 4Þ, the most characteristic
pattern is that the value of ACF becomes negative in the
upper and lower North Atlantic (centred at 42�N, 45�W
and 71�N, 0�W), implying values of ŵ in the upper
North Atlantic changes sign every 4 years, which is con-
sistent with observations. Hurrell and Loon (1997)
showed that there are about 30 NAO happened in about
120 years from 1865 to 1995, thus the averaged period of
NAO is approximately about 4 years. This is also con-
firmed by Stephenson et al. (2000).

It is worth to emphasize that the first few CðsÞ domin-
ate the temporal correlation since the chance of occur-
rence is larger than the other CðsÞ with a larger s. CðsÞ
in the boreal winter presents very different patterns at dif-
ferent values of s, indicating that there is no trend in
change of CðsÞ for an increase of s, which indicates a
breaking of scaling rule in the boreal winter (see
next section).

The confidence interval can be applied to ACF if we
treat the values of the ACF as correlation coefficients
(see Appendix). Note that the wider the confidence inter-
val, the lower the likelihood of reaching the selected con-
fidence level.

Row 2 of Fig. 1 shows the confidence interval for a
confidence level of 0.9 based on the method shown in
Appendix. Most derived values of the confidence interval
are around 0.32. The large confidence interval means that
the results of ACF could fluctuate considerably around
the mean results shown in the first row. The reasons for
the large confidence interval and lower confidence level
are due to the low value ACF in the boreal winter and
the short data length. For the same ACF, this confidence
interval could be much smaller if the data length was
much longer (e.g. �500 years).

The third row of Fig. 1 shows similar results of the
ACF for the boreal summer. Unlike the boreal winter,
CðsÞðs ¼ 1, 2, 3, 4Þ in the boreal summer show a similar
patterns for different s. For example, CðsÞ in the western
part of North America shows a very similar distribution
pattern for all the different s, and the contour value
decreases with an increase of s, which, to some extent, is
indicative of the phenomenon of scaling as the value
gradually decrease with increase of s.

The fourth row of Fig. 1 presents the results of the
confidence interval for the corresponding ACF in the
boreal summer. Because of the larger values of ACF,
the confidence intervals become narrower compared to
the results of the boreal winter, and so have a higher
confidence level.

3. Scaling of ACF and FA

Scaling is a common phenomenon seen in nature and
indicates the invariance to stretching or shrinking on an
object in a spatial or temporal domain using a scale fac-
tor. For a function f(x), if the argument x multiplied by a
constant factor k causes only a proportionate change of
the function itself, i.e. f ðkxÞ� k�af ðxÞ, then f(x) has a
character of scaling and the a is called the critical expo-
nent. What kind of scaling rule exists for the ACF is an
interesting question. Even in theoretical physics there
lacks a rigorous proof for the power-law of ACF
(Granger, 1980; Koyama and Hara, 1992). In atmos-
pheric science, it was claimed that autocorrelation can
follow power-law decay (called long-range correlation),
and we examine this aspect here.

If ACF follows a power-law decay then

CðsÞ� s�a , (3)

and then the scaling rule would exist

CðksÞ ¼ k�aCðsÞ , (4)

generally, a cannot be negative, as that would indicate
correlation increasing with s.

In the atmosphere, the power-law scaling of ACF has
been examined (Koscielny-Bunde et al., 1996; Talkner
and Weber, 2000; Eichner et al., 2003), using calculations
generally based on surface temperature data in a localized
region with a very fine time step of a day or shorter.
Here, we are more interested in longer time scales over a
large geographical domain. Different from ACF, which
measures an averaged correlation between two temporal
points, the scaling of (3) measures the trend of change to
such a correlation. Therefore, power-law scaling repre-
sents climate persistence, and describes a long-term
record of climate by examining the probability of repeat-
ing a climate state. In (3), the smaller the a, the less
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degree of decay, and as a ! 0 there is no change in
CðksÞ, thus indicating a maximum probability of climate
persistence.

However, it is shown in detail in the Appendix that the
scaling rule of (3) is generally not true for geopotential
height in both cases of monthly mean and daily mean,
even though the daily mean data is a very long time series
of 13,880 days. The results in Section 2 of CðsÞðs ¼
1, 2, 3, 4Þ help us to understand that the scaling law of
ACF is generally not true since in most regions of the
boreal winter, the interannual fluctuation is too strong,
and the similarity in CðsÞ becomes very small or does not
exist for different s and so the scaling rule of (3) does not
hold. The scaling rule is more likely to show in the boreal
summer, as CðsÞ for different s shows similar patterns
and the similarity decreases with an increasing s (e.g. in
the fast-east Siberian region), which demonstrates the
possible existence of a scaling rule. Because it is difficult
to evaluate the critical exponent, a, of ACF, as shown
above and the further discussion of Fig. 7, the critical
exponent of FA is commonly used (Talkner and Weber,
2000; Diego Rybski et al., 2008). If FA satisfies

FAðnÞ� nH (5)

where H is the critical exponent of FA, called Hurst
index, then the scaling is satisfied as FAðknÞ ¼ kHFAðnÞ:
It has been shown (Hurst 1951)

H ¼

<1=2 : anti�correlated

’ 1=2 : uncorrelated ðwhite noiseÞ
>1=2 : correlated

’ 1 : FA ð1=nÞ� 1=n ðpink noiseÞ

8>>>><
>>>>:

(6)

It is shown in the Appendix that even though the scaling
rule of ACF does not exist the scaling rule of FA is gen-
erally true, and the values of H falls into the range of
>1=2: Unlike the ACF, which shows the correlation
between two states with time lag s, the n in FA is the
accumulated time length from the beginning to the
moment of n. Thus, the fluctuation of C(k) is mostly can-
celled out in the accumulated process, and FA can follow
a scaling rule. In the Appendix, (A2) shows that a larger
value of H corresponds to a larger value of accumulated
ACF in a temporal interval, which means a stronger cor-
relation between any of two temporal points inside the
range of from s¼ 1 to s ¼ n: Therefore, the larger H rep-
resents a larger chance of persistence.

The upper left plot of Fig. 2 shows the global averaged
of FA, in the natural logarithm coordinate of logFAðnÞ
and log n: The scaling is well presented in the linear rela-
tionship between the logFAðnÞ and log n coordinates. In
the same plot, the 3-month mean results of DJF
(December–February) and JJA (June–August) are also

shown. For the global average, the slopes of the annual
mean and JJA are larger than the slope of DJF. Thus,
the climate persistence is weaker in the DJF season.

The upper right plot of Fig. 2 shows the corresponding
results in the tropical region (23�S–23�N). The tropical
interannual variability is small when compared with the
extra-tropics. The difference between any consequent
years is relatively small, therefore the values of the slope
(H) are larger than those of the global average. This
result is consistent with the traditional view of weak cli-
mate variability in the tropical regions (see Fig. 3).
Therefore, the chance of climate persistence is large.
Also, it is clearly shown that the slope of DJF is smaller
than the slopes of the annual mean and JJA. Even in the
tropical region, the chance of climate persistence is rela-
tively lower for the DJF season.

The lower plots of Fig. 2 show the corresponding
results in both Northern Hemisphere (23

��90
�
N) and

Southern Hemisphere (23
��90

�
S). In Northern

Hemisphere, H is only 0.57 for the DJF mean, which is
smaller than the that of annual mean and JJA mean.
Thus, the climate persistence is low in the DJF Northern
Hemisphere (boreal) winter. The quasi-stationary planet-
ary waves have greater forcing in the Northern
Hemisphere winter (Frankignoul 1985), which causes the
large interannual variations there. The corresponding H
of JJA is 0.69, considerably larger than that of DJF, as
the boreal summer has a larger chance of the climate per-
sistence. For the Southern Hemisphere. The curve of JJA
shows a lower slope compared with those of the other
two curves. The Hemispheric variations are similar but
the slope of austral winter is obviously smaller than that
of the austral summer, which indicates that the austral
winter has a larger year to year persistence.

The results scaling of FA present the persistence in cli-
mate for consequent years. To further test the sampling
variability of the climate persistence, we use a permuta-
tion method where data for different calendar years is
shuffled to create a time series with no systematic auto-
correlation between years and the results are shown in
Appendix. It is found that the values of H in all cases are
very close 0.5, which means that the results are in the
white noise range and the climate persistence is lost. The
surrogate data results, in turn, prove there does exist the
persistence in climate.

In the upper panel of Fig. 3, we show the detailed geo-
graphical distributions of the critical exponents of H. A
linear regression method is used to obtain the value of H
using the linear relation of logFAðnÞ ¼ H log n, similar
to that shown in Fig. 2. The range of n¼ 10 year is used
for data in the regression, because the curves of H
become not very straight for a large value of n as shown
in Fig. 2. As FAðnÞ is an accumulated result, it presents
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the variation in the period from the beginning to time n,
and so that the averaging process makes the result much
more stable compared to that of ACF. The larger the
value of H, the larger the similarity in physical states.

It is shown in Fig. 3, most areas over world have
H> 0.5 (only 3% points of H � 0:5), and over 84% points
have the values of H> 0.6. In the tropical Pacific ENSO
region, the value of H is larger in Nino 3 region com-
pared to that of Nino 3.4 region. Bradley and Power
(2014) shows that the mean annual cycles of Nino index
is higher in Nino 3.4 region compared to Nino 3 region.
Note, the variance in geopotential is not fully driven by
sea surface temperature.

Also, the critical exponent becomes smaller in the
higher latitude regions. The smallest values mostly appear
in the Southern Hemisphere polar jet stream regions,
where values of H are smaller than 0.5. It is found that
the values of H are never less than 0.4; therefore, the
uncorrelated regions are only in white noise status. Also,
the maximum value of H is about 0.85, no single region
of H ’ 1, as the climate system does not fall into pink
noise range.

Northern Hemisphere latitudes >30
�
N have the values

of H, which are very small over large domains. This is
related to the less climate persistence there, and will be
further discussed when analysing results in Fig. 4. It is

Fig. 2. FA calculated susing the 500hPa geopotential height for global, tropical, and north/south hemisphere means. Three time series
are considered for annual, DJF, and JJA means. Based on ECMWF monthly mean data of ERA-20C (1900–2010). s is in unit of year.
The black lines are the results of H¼ 0.5.
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interesting to find that values of H are relatively large in
the western part of the North American continent, but
relatively small in the eastern part. The year to year per-
sistence in the upper western region of North America

are higher than the upper eastern region. In the Eurasian
Continent, the situation is reversed, the larger/smaller val-
ues of H appear in the upper eastern/western parts, as the
interannual persistence is high in the Russian Far East

Fig. 3. Top panel, the annual mean distribution of the critical exponents H of FA using the 500 hPa geopotential heights; bottom
panel, the distribution of the standard deviation.
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but low in Europe. In the northern Atlantic around 45�,
the values of H are also minimal due to the variation of
the NAO. Along the continent coasts, like the regions of
Kuroshio and Gulf stream, the values of H are very small
as well, as we expect these regions have lower interannual
persistence.

In the Appendix, we have analysed the reliability for
the length of ERA-20C by doing a series of tests. It is
found that the result of Fig. 3 is very robust if we use the
data of the last 100 years from 1911 to 2010. However, if
the data is too short, like using the data of the last
40 years, the results become very different.

The lower panel of Fig. 3 shows the result of standard
deviation based on the same annual mean data. It is
found that the distribution of standard deviation, to
some extent, has similarity to that of H. Especially in
tropical region of larger H corresponds to a smaller
standard deviation. A higher persistence means a higher

climate reappearance in neighbouring years; thus, the
deviation from the averaged result could be small.
However, the persistence and variability are different. A
signal can have a high variance and either a high or low
persistence. The climate variability emphasizes the devi-
ation to the multi-year climate mean, while climate per-
sistence emphasizes the relationships in climate between
neighbouring years. It is shown in Fig. 3 that there exist
noticeable differences between the two distributions,
mostly occurring in the extratropics.

Figure 4 shows the regional and seasonal distributions
of H. In the boreal winter, many regions show clear pat-
terns: the characteristic feature of a H, close to 0.5 is
shown near the regions of Bering sea, eastern Siberian
sea, and Alaska. which can serve as a big perturbation
source for climate; the western coast of North America
and central Asia also show the small values of H, and the
interannual persistence in these regions are small.

Fig. 4. Upper left and right plots are the northern hemispheric distributions above 20�N of H for the boreal winter and summer.
Lower left and right plots are the southern hemispheric distributions below 20�S of H for the austral winter and summer.
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The most interesting feature is the double-centre struc-
ture shown in the North Atlantic, as the large and small
values of H appear in the upper North Atlantic (centred
at 60�N, 44�W) and lower North Atlantic (centred at
45�N, 45�W). The climate is relatively stable/unstable in
these two regions, and this pattern is similar to NAO.
The relatively higher values of H appear in the central
Pacific in the vicinity of Hawaii. In the western America
continent, relatively large values of H appear the higher
latitudes, but small values of H appear in the lower lati-
tudes. In the boreal summer, the values of H in most
areas become much larger than those of boreal winter,
showing a larger chance of climate persistence. Also,
there is a double-centre structure shown in the North
Atlantic similar to the boreal winter, but the two-centre
structure is tilted to the west.

In the DJF Southern Hemisphere, the austral summer
has the values of H that are relatively large in the south
polar region and the south Indian ocean, with values up
to 0.8. Therefore, a persistent climate should commonly
occur there. In the austral winter, similar to the boreal
winter, the values of H are small in general except in the
south Indian ocean.

4. Memory of climate

By summing the Cðs ¼ mÞ,m ¼ 1, 2, :::, the accumulated
ACF is obtained in order to account for the entire correl-
ation between different s years. Trenberth (1984) has pro-
posed a concept of characteristic time, which is the
summation of ACF.

Tc ¼ 1þ 2
Xmmax

m¼1

Ne�m
Ne

Cðs ¼ mÞ (7)

where Ne is the effective length of the time series, and
mmax is the maximum value of s. For a finite time series
with length N, the effective length is Ne ¼ N�mmax: The
Ne is the available length of data in the calculation of
CðsÞ: In (7), the factor 2 arises from the self-correlation
as s¼ 0, and the factor ðNe�mÞ=Ne is the ratio of the
number of samples used to calculate the correlation func-
tion to the effective number of sample points.

The characteristic time represents the temporal length
of memory; a region of larger/smaller Tc has higher/lower
interannual persistence and so a longer/shorter climate
memory. The characteristic time defined by (7) has sel-
dom been applied to climate pattern studies using the
longer time range of monthly data.

Figure 5 shows the annual mean global distribution of
the characteristic time. To understand the reliability of
Tc, we choose the value of mmax to be 5, 10, 15, 20, 25,
and 30 years with N¼ 111 years. For these different mmax

the values of Tc are also different though the patterns of

Tc are similar, and mmax ¼ 20�25 year has the largest
local values of Tc. The temporal length of memory
reaches the maximum when the accumulated Cðs ¼ mÞ
from the near 20�25 years. In other words, the climate
memorized information is mostly from the past 20�25
years. Using the ECHAM5, it is found that for surface
temperature the random walk length on land of 24 years
and over the ocean of 20 years (Bye et al. 2011).
Therefore, probably the time length of 20–30 years is
necessary to catch the most important climate variability.

Based on the dominant second term of (A2), (7) can be
written as

Tc � 2
Ne

Xmmax

m¼1

ðNe �mÞCðs ¼ mÞ� 1
Ne

hS2ðNeÞi� 1
Ne

FAðNeÞ2 �N2H�1
e :

(8)

Thus, we have derived an approximate relation between
Tc and the critical exponent H.

Since Tc is an accumulated ACF, for a smaller value
of mmax ¼ 5 years, the value of Tc does not reach its max-
imum. Though the values of Tc change for different val-
ues of mmax, the patterns of Tc are similar.

The distributions of Tc shown in Fig. 5 are very similar
to that of the critical exponent H (Fig. 3), as a region of
larger H generally corresponds to a larger Tc, which sup-
ports the relationship of (8). This can be understood since
a large H indicates a stronger scaling in the FA function
as the persistence is larger, and also the temporal length
of memory is longer.

To comprehend the seasonal patterns, the geographical
distribution of Tc for the boreal winter is shown in the
upper left plot of Fig. 6. We choose mmax ¼ 25 years
�N=4: In the North Atlantic high latitudes (around
50�N), the value of Tc is relatively small while larger in
the lower latitudes. This suggests an NAO pattern which
is also seen in the FA analysis. There is also a PNA-type
pattern in the eastern Pacific and northern America
regions. There is also a persistent Tc pattern near the
Mediterranean and northern Sahara desert regions. This
latter region always exhibits high geopotential, where the
atmosphere tends to suppress the large-scale ascending
air. There is also another pronounced pattern in north-
eastern Asia, with some regions having Tc very close to
zero, implying that the climate has no memory there.

The upper right plot of Fig. 6 shows the geographical
distribution of Tc for the boreal summer. Again, the
distribution of Tc is very similar to that of H shown in
Fig. 4; however, the magnitude of the variation in Tc is
much larger than that of H, which is due to the exponen-
tial relation shown in (8). An interesting feature is that
the climate memory is long in the western part of North
America and short in the eastern part. The two lower
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plots of Fig. 6 show the geographical distributions of Tc

for the austral summer and winter.
In summary, the distribution of the characteristic time

as the accumulated ACF provides a unified way to
describe climate variance, with several possible climate
patterns being shown together. The characteristic time
and FA are two complementary approaches that can be
used to describe the persistent climate events.

5. Conclusion

ACF, FA functions, and the characteristic time have
been discussed for their applications to climate system.

Different from most previous studies of the application of
the ACF and FA function which focus on short-time
scales based on hourly or daily data, the longer timescale,
based on seasonal and annual mean, is addressed in this
study to explore climate persistence and memory based
on the ERA-20C seasonal and annual mean data, which
was widely used in study of climate patterns. The follow-
ing conclusions can be drawn from this study:

1. The pattern of CðsÞ represents the persistence climate
events, s years apart. The principal pattern Cðs ¼ 1Þ
shows relatively large positive correlations between
every consecutive years in the central Asian continent

Fig. 5. Global distributions of the characteristic time for the six mmax values (5, 10, 15, 20, 25, and 30 years). Based on ECMWF
monthly mean data of ERA-20C (1900–2010).
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and North African continent (Cðs ¼ 1Þ up to �0.6)
due to the values of geopotential height in such
regions are relatively stable. The confidence interval
can be applied to ACF, but due to the limited length
of the reanalysis data, these confidence intervals are
generally close to 0.3. Therefore, a high confidence
level for the geographic distributions of CðsÞ cannot
be obtained with the dataset used in this study, so
either a much longer dataset could be calculated, or
other metrics have to be used.

2. The scaling feature of ACF based on geopotential
height, is not found for both of the monthly mean and
daily mean data, as shown in Fig. 7. In contrast, the
scaling rule of FA is true in both the spatial average
and its geographical distribution. The distributions of
the critical exponent of H always show regular patterns

and the larger values ofH appear in the tropical region,
which reflects a larger climate persistence. The critical
exponent becomes smaller in the jet stream regions,
indicating less climate persistence. The climate
persistence emphasizes the relationships in climate
between neighbouring years, which is different from the
climate variability by addressing the deviation to the
multi-year climate mean.
The length of ERA-20C is a concern for this study since
all calculations are based on seasonal or annual mean,
which makes the length of data short. As it is
emphasized that the broader confident interval of ACF
is mostly caused by the short length of the data. For FA
calculation, the 111-year seasonal or annual mean data
seems enough, but further tests are needed by using
more extended data.

Fig. 6. Upper left plot shows the distributions above 20�N of the characteristic time in the DJF Northern Hemisphere above 20�N;
the upper right panel is the same but for JJA northern hemisphere. mmax ¼ 25 years. The lower panel shows the results for
Southern Hemisphere.
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3. The characteristic time shows the temporal memory
of climate. The distribution of index H is very similar
to that of the characteristic time, and the relationship
between them is explored in this study. The FA
function and characteristic time are two different
approaches towards a representation of persistent
patterns of climate. In the boreal winter, some highly
recognized patterns, like the NAO, can be identified
by a corresponding distribution of the accumulated
ACF. However, the characteristic time provides a
unified way to describe climate events.
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Appendix

This appendix contains three parts: (A) relationship
between ACF and FA; (B) a discussion of the confidence
interval for the ACF; and (C) the results of FA based on
shorter range data and shuffled data.

Part (A)

Here, we show the relationship between ACF and FA.
Given a fluctuation function,

SðnÞ ¼
Xn
i¼1

wðiÞ��w
r

¼
Xn
i¼1

ŵðiÞ , (A1)

and in order to be consistent with (1), then
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hS2ðnÞi ¼h
Xn
i¼1

ŵ
2ðiÞi þ h

Xi, j�n

i6¼j

ŵðiÞŵðjÞi

¼h
Xn
i¼1

ŵ
2ðiÞi þ

Xi, j�n

i6¼j

Cðji�jjÞ

¼nŵ
2 þ 2

Xn�1

k¼1

ðn� kÞCðkÞ

(A2)

The FA function is defined (Hurst 1951)

FAðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS2ðnÞi

q
: (A3)

The first term of (A2) is linearly proportional to n, with a
constant critical exponent of one. In the second term,
2
Pn�1

k¼1 nCðkÞ dominates. If CðkÞ� k�a, following
Courant and Robbins (1996),

n
Xn�1

k¼1

k�a ¼ n
ðnþBÞ1�a�B1�a

1� a
�nn1�a �n2�a (A4)

where B a quantity related to Bernoulli numbers.
Therefore in (A2), if a<1 and n is large enough, the
second term dominates, thus

hS2ðnÞi� 2
Xn�1

k¼1

ðn� kÞCðkÞ�n2�a , (A5)

If

FAðnÞ�nH , (A6)

thus H ¼ 1�a=2, which is called Hurst law (Hurst 1951).
From (A2) and (A3), a large value of H corresponds to a
larger value of S2ðnÞ, and a larger value of the accumulated
ACF. Thus, a larger H indicates a stronger similarity
between physical states at different time described by ACF.

In the article, we do not discuss the scaling rule of
CðsÞ� s�a, since it does not exist in general. The upper left
plot of Fig. 7 shows the global averaged results of ACF, in
the natural logarithm coordinate of logCðsÞ and log s, for
global mean, tropical mean, northern, and southern
hemispheric means. However, strong fluctuations happen
and it is difficult to determine the critical index, a, since the
power-law of requires a linear relationship between the
logCðsÞ and log s coordinates. The problem is not caused
by the length of data. In the right column of Fig. 7, the
results of daily global mean, tropical mean, northern and
southern Hemispheric means of potential height at 500hPa
are shown covering 13,880days (1 January 1979–31
December 2016) with the seasonal cycle removed. It is
shown the scaling relation does not appear as well satisfied.
We also have checked the local geographical points, and
found the power-law is not held either.

The bottom plots of Fig. 7 show the corresponding
results of FA, and unlike ACF the power-law scaling
holds for both monthly mean data and daily data.

Part (B)

In statistics, a confidence interval is a type of interval
estimate for the mean. Interval estimates are often
required since the estimate of the mean varies from
sample to sample. The confidence interval provides a
lower and upper limits for the mean. The narrower the
confidence interval, the deviation to the mean result
is smaller.

Since CðsÞ ¼ hŵðtÞŵðtþ sÞi, we can consider ŵðtÞ and
ŵðtþ sÞ are a pair of time series. r ¼ CðsÞ is the
correlation coefficient. We first perform a Fisher
transformation to r, which is an approximate variance-
stabilizing transformation for r. After Fisher
transformation, the variance becomes approximately
constant for all values of the population correlation
coefficient. Thus, the confidence interval can be
calculated, since the confidence interval is dependent on
variance (or standard deviation).

Following Bonett and Wright (2000) and Schweder
and Hjort (2016), by Fisher transformation,

zr ¼ 1
2
ln

1þ r

1� r

� �
(B1)

The upper and lower confidence limits can be calculated
by zU and zL as

zU=zL ¼ zr6z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 3

r
(B2)

where a is the confidence level and N is the length of the
data. The confidence interval is

W ¼ exp 2zU�1
exp 2zU þ 1

� exp 2zL�1
exp 2zL þ 1

(B3)

Equation (B3) show that the confidence interval
depends on three factors: the selected confidence level,
the values of the correlation coefficients, and the length
of the dataset. Note that the wider the confidence
interval, the lower the likelihood of reaching the
selected confidence level. For example, if the
confidence level is set to 0.9, then the result has 90%
probability to appear in the range of (mean � 0.5
interval, mean þ 0.5 interval).

Part (C)

Figure A1 is the same as Fig. 2 but using the shuffled
surrogate time series. It is interesting to find that the
slopes for all cases reduce considerably compared to
those in Fig. 2. Also, the differences between the
different regions decrease, as all the curves are much
more convergent. The values of H are very close 0.5 by
fitting the curves for till logðsÞ�2: For the large values
of tau, the slopes deviate from 0.5. We fund that the
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deviation is mostly caused by the length of the data.
Since the shuffled data are random, we have done a
test by double the length of data and found that all
the lines become straight and H¼ 0.5 is exactly
followed. The results of 0.5 means that the results are
in the white noise range. Therefore, climate persistence
is lost in the surrogate time series. The results of the
surrogate data prove there does exist the persistence in
climate, i.e. the relationships in climate between
neighbouring years.

In Fig. A2, the results of the global distribution of the
critical exponent of FA are presented for different lengths
of ERA-20C. It is shown that the result of Fig. 3 is very
robust if we use the data for the last 100 years from 1911
to 2010. Even with data of 60 years (1951–2010), the
changes are small compared with Fig. 3. However, if the
data are too short, like using the data of the last 40 years
from 1971 to 2010, the result becomes very different from
Fig. 3, which means that a certain length in time series is
required to obtain a correct FA.

Fig. A1. The FA calculated using the surrogate time series for global, tropical, and north/south hemisphere means. Three time series
are considered for annual, DJF, and JJA means. Based on ECMWF monthly mean data of ERA-20C (1900–2010). s is in unit of year.
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Fig. A2. Annual mean distribution of the critical exponents H of FA using the data of EAR-20C in periods of 1911–2010, 1951–2010,
and 1971–2010.
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